首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Borehole seismic addresses the need for high‐resolution images and elastic parameters of the subsurface. Full‐waveform inversion of vertical seismic profile data is a promising technology with the potential to recover quantitative information about elastic properties of the medium. Full‐waveform inversion has the capability to process the entire wavefield and to address the wave propagation effects contained in the borehole data—multi‐component measurements; anisotropic effects; compressional and shear waves; and transmitted, converted, and reflected waves and multiples. Full‐waveform inversion, therefore, has the potential to provide a more accurate result compared with conventional processing methods. We present a feasibility study with results of the application of high‐frequency (up to 60 Hz) anisotropic elastic full‐waveform inversion to a walkaway vertical seismic profile data from the Arabian Gulf. Full‐waveform inversion has reproduced the majority of the wave events and recovered a geologically plausible layered model with physically meaningful values of the medium.  相似文献   

2.
Elastic full waveform inversion of seismic reflection data represents a data‐driven form of analysis leading to quantification of sub‐surface parameters in depth. In previous studies attention has been given to P‐wave data recorded in the marine environment, using either acoustic or elastic inversion schemes. In this paper we exploit both P‐waves and mode‐converted S‐waves in the marine environment in the inversion for both P‐ and S‐wave velocities by using wide‐angle, multi‐component, ocean‐bottom cable seismic data. An elastic waveform inversion scheme operating in the time domain was used, allowing accurate modelling of the full wavefield, including the elastic amplitude variation with offset response of reflected arrivals and mode‐converted events. A series of one‐ and two‐dimensional synthetic examples are presented, demonstrating the ability to invert for and thereby to quantify both P‐ and S‐wave velocities for different velocity models. In particular, for more realistic low velocity models, including a typically soft seabed, an effective strategy for inversion is proposed to exploit both P‐ and mode‐converted PS‐waves. Whilst P‐wave events are exploited for inversion for P‐wave velocity, examples show the contribution of both P‐ and PS‐waves to the successful recovery of S‐wave velocity.  相似文献   

3.
Full waveform inversion for reflection events is limited by its linearised update requirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate, the resulting gradient can have an inaccurate update direction leading the inversion to converge what we refer to as local minima of the objective function. In our approach, we consider mild lateral variation in the model and, thus, use a gradient given by the oriented time‐domain imaging method. Specifically, we apply the oriented time‐domain imaging on the data residual to obtain the geometrical features of the velocity perturbation. After updating the model in the time domain, we convert the perturbation from the time domain to depth using the average velocity. Considering density is constant, we can expand the conventional 1D impedance inversion method to two‐dimensional or three‐dimensional velocity inversion within the process of full waveform inversion. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearised representations of the reflection response. To eliminate the crosstalk artifacts between different parameters, we utilise what we consider being an optimal parametrisation for this step. To do so, we extend the prestack time‐domain migration image in incident angle dimension to incorporate angular dependence needed by the multiparameter inversion. For simple models, this approach provides an efficient and stable way to do full waveform inversion or modified seismic inversion and makes the anisotropic inversion more practicable. The proposed method still needs kinematically accurate initial models since it only recovers the high‐wavenumber part as conventional full waveform inversion method does. Results on synthetic data of isotropic and anisotropic cases illustrate the benefits and limitations of this method.  相似文献   

4.
Although waveform inversion has been intensively studied in an effort to properly delineate the Earth's structures since the early 1980s, most of the time‐ and frequency‐domain waveform inversion algorithms still have critical limitations in their applications to field data. This may be attributed to the highly non‐linear objective function and the unreliable low‐frequency components. To overcome the weaknesses of conventional waveform inversion algorithms, the acoustic Laplace‐domain waveform inversion has been proposed. The Laplace‐domain waveform inversion has been known to provide a long‐wavelength velocity model even for field data, which may be because it employs the zero‐frequency component of the damped wavefield and a well‐behaved logarithmic objective function. However, its applications have been confined to 2D acoustic media. We extend the Laplace‐domain waveform inversion algorithm to a 2D acoustic‐elastic coupled medium, which is encountered in marine exploration environments. In 2D acoustic‐elastic coupled media, the Laplace‐domain pressures behave differently from those of 2D acoustic media, although the overall features are similar to each other. The main differences are that the pressure wavefields for acoustic‐elastic coupled media show negative values even for simple geological structures unlike in acoustic media, when the Laplace damping constant is small and the water depth is shallow. The negative values may result from more complicated wave propagation in elastic media and at fluid‐solid interfaces. Our Laplace‐domain waveform inversion algorithm is also based on the finite‐element method and logarithmic wavefields. To compute gradient direction, we apply the back‐propagation technique. Under the assumption that density is fixed, P‐ and S‐wave velocity models are inverted from the pressure data. We applied our inversion algorithm to the SEG/EAGE salt model and the numerical results showed that the Laplace‐domain waveform inversion successfully recovers the long‐wavelength structures of the P‐ and S‐wave velocity models from the noise‐free data. The models inverted by the Laplace‐domain waveform inversion were able to be successfully used as initial models in the subsequent frequency‐domain waveform inversion, which is performed to describe the short‐wavelength structures of the true models.  相似文献   

5.
Seismic amplitude variation with offset and azimuth (AVOaz) inversion is well known as a popular and pragmatic tool utilized to estimate fracture parameters. A single set of vertical fractures aligned along a preferred horizontal direction embedded in a horizontally layered medium can be considered as an effective long-wavelength orthorhombic medium. Estimation of Thomsen’s weak-anisotropy (WA) parameters and fracture weaknesses plays an important role in characterizing the orthorhombic anisotropy in a weakly anisotropic medium. Our goal is to demonstrate an orthorhombic anisotropic AVOaz inversion approach to describe the orthorhombic anisotropy utilizing the observable wide-azimuth seismic reflection data in a fractured reservoir with the assumption of orthorhombic symmetry. Combining Thomsen’s WA theory and linear-slip model, we first derive a perturbation in stiffness matrix of a weakly anisotropic medium with orthorhombic symmetry under the assumption of small WA parameters and fracture weaknesses. Using the perturbation matrix and scattering function, we then derive an expression for linearized PP-wave reflection coefficient in terms of P- and S-wave moduli, density, Thomsen’s WA parameters, and fracture weaknesses in such an orthorhombic medium, which avoids the complicated nonlinear relationship between the orthorhombic anisotropy and azimuthal seismic reflection data. Incorporating azimuthal seismic data and Bayesian inversion theory, the maximum a posteriori solutions of Thomsen’s WA parameters and fracture weaknesses in a weakly anisotropic medium with orthorhombic symmetry are reasonably estimated with the constraints of Cauchy a priori probability distribution and smooth initial models of model parameters to enhance the inversion resolution and the nonlinear iteratively reweighted least squares strategy. The synthetic examples containing a moderate noise demonstrate the feasibility of the derived orthorhombic anisotropic AVOaz inversion method, and the real data illustrate the inversion stabilities of orthorhombic anisotropy in a fractured reservoir.  相似文献   

6.
地壳不同深度介质的地震各向异性是研究地壳不同深度范围变形方式的重要依据.鉴于地壳介质的复杂性,如何从远震体波接收函数中提取不同深度的各向异性参数仍是一个有待深入研究的课题.在已有研究的基础上,本文利用广义反射-透射系数矩阵方法计算的合成地震图,研究了复杂地壳分层各向异性介质的接收函数随反方位角(back azimuth)变化及不同层位各向异性参数对接收函数波场的影响,为各向异性介质接收函数的解释提供了新的理论依据.通过引入粒子群优化理论,发展了分层各向异性介质接收函数全局反演算法.数值及观测数据的验证结果表明,在各向同性速度模型确定的前提下,我们的方法能够可靠地提取地壳分层各向异性参数;在反演中引入曲波变换去噪技术,对于正确解析不同层位的各向异性参数具有重要价值.  相似文献   

7.
Anisotropy is often observed due to the thin layering or aligned micro‐structures, like small fractures. At the scale of cross‐well tomography, the anisotropic effects cannot be neglected. In this paper, we propose a method of full‐wave inversion for transversely isotropic media and we test its robustness against structured noisy data. Optimization inversion techniques based on a least‐square formalism are used. In this framework, analytical expressions of the misfit function gradient, based on the adjoint technique in the time domain, allow one to solve the inverse problem with a high number of parameters and for a completely heterogeneous medium. The wave propagation equation for transversely isotropic media with vertical symmetry axis is solved using the finite difference method on the cylindrical system of coordinates. This system allows one to model the 3D propagation in a 2D medium with a revolution symmetry. In case of approximately horizontal layering, this approximation is sufficient. The full‐wave inversion method is applied to a crosswell synthetic 2‐component (radial and vertical) dataset generated using a 2D model with three different anisotropic regions. Complex noise has been added to these synthetic observed data. This noise is Gaussian and has the same amplitude f?k spectrum as the data. Part of the noise is localized as a coda of arrivals, the other part is not localized. Five parameter fields are estimated, (vertical) P‐wave velocity, (vertical) S‐wave velocity, volumetric mass and the Thomsen anisotropic parameters epsilon and delta. Horizontal exponential correlations have been used. The results show that the full‐wave inversion of cross‐well data is relatively robust for high‐level noise even for second‐order parameters such as Thomsen epsilon and delta anisotropic parameters.  相似文献   

8.
傅红笋  曹莉  韩波 《地球物理学报》2012,55(9):3173-3179
测井数据和地震数据是地震勘探中两种最重要的资料. 测井约束地震波形反演是在非线性波形反演的基础上,利用已知测井资料详细的垂直分辨能力和地震资料均匀密集的水平采样特点, 通过迭代反演来求取一个具有较高分辨率的速度参数.本文建立了测井约束反演模型,研究了测井约束下地震波形反演的同伦摄动求解方法.同伦摄动法作为一种新的、求解数学物理中各种非线性问题的有效方法,具有计算速度快、计算精度高的优点.这对于提高反演的精度和效率是十分有益的. 为了表征该方法的有效性和稳定性,分别对水平层状介质模型和逆冲断层带模型进行了数值模拟,并与Landweber迭代法相对比,结果表明该算法具有更好的收敛性,能够取得更为满意的反演效果.  相似文献   

9.
A transmission + reflection wave-equation traveltime and waveform inversion method is presented that inverts the seismic data for the anisotropic parameters in a vertical transverse isotropic medium. The simultaneous inversion of anisotropic parameters and ε is initially performed using transmission wave-equation traveltime inversion method. Transmission wave-equation traveltime only provides the low-intermediate wavenumbers for the shallow part of the anisotropic model; in contrast, reflection wave-equation traveltime estimates the anisotropic parameters in the deeper section of the model. By incorporating a layer-stripping method with reflection wave-equation traveltime, the ambiguity between the background-velocity model and the depths of reflectors can be greatly mitigated. In the final step, multi-scale full-waveform inversion is performed to recover the high-wavenumber component of the model.  We use a synthetic model to illustrate the local minima problem of full-waveform inversion and how transmission and reflection wave-equation traveltime can mitigate this problem. We demonstrate the efficacy of our new method using field data from the Gulf of Mexico.  相似文献   

10.
We have previously applied three‐dimensional acoustic, anisotropic, full‐waveform inversion to a shallow‐water, wide‐angle, ocean‐bottom‐cable dataset to obtain a high‐resolution velocity model. This velocity model produced an improved match between synthetic and field data, better flattening of common‐image gathers, a closer fit to well logs, and an improvement in the pre‐stack depth‐migrated image. Nevertheless, close examination reveals that there is a systematic mismatch between the observed and predicted data from this full‐waveform inversion model, with the predicted data being consistently delayed in time. We demonstrate that this mismatch cannot be produced by systematic errors in the starting model, by errors in the assumed source wavelet, by incomplete convergence, or by the use of an insufficiently fine finite‐difference mesh. Throughout these tests, the mismatch is remarkably robust with the significant exception that we do not see an analogous mismatch when inverting synthetic acoustic data. We suspect therefore that the mismatch arises because of inadequacies in the physics that are used during inversion. For ocean‐bottom‐cable data in shallow water at low frequency, apparent observed arrival times, in wide‐angle turning‐ray data, result from the characteristics of the detailed interference pattern between primary refractions, surface ghosts, and a large suite of wide‐angle multiple reflected and/or multiple refracted arrivals. In these circumstances, the dynamics of individual arrivals can strongly influence the apparent arrival times of the resultant compound waveforms. In acoustic full‐waveform inversion, we do not normally know the density of the seabed, and we do not properly account for finite shear velocity, finite attenuation, and fine‐scale anisotropy variation, all of which can influence the relative amplitudes of different interfering arrivals, which in their turn influence the apparent kinematics. Here, we demonstrate that the introduction of a non‐physical offset‐variable water density during acoustic full‐waveform inversion of this ocean‐bottom‐cable field dataset can compensate efficiently and heuristically for these inaccuracies. This approach improves the travel‐time match and consequently increases both the accuracy and resolution of the final velocity model that is obtained using purely acoustic full‐waveform inversion at minimal additional cost.  相似文献   

11.
In order to account for the effects of elastic wave propagation in marine seismic data, we develop a waveform inversion algorithm for acoustic‐elastic media based on a frequency‐domain finite‐element modelling technique. In our algorithm we minimize residuals using the conjugate gradient method, which back‐propagates the errors using reverse time migration without directly computing the partial derivative wavefields. Unlike a purely acoustic or purely elastic inversion algorithm, the Green's function matrix for our acoustic‐elastic algorithm is asymmetric. We are nonetheless able to achieve computational efficiency using modern numerical methods. Numerical examples show that our coupled inversion algorithm produces better velocity models than a purely acoustic inversion algorithm in a wide variety of cases, including both single‐ and multi‐component data and low‐cut filtered data. We also show that our algorithm performs at least equally well on real field data gathered in the Korean continental shelf.  相似文献   

12.
This paper presents the theory to eliminate from the recorded multi‐component source, multi‐component receiver marine electromagnetic measurements the effect of the physical source radiation pattern and the scattering response of the water‐layer. The multi‐component sources are assumed to be orthogonally aligned above the receivers at the seabottom. Other than the position of the sources, no source characteristics are required. The integral equation method, which for short is denoted by Lorentz water‐layer elimination, follows from Lorentz' reciprocity theorem. It requires information only of the electromagnetic parameters at the receiver level to decompose the electromagnetic measurements into upgoing and downgoing constituents. Lorentz water‐layer elimination replaces the water layer with a homogeneous half‐space with properties equal to those of the sea‐bed. The source is redatumed to the receiver depth. When the subsurface is arbitrary anisotropic but horizontally layered, the Lorentz water‐layer elimination scheme greatly simplifies and can be implemented as deterministic multi‐component source, multi‐component receiver multidimensional deconvolution of common source gathers. The Lorentz deconvolved data can be further decomposed into scattering responses that would be recorded from idealized transverse electric and transverse magnetic mode sources and receivers. This combined electromagnetic field decomposition on the source and receiver side gives data equivalent to data from a hypothetical survey with the water‐layer absent, with idealized single component transverse electric and transverse magnetic mode sources and idealized single component transverse electric and transverse magnetic mode receivers. When the subsurface is isotropic or transverse isotropic and horizontally layered, the Lorentz deconvolution decouples into pure transverse electric and transverse magnetic mode data processing problems, where a scalar field formulation of the multidimensional Lorentz deconvolution is sufficient. In this case single‐component source data are sufficient to eliminate the water‐layer effect. We demonstrate the Lorentz deconvolution by using numerically modeled data over a simple isotropic layered model illustrating controlled‐source electromagnetic hydrocarbon exploration. In shallow water there is a decrease in controlled‐source electromagnetic sensitivity to thin resistors at depth. The Lorentz deconvolution scheme is designed to overcome this effect by eliminating the water‐layer scattering, including the field's interaction with air.  相似文献   

13.
Sufficient low‐frequency information is essential for full‐waveform inversion to get the global optimal solution. Multi‐scale envelope inversion was proposed using a new Fréchet derivative to invert the long‐wavelength component of the model by directly using the low‐frequency components contained in an envelope of seismic data. Although the new method can recover the main structure of the model, the inversion quality of the model bottom still needs to be improved. Reflection waveform inversion reduces the dependence of inversion on low‐frequency and long‐offset data by using travel‐time information in reflected waves. However, when the underground medium contains strong contrast or the initial model is far away from the true model, it is hard to get reliable reference reflectors for the generation of reflected waves. Here, we propose a combination inversion algorithm, i.e., reflection multi‐scale envelope inversion, to overcome the limitations of multi‐scale envelope inversion and reflection waveform inversion. First, wavefield decomposition was introduced into the multi‐scale envelope inversion to improve the inversion quality of the long‐wavelength components of the model. Then, after the initial model had been established to be accurate enough, migration and de‐migration were introduced to achieve multi‐scale reflection waveform inversion. The numerical results of the salt‐layer model and the SEG/EAGE salt model verified the validity of the proposed approach and its potential.  相似文献   

14.
We propose a two-dimensional, non-linear method for the inversion of reflected/converted traveltimes and waveform semblance designed to obtain the location and morphology of seismic reflectors in a lateral heterogeneous medium and in any source-to-receiver acquisition lay-out. This method uses a scheme of non-linear optimization for the determination of the interface parameters where the calculation of the traveltimes is carried out using a finite-difference solver of the Eikonal equation, assuming an a priori known background velocity model. For the search for the optimal interface model, we used a multiscale approach and the genetic algorithm global optimization technique. During the initial stages of inversion, we used the arrival times of the reflection phase to retrieve the interface model that is defined by a small number of parameters. In the successive steps, the inversion is based on the optimization of the semblance value determined along the calculated traveltime curves. Errors in the final model parameters and the criteria for the choice of the best-fit model are also estimated from the shape of the semblance function in the model parameter space. The method is tested and validated on a synthetic dataset that simulates the acquisition of reflection data in a complex volcanic structure. This study shows that the proposed inversion approach is a valid tool for geophysical investigations in complex geological environments, in order to obtain the morphology and positions of embedded discontinuities.  相似文献   

15.
In a multi‐parameter waveform inversion, the choice of the parameterisation influences the results and their interpretations because leakages and the tradeoff between parameters can cause artefacts. We review the parameterisation selection when the inversion focuses on the recovery of the intermediate‐to‐long wavenumbers of the compressional velocities from the compressional body (P) waves. Assuming a transverse isotropic medium with a vertical axis of symmetry and weak anisotropy, analytical formulas for the radiation patterns are developed to quantify the tradeoff between the shear velocity and the anisotropic parameters and the effects of setting to zero the shear velocity in the acoustic approach. Because, in an anisotropic medium, the radiation patterns depend on the angle of the incident wave with respect to the vertical axis, two particular patterns are discussed: a transmission pattern when the ingoing and outgoing slowness vectors are parallel and a reflection pattern when the ingoing and outgoing slowness vectors satisfy Snell's law. When the inversion aims at recovering the long‐to‐intermediate wavenumbers of the compressional velocities from the P‐waves, we propose to base the parameterisation choice on the transmission patterns. Since the P‐wave events in surface seismic data do not constrain the background (smooth) vertical velocity due to the velocity/depth ambiguity, the preferred parameterisation contains a parameter that has a transmission pattern concentrated along the vertical axis. This parameter can be fixed during the inversion which reduces the size of the model space. The review of several parameterisations shows that the vertical velocity, the Thomsen parameter δ, or the Thomsen parameter ε have a transmission pattern along the vertical axis depending on the parameterisation choice. The review of the reflection patterns of those selected parameterisations should be done in the elastic context. Indeed, when reflection data are also inverted, there are potential leakages of the shear parameter at intermediate angles when we carry out acoustic inversion.  相似文献   

16.
多测线变偏移距VSP地震各向异性反演   总被引:1,自引:0,他引:1       下载免费PDF全文
田鑫  洪启宇  郑需要 《地震学报》2015,37(2):266-277
本文从一般弱各向异性介质参数反演中得到了使用两条相互正交的变偏VSP测线计算弱各向异性(WA)参数的反演公式. 如果仅仅使用qP波, 则可以确定9个独立的WA参数, 这9个WA参数可以完全地描述井中接收点在两个剖面内介质的各向异性性质. 通过对走时曲线进行最小二乘条件下的三次样条光滑, 可以获得慢度矢量的垂直分量和水平分量. 如果介质是横向非均匀介质, 则水平分量仅仅被用作反演时的约束条件. 为了获得偏振矢量, 本文引入质心计算方法, 该方法计算简单、 稳定, 而且不存在解的奇异问题. 在寻找与一般各向异性介质最接近的高对称性正交各向异性介质和TTI各向异性介质时, 使用qP波各向异性坐标变换方法和最小二乘求解方法, 得到了与一般各向异性介质最接近的正交各向异性和TTI各向异性参数及其对称轴方向参数的计算公式. 使用这些方法, 对瓜哇海地区布设的两条相互正交的变偏VSP测线数据进行各向异性反演, 获得了井中10个接收点处介质的WA参数. 数值计算和实际资料反演表明, 本文所使用的反演方法能够准确地得到VSP井中接收点处介质的WA参数, 这是地震勘探中研究地壳介质各向异性性质最直接和最可靠的方法.   相似文献   

17.
变井源距垂直地震剖面各向异性参数反演   总被引:1,自引:1,他引:0       下载免费PDF全文
利用微扰理论推导了弱各向异性(WA)介质参数正反演计算的基本公式;给出了在已知慢度矢量的一个分量和偏振矢量情况下确定WA参数的方法.如果这一方法被用于单一的变井源距垂直地震剖面(walkawayVSP)资料,可以获得9个WA参数.这9个WA参数完全决定了qP波和两个qS波在由剖面和钻井所决定的平面内传播的特性.对单条walkawayVSP观测系统数据的产生和WA参数的反演进行了数值模拟计算,对所能确定的WA参数及其可靠性进行了详细的讨论.  相似文献   

18.
Common‐midpoint moveout of converted waves is generally asymmetric with respect to zero offset and cannot be described by the traveltime series t2(x2) conventionally used for pure modes. Here, we present concise parametric expressions for both common‐midpoint (CMP) and common‐conversion‐point (CCP) gathers of PS‐waves for arbitrary anisotropic, horizontally layered media above a plane dipping reflector. This analytic representation can be used to model 3D (multi‐azimuth) CMP gathers without time‐consuming two‐point ray tracing and to compute attributes of PS moveout such as the slope of the traveltime surface at zero offset and the coordinates of the moveout minimum. In addition to providing an efficient tool for forward modelling, our formalism helps to carry out joint inversion of P and PS data for transverse isotropy with a vertical symmetry axis (VTI media). If the medium above the reflector is laterally homogeneous, P‐wave reflection moveout cannot constrain the depth scale of the model needed for depth migration. Extending our previous results for a single VTI layer, we show that the interval vertical velocities of the P‐ and S‐waves (VP0 and VS0) and the Thomsen parameters ε and δ can be found from surface data alone by combining P‐wave moveout with the traveltimes of the converted PS(PSV)‐wave. If the data are acquired only on the dip line (i.e. in 2D), stable parameter estimation requires including the moveout of P‐ and PS‐waves from both a horizontal and a dipping interface. At the first stage of the velocity‐analysis procedure, we build an initial anisotropic model by applying a layer‐stripping algorithm to CMP moveout of P‐ and PS‐waves. To overcome the distorting influence of conversion‐point dispersal on CMP gathers, the interval VTI parameters are refined by collecting the PS data into CCP gathers and repeating the inversion. For 3D surveys with a sufficiently wide range of source–receiver azimuths, it is possible to estimate all four relevant parameters (VP0, VS0, ε and δ) using reflections from a single mildly dipping interface. In this case, the P‐wave NMO ellipse determined by 3D (azimuthal) velocity analysis is combined with azimuthally dependent traveltimes of the PS‐wave. On the whole, the joint inversion of P and PS data yields a VTI model suitable for depth migration of P‐waves, as well as processing (e.g. transformation to zero offset) of converted waves.  相似文献   

19.
20.
Migration velocity analysis and waveform inversion   总被引:3,自引:0,他引:3  
Least‐squares inversion of seismic reflection waveform data can reconstruct remarkably detailed models of subsurface structure and take into account essentially any physics of seismic wave propagation that can be modelled. However, the waveform inversion objective has many spurious local minima, hence convergence of descent methods (mandatory because of problem size) to useful Earth models requires accurate initial estimates of long‐scale velocity structure. Migration velocity analysis, on the other hand, is capable of correcting substantially erroneous initial estimates of velocity at long scales. Migration velocity analysis is based on prestack depth migration, which is in turn based on linearized acoustic modelling (Born or single‐scattering approximation). Two major variants of prestack depth migration, using binning of surface data and Claerbout's survey‐sinking concept respectively, are in widespread use. Each type of prestack migration produces an image volume depending on redundant parameters and supplies a condition on the image volume, which expresses consistency between data and velocity model and is hence a basis for velocity analysis. The survey‐sinking (depth‐oriented) approach to prestack migration is less subject to kinematic artefacts than is the binning‐based (surface‐oriented) approach. Because kinematic artefacts strongly violate the consistency or semblance conditions, this observation suggests that velocity analysis based on depth‐oriented prestack migration may be more appropriate in kinematically complex areas. Appropriate choice of objective (differential semblance) turns either form of migration velocity analysis into an optimization problem, for which Newton‐like methods exhibit little tendency to stagnate at nonglobal minima. The extended modelling concept links migration velocity analysis to the apparently unrelated waveform inversion approach to estimation of Earth structure: from this point of view, migration velocity analysis is a solution method for the linearized waveform inversion problem. Extended modelling also provides a basis for a nonlinear generalization of migration velocity analysis. Preliminary numerical evidence suggests a new approach to nonlinear waveform inversion, which may combine the global convergence of velocity analysis with the physical fidelity of model‐based data fitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号