首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two integration algorithms, namely the implicit return mapping and explicit sub-stepping schemes, are adopted in the anisotropic bounding surface plasticity model for cyclic behaviours of saturated clay and are implemented into finite element code. The model is a representative of a series of bounding surface models that have typical characteristics, including isotropic and kinematic hardening rules and a rotational bounding surface to capture complex but important cyclic behaviours of soils, such as cyclic shakedown and degradation. However, there is no explicit current yield surface in the model to which the conventional implicit algorithm returns the stress state back or the sub-stepping integration corrects the drift of the stress state. Hence, necessary modifications have been made for both of the integration schemes. First, the image stress point is mapped or corrected to the bounding surface instead of mapping back or correcting the stress state to the yield surface. Second, the unloading–loading criterion is checked to determine the image stress point rather than checking the yield criterion after giving the trial stress state in a conventional way. Comparative studies on the accuracy, stability and efficiency of the two integration schemes are conducted not only at the element level but also in solving boundary value problems of monotonic and cyclic bearing behaviours of rigid footings on saturated clay. For smaller strain increments, there is no significant difference in the accuracy between the two integration schemes, but the explicit integration shows a higher efficiency and accuracy. For relatively larger increments, the implicit return mapping algorithm presents good accuracy and more robustness, while the sub-stepping algorithm shows deteriorating accuracy and suffers the convergence problem. With the tolerance used in the present model, the bearing capacity of the rigid footing predicted by the return mapping algorithm is closer to the available analytical and numerical solutions, while the bearing capacity predicted by the sub-stepping algorithm shows a marginal increase.  相似文献   

2.
In recent years, a number of constitutive models have been proposed to describe mathematically the mechanical response of natural clays. Some of these models are characterized by complex formulations, often leading to non‐trivial problems in their numerical integration in finite elements codes. The paper describes a fully implicit stress‐point algorithm for the numerical integration of a single‐surface mixed isotropic–kinematic hardening plasticity model for structured clays. The formulation of the model stems from a compromise between its capability of reproducing the larger number of features characterizing the behaviour of structured clays and the possibility of developing a robust integration algorithm for its implementation in a finite elements code. The model is characterized by an ellipsoid‐shaped yield function, inside which a stress‐dependent reversible stiffness is accounted for by a non‐linear hyperelastic formulation. The isotropic part of the hardening law extends the standard Cam‐Clay one to include plastic strain‐driven softening due to bond degradation, while the kinematic hardening part controls the evolution of the position of the yield surface in the stress space. The proposed algorithm allows the consistent linearization of the constitutive equations guaranteeing the quadratic rate of asymptotic convergence in the global‐level Newton–Raphson iterative procedure. The accuracy and the convergence properties of the proposed algorithm are evaluated with reference to the numerical simulations of single element tests and the analysis of a typical geotechnical boundary value problem. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Hoek-Brown强度准则的屈服面与塑性势面在棱角处导数无定义,具有数值奇异性,采用圆角进行光滑过渡只能满足一阶导数连续性,而二阶导数仍然无定义,使得棱边上一致切线模量矩阵无法正确计算,导致有限元总体平衡方程组Newton-Raphson隐式迭代二阶收敛性丧失。提出基于C2阶连续函数的广义Hoek-Brown准则屈服面与塑性势面棱角圆化方法,使得棱角处函数曲面二阶连续可导,棱边上一致切线模量矩阵可精确计算。基于ABAQUS数值开发平台,采用FORTRAN语言编制Hoek-Brown准则理想弹塑性UMAT用户子程序,通过数值算例验证所提方法的正确性。  相似文献   

4.
In this paper, a nonlinear numerical technique is developed to calculate the limit load and failure mode of structures obeying an ellipsoid yield criterion by means of the kinematic limit theorem, nonlinear programming theory and displacement-based finite element method. Using an associated flow rule, a general yield criterion expressed by an ellipsoid equation can be directly introduced into the kinematic theorem of limit analysis. The yield surface is not linearized and instead a nonlinear purely kinematic formulation is obtained. The nonlinear formulation has a smaller number of constraints and requires less computational effort than a linear formulation. By applying the finite element method, the kinematic limit analysis with an ellipsoid yield criterion is formulated as a nonlinear mathematical programming problem subject to only a small number of equality constraints. The objective function corresponds to the dissipation power which is to be minimized and an upper bound to the plastic limit load of a structure can then be calculated by solving the minimum optimization problem. An effective, direct iterative algorithm has been developed to solve the resulting nonlinear programming formulation. The calculation is based purely on kinematically admissible velocities. The stress field does not need to be calculated and the failure mode of structures can be obtained. The proposed method can be used to calculate the bearing capacity of clay soils in a direct way. Some examples are given to illustrate the validity and effectiveness of the proposed method.  相似文献   

5.
This paper presents an algorithm and a fully coupled hydromechanical‐fracture formulation for the simulation of three‐dimensional nonplanar hydraulic fracture propagation. The propagation algorithm automatically estimates the magnitude of time steps such that a regularized form of Irwin's criterion is satisfied along the predicted 3‐D fracture front at every fracture propagation step. A generalized finite element method is used for the discretization of elasticity equations governing the deformation of the rock, and a finite element method is adopted for the solution of the fluid flow equation on the basis of Poiseuille's cubic law. Adaptive mesh refinement is used for discretization error control, leading to significantly fewer degrees of freedom than available nonadaptive methods. An efficient computational scheme to handle nonlinear time‐dependent problems with adaptive mesh refinement is presented. Explicit fracture surface representations are used to avoid mapping of 3‐D solutions between generalized finite element method meshes. Examples demonstrating the accuracy, robustness, and computational efficiency of the proposed formulation, regularized Irwin's criterion, and propagation algorithm are presented.  相似文献   

6.
This paper presents a reformulation of the original Matsuoka–Nakai criterion for overcoming the limitations which make its use in a stress point algorithm problematic. In fact, its graphical representation in the principal stress space is not convex as it comprises more branches, plotting also in negative octants, and it does not increase monotonically as the distance of the stress point from the failure surface rises. The proposed mathematical reformulation plots as a single, convex surface, which entirely lies in the positive octant of the stress space and evaluates to a quantity which monotonically increases as the stress point moves away from the failure surface. It is an exact reproduction, and not an approximated one, of the only significant branch of the original criterion. It is also suitable for shaping in the deviatoric plane the yield and plastic potential surfaces of complex constitutive models. A very efficient numerical algorithm for the implicit integration of the proposed formulation is presented, which enables the evaluation of the stress at the end of each increment by solving a single scalar equation, both for associated and non‐associated plasticity. The algorithm can be easily adapted for other smooth surfaces with linear meridian section. Finally, a close expression of the consistent Jacobian matrix is given for achieving quadratic convergence in the external structural newton loop. It is shown that all this results in extremely fast solutions of boundary value problems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Reservoir depletion results in rock failure, wellbore instability, hydrocarbon production loss, oil sand production, and ground surface subsidence. Specifically, the compaction of carbonate reservoirs with soft rocks often induces large plastic deformation due to rock pore collapse. On the other hand, following the compaction of reservoirs and failure of rock formations, the porosity and permeability of formations will, in general, decrease. These bring a challenge for reservoir simulations because of high nonlinearity of coupled geomechanics and fluid flow fields. In this work, we present a fully implicit, fully coupled, and fully consistent finite element formulation for coupled geomechanics and fluid flow problems with finite deformation and nonlinear flow models. The Pelessone smooth cap plasticity model, an important material model to capture rock compaction behavior and a challenging material model for implicit numerical formulations, is incorporated in the proposed formulation. Furthermore, a stress-dependent permeability model is taken into account in the formulation. A co-rotational framework is adopted for finite deformation, and an implicit material integrator for cap plasticity models is consistently derived. Furthermore, the coupled field equations are consistently linearized including nonlinear flow models. The physical theories, nonlinear material and flow models, and numerical formulations are the focus of part I of this work. In part II, we verify the proposed numerical framework and demonstrate the performance of our numerical formulation using several numerical examples including a field reservoir with soft rocks undergoing serious compaction.  相似文献   

8.
王军祥  姜谙男 《岩土力学》2015,36(4):1147-1158
在实际隧道施工过程中,隧道开挖引起地下岩体应力重分布使得围岩的微裂纹扩展损伤,并伴随有塑性流动变形。在地下水环境中对于孔隙和微裂隙围岩介质受到应力作用时,在内部将产生高孔隙水压力影响岩石的力学性质,也改变了围岩的破坏模式。为了研究损伤引起的刚度退化和塑性导致的流动两种破坏机制的耦合作用,从弹塑性力学和损伤理论的角度出发,同时引入修正有效应力原理来考虑孔隙水压力的作用,建立基于Drucker-Prager屈服准则的弹塑性损伤本构模型;针对该本构模型推导了孔隙水压力作用下弹塑性损伤本构模型的数值积分算法-隐式返回映射算法,分别对预测应力返回到屈服面的光滑圆锥面或尖点奇异处两种可能的情况给出了详细的描述,隐式返回映射算法具有稳定性和准确性的特点;大多数弹塑性损伤模型中涉及参数多且不易确定的问题,采用反分析方法获得损伤参数,解决了损伤参数不易确定的难题;采用面向对象的编程方法,使用C++语言编制了弹塑性损伤本构求解程序,并对所建立的弹塑性损伤模型和所编程序进行了试验和数值两个方面的验证;最后将其在吉林抚松隧道工程中进行应用,模拟了塑性区和损伤区的发展变化。研究结果表明:所建立的弹塑性损伤本构模型能够较好地描述岩石的力学性能、塑性和损伤变化趋势,所编程序能够进行实际工程问题的模拟,对现场施工给予一定的指导。  相似文献   

9.
A fully implicit, fully coupled, and fully consistent finite element framework has been formulated in part I of this work for modeling reservoir compaction through linearizing coupled solid and flow field equations and constructing a local material integrator. In part II of this work, we focus on verification and performance analysis of our numerical formulation and computer implementation using several numerical examples. First, we design a cube problem in triaxial compression to verify our numerical formulation and computer code implementation especially for rock formation in compaction using cap plasticity models. The finite element prediction on stresses is compared with the analytical solution. The second problem we select is a strip footing problem popular in the geotechnical area where the evolution of soil consolidation degrees following the diffusion of pore pressure is the main interest. In this example, we demonstrate a good performance of the proposed numerical formulation on solving different shear and compaction-dominated deformation behaviors by varying the footing length. Importantly, an extremely sharp cap model based on real experimental data for Leda clays, a challenging cap model, is successfully applied in this footing problem. Our focus in this work is to model field reservoirs undergoing serious compaction. A reservoir with complex payzone geometries, multiple horizontal wells, and cap plasticity models with sharp cap surfaces has been successfully solved using our fully implicit formulation. The last example is to model a horizontal wellbore damage problem. Finally, the sensitivity of predicted subsidence to nonlinear flow model, cap hardening parameters, and Lode angles have been systemically investigated and documented in detail, which can provide a constructive guidance on how to successfully model field reservoir compaction problems with cap plasticity models.  相似文献   

10.
边坡大变形弹塑性有限元分析[Ⅱ]   总被引:1,自引:0,他引:1  
本文应用Updated Lagrangian有限元分析理论,分析了石龙庙滑坡的稳定性,其中包括滑坡的大变形,初始应力和超孔隙水压力。根据土的工程地质性质,滑坡体分为四层,土层被视为是弹塑性的,土的塑性屈服采用Drucker-Prager理想塑性屈服准则,挡土墙建成前后的滑坡应力和变形被分别分析和讨论,最后根据这些分析结果,提出了滑坡的整治方案。  相似文献   

11.
赵强  焦玉勇  张秀丽  谢壁婷  王龙  黄刚海 《岩土力学》2019,40(11):4515-4522
非连续变形分析方法(DDA)是一种平行于有限元法的新型数值计算方法,该方法基于最小势能原理,把每个离散块体的变形、运动和块体之间的接触统一到平衡方程中进行隐式求解。然而,传统DDA方法在计算过程中需组装整体刚度矩阵并联立求解方程组,在用于大型岩土工程问题的三维数值模拟时占用内存较大、耗时较长、计算效率极低。因此,提出一种基于显式时间积分的三维球颗粒DDA方法。该方法在求解过程中不需要组装整体刚度矩阵,在求解加速度时,由于质量矩阵为对角矩阵,可存储为一维向量占用内存较少,且可分块逐自由度求解,效率较高,在接触判断上采用最大位移准则简化了接触算法,采用较小的时步,保证了计算的精确性;通过几个典型算例验证了该方法的准确性及计算效率。  相似文献   

12.
基于修正Mohr-Coulomb准则的弹塑性本构模型及其数值实施   总被引:5,自引:0,他引:5  
针对Mohr-Coulomb准则高估岩土体抗拉性能的局限性,建立考虑最大拉应力准则的修正Mohr-Coulomb模型;系统地论述隐式本构积分算法的主要内容,推导相应的一致性刚度矩阵。以ABAQUS软件为平台,采用向后欧拉隐式应力积分算法编制了UMAT本构程序,对单轴拉伸试验和三轴压缩试验进行数值模拟,对比分析ABAQUS自带模型和自编模型的优劣,结果表明编写的修正Mohr-Coulomb模型能够有效地反映岩土介质的抗拉性能,弥补了ABAQUS自带模型的不足。  相似文献   

13.
A procedure for solving quasi‐static large‐strain problems by the material point method is presented. Owing to the Lagrangian–Eulerian features of the method, problems associated with excessive mesh distortions that develop in the Lagrangian formulations of the finite element method are avoided. Three‐dimensional problems are solved utilizing 15‐noded prismatic and 10‐noded tetrahedral elements with quadratic interpolation functions as well as an implicit integration scheme. An algorithm for exploiting the numerical integration procedure on the computational mesh is proposed. Several numerical examples are shown. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
修正剑桥模型的隐式积分算法在ABAQUS中的数值实施   总被引:5,自引:0,他引:5  
范庆来  栾茂田  杨庆 《岩土力学》2008,29(1):269-273
利用大型有限元软件ABAQUS所提供的用户材料子程序UMAT接口,针对修正的剑桥本构模型开发了隐式积分算法,并且与自动选择时间步长的增量有限元方程迭代解法相结合,对正常固结土与超固结土的三轴排水与不排水试验进行了数值模拟。结果表明,所发展的隐式本构积分算法与时间步长自动选择方法具有较好的稳定性和较高的计算精度,能够得到比较合理的数值分析结果。  相似文献   

15.
对基于理想弹塑性理论框架、屈服准则为Mohr-Coulomb准则、采用非关联流动法则的无厚度接触面单元的本构积分算法进行了探讨,引入非关联的伪屈服函数和伪势函数,提出了将超出屈服面、处于角点应力区的试应力双向返回到屈服面的本构积分算法。据此编制了ABAQUS用户单元子程序,进行了算例验证。结果表明,提出的算法可以较好地实现土与结构物共同作用的有限元数值模拟。  相似文献   

16.
基于广义Hoek-Brown强度准则的岩质边坡开挖稳定性分析   总被引:3,自引:0,他引:3  
宗全兵  徐卫亚 《岩土力学》2008,29(11):3071-3076
导出了广义Hoek-Brown强度准则的弹塑性矩阵计算方法,并将其用于一岩质开挖边坡施工过程模拟。同时,利用Hoek所提出的参数等效化方法对岩质开挖边坡的稳定性进行强度折减分析,揭示了开挖施工过程中边坡临界失稳模式的演变、发展过程。分析结果表明,边坡的应力-应变场、位移场、边坡的稳定性及其临界失稳模式的演变过程与采用传统的Mohr-Coulomb强度准则的发展过程是一致的,但用Hoek所提出的等效Mohr-Coulomb强度参数可能会高估边坡的稳定性。  相似文献   

17.
刘艳秋  胡存  刘海笑 《岩土力学》2013,34(12):3617-3624
修正了传统隐式回映算法,建立了适用于饱和黏土循环动力分析的边界面塑性模型的完全隐式积分格式。该模型基于无弹性域概念和临界状态理论,采用各向同性、运动硬化准则、旋转的边界面,并引入表征土体结构损伤和重塑程度的损伤变量以反映循环载荷作用下饱和黏土的各向异性、刚度、强度软化及塑性变形累积等特征。针对等压固结 和偏压固结 的饱和高岭黏土的不排水三轴试验进行模拟,采用不同的应变增量步长进行计算,并与试验数据对比,结果表明,修正隐式回映算法应用于该类边界面模型的合理性、积分格式的精确性和稳定性;另外,结合有限元软件自动时间步长的增量迭代解法,对饱和黏土应力控制的不排水动三轴试验进行预测,结果表明,修正的适用于该边界面的塑性模型隐式回映算法可以得到比较合理的数值分析结果,能够反映饱和黏土的循环刚度的退化和强度的弱化等动力特性。  相似文献   

18.
对于密实砂土峰值后应变软化特性引起的材料强非线性问题,利用常规有限元所采用的隐式算法很难求解,而动态松弛法在求解这类非线性问题方面却具有独特的优势。针对砂土应变软化强非线性问题,将动态松弛法与有限单元法相结合,提出了一种新的动态松弛有限元法。该方法根据动态松弛法的显式特性,由中心差分法导出了动态松弛有限元法的基本控制方程,并实现了对应力-应变空间中整个平衡路径的追踪。将动态松弛法嵌入到非线性有限元程序中,即可对砂土材料应变软化引起的强非线性问题进行有限元数值计算。该有限元程序中,应力更新采用回归映射算法。最后通过对砂土平面应变压缩试验进行有限元模拟,验证了动态松弛有限元法在求解材料强非线性问题方面的优越性。  相似文献   

19.
储层流固耦合的数学模型和非线性有限元方程   总被引:2,自引:0,他引:2  
张广明  刘合  张劲  吴恒安  王秀喜 《岩土力学》2010,31(5):1657-1662
根据饱和多孔介质固体骨架的平衡方程和多孔介质中流体的连续性方程,建立了储层流固耦合数学模型。模型中引入了Jaumann应力速率公式描述多孔介质固体骨架的大变形效应,并考虑了地应力、初始孔隙压力、初始流体密度和初始孔隙度对耦合模型的影响。基于与微分方程等价的加权余量公式,在空间域采用有限元离散,对时间域进行隐式差分格式离散,导出了以单元节点位移和单元节点孔隙压力为未知量的储层流固耦合的非线性有限元增量方程。该模型在石油工程中有广泛的应用,为储层流固耦合的数值模拟奠定了理论基础。  相似文献   

20.
Reinforced earth in plane strain is idealized as a homogeneous material with the strips attached to the elastic soil matirx by a conceptual shear zone. A ‘no-slip’ finite element model is derived by assigning a large shear modulus to the shear zone. Relaxation of this modulus using a tangential stiffness algorithm in conjunction with a Mohr–Coulomb strip-slip criterion allows slipping to be simulated. The finite element formulation is validated and the finite element discretization assessed by comparisons against exact solutions for a simple test problem. An idealized reinforced earth wall example is used to demonstrate the feasibility of the method and to answer the question: ‘is slipping significant?’ The method is shown to be potentially useful, and slipping is shown to be significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号