首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
黄一民  孙葭  黄一斌  章新平 《地理学报》2014,69(11):1661-1672
利用搭载在Aura 卫星上的TES 观测仪所反演的2004 年8 月至2010 年12 月逐日HDO、H2O、气温以及GNIP等资料,对亚洲中低纬度地区大气水汽中δD的时空分布特征、水汽δD与气温、水汽量的关系以及与降水同位素的关系进行了研究。从空间上来看:大气水汽、降水δD整体上表现出随纬度升高而降低的趋势,同时低纬度的西太平洋暖池以东和西亚地区形成了两个高值中心,中纬度的青藏高原和西太平洋形成了两个低值中心。从季节变化来看:陆地上水汽δD表现出暖季的高值与冷季的低值交替出现,海洋上这种变化则不明显,同时,可以看到水汽δD的季节变化与低纬度陆地上降水δD的暖季低、冷季高正好相反;中纬度大陆上水汽δD的最大值出现在气温最高的夏季;低纬度的印度半岛、中南半岛的最大值出现在季风暴发前的春季。就水汽中δD与气温、水汽量关系而言:在中纬度大陆及西亚地区均表现出正相关;在西太平洋暖池处,水汽中δD与气温呈正相关,与水汽量呈负相关。  相似文献   

2.
基于台风“苏迪罗”(1513)影响前后南京实时高频监测的水汽稳定同位素数据,并结合再分析资料、HYSPLIT后向轨迹模型分析了大气水汽δ18O与天气过程之间的关系以及大气水汽过量氘所指示的水汽来源。结果表明,1)整个台风影响过程水汽δ18O先保持基本不变后一直下降的趋势,而水汽过量氘则呈现完全相反的变化趋势。2)根据台风“苏迪罗”影响前后南京水汽δ18O变化特征,将其划分为3个阶段:Ⅰ阶段水汽δ18O较高与南京地区较为稳定的大气条件相对应,水汽过量氘值较低指示南京地区主要受海洋水汽影响;Ⅱ阶段台风环流及其残压和北方南下冷空气相互作用造成南京地区强降水,水汽凝结和降雨蒸发的共同作用导致水汽δ18O不断贫化,较高的水汽过量氘表明南京地区主要受海洋和局地混合水汽的影响;Ⅲ阶段可能是中尺度下沉气流导致南京地区极端偏负的δ18O和高水汽过量氘。  相似文献   

3.
祁连山作为我国西部重要生态安全屏障,是河西走廊内陆河流域核心水源区。通过测定2013年7月~2014年7月收集的降水样品中δ17O与δ17O值,分析了祁连山东部乌鞘岭大气降水中δ17O的特征,在此基础上对水汽来源进行了研究。结果表明:降水稳定同位素17O存在夏高冬低的变化特征;17O存在显著的温度效应而不存在降水量效应,17O与水汽压在干季呈现正相关关系。研究区大气降水的氧同位素降水线方程为:δ′17O = 0.509δ′17O -0.16,低于氧同位素全球降水线斜率;过量δ17O表现出夏低冬高的特点;综合分析氧同位素大气降水方程线和过量δ17O变化,发现该区域大气降水主要受局地水循环和大陆气团控制。祁连山东部地区主要受到西风和东南季风携带水汽影响,东南季风携带水汽对于祁连山东部的影响主要集中于夏季。研究可提高对祁连山区降水同位素演化的认知,为寒旱区同位素水文学的进一步研究奠定基础。  相似文献   

4.
降水中δ^18O的分析表明,本区夏季风期间大性气团降水中δ^18值高于海洋笥气团降水,同类型气团降水中δ^18O与气温之间呈正相关关系。达索普冰川经拔区高程效应明显的降水过程,δ^1、8O的垂直变化梯度较小为-0.1‰/100m。无高程效应特征的降水过程,可能与降水时的天气状况有关。同时地形对降水中δ^18O随高程的分布有较大影响。达索普部川区近东西向区域内降水中δ^18O分布与高程效应一致,而近  相似文献   

5.
中国西部局地蒸发水汽贡献率探讨   总被引:7,自引:0,他引:7  
利用降水、湖水同位素数据并结合相关模型,对我国西部地区的二次蒸发效应以及不同类型水汽对区域降水的贡献率进行了定量的讨论,研究得到以下结论:①夏季风期间,天山-阿勒泰地区所受到的二次蒸发效应较为明显;而青藏高原地区,水体蒸发水汽的向上补给则是影响该区域在全年任何时段下氢氧同位素值发生变化的主要因素.②天山-阿勒泰地区在全年任何时段下均存在二次蒸发效应,且夏季风时的作用程度明显强烈,蒸发比值介于13%~20%,均值为16.7%,远远大于冬季风时的均值4.3%.③青藏高原地区不论是在夏季风还是冬季风期间,上风向水汽对区域降水的贡献率最大,所占比重基本大于50%,贡献率最小的是水体蒸发产生的水汽,其值普遍小于10%;而蒸腾作用产生水汽的贡献率介于两者之间.  相似文献   

6.
西北地区大气降水δ18O的特征及水汽来源   总被引:12,自引:0,他引:12  
根据2005年各月在中国大气降水同位素观测网(CHNIP)位于西北地区的阜康、策勒、临泽、海北、沙坡头、长武和安塞观测站点收集的降水样品,对其中的同位素的组分进行测定,分析了西北地区大气降水中δ18O的时空分布特征.所建立的局地大气降水线方程δD=7.05δ18O-2.17,反应了西北地区独特的局地气候特点.降水δ18O的温度效应显著,而降水量效应只在夏季(6-8月)间存在.δ18O的空间分布特征可以很好地反映西北地区的大气环流背景.应用瑞利分馏模型及动力分馏模型对阜康-安塞沿线降水δ18O的定量模拟结果,揭示了西北地区降水水汽的分馏主要以动力分馏为主,雨滴在降落过程中历经了一定的二次蒸发过程,其降水水汽中也混入一定量的由局地再蒸发的水汽.此外,利用西北地区在全球大气降水同位素观测网络(GNIP)中的乌鲁木齐、和田、张掖、兰州、银川和西安6个站点的长时间序列的δ18O与降水量、温度等气候因子建立的多元线性回归关系可以对降水δ18O进行定量估算;基于乌鲁木齐站点12年的δ18O资料对该地区的温度拟合,为历史气候的定量恢复提供了依据.  相似文献   

7.
基于亚热带季风区湖口降水稳定同位素进行高频监测,利用HYSPLIT模型、潜在源贡献因子算法和质量浓度权重轨迹等方法对湖口区降水水汽来源进行分析,研究结果表明:① 湖口地区大气降水同位素组成呈夏季低、春冬季高变化趋势,湖口地区大气降水线斜率(8.19)和截距(12.5)与全球大气水线较为接近,说明整体上该研究区气候环境相对湿润。② 湖口降水同位素组成与降水量、湿度和温度均成显著负相关关系,这表明其具有显著的降水量效应、湿度效应和反温度效应。③ 湖口地区水汽来源主要受东南沿海内陆地区、南海和孟加拉湾源区水汽影响显著,其造成降水同位素值也明显偏小,尤其在夏季和秋季。④ 湖口地区降水同位素组成变化还受锋面天气系统(准静止锋和冷锋)和台风影响,台风降水的水汽来源主要来自中国南海和东海地区,此水汽往内陆输送过程中不断形成降水,此过程中降水重同位素(18O和2H)不断被冲刷造成其值逐渐变小;受准静止锋面系统影响降水δ18O值为极小值,这与锋面系统中冷、暖气团相遇造成强烈空气对流活动密切相关;而在冷锋面系统影响下,湖口地区降水δ18O值和d-excess较大,这与中国南方内陆局地再循环水汽补充有关,该研究结果将为鄱阳湖流域大气环流和水循环过程研究提供科学依据和数据支撑。  相似文献   

8.
于2019年5~11月,在中国气象局东北地区生态与农业气象野外科学试验基地辽河三角洲芦苇湿地站,观测芦苇(Phragmites australis)冠层内外大气中水汽的浓度及其稳定同位素组成。采用激光光谱同位素分析技术,在辽河三角洲芦苇湿地站距地表1 m、3 m、10 m和15 m处,对芦苇冠层内外大气中水汽的稳定同位素δ~(18)O值、δ~2H值和水汽浓度进行连续测量;采用功率谱分析方法,分析大气中水汽的δ~(18)O值和δ~2H值变化的周期特征。研究结果表明,2019年5~11月芦苇冠层内外大气中水汽浓度为1 076~28 414 mg/m~3,平均值为13 095 mg/m~3,水汽浓度最大值出现在7月31日,最小值出现在11月27日;大气中水汽的稳定同位素δ~(18)O值为-29.40‰~-10.01‰,δ~2H值为-174.56‰~-67.01‰;从海洋输送的水汽带来的降水量占总降水量的54.4%,从内陆输送的水汽的δ~(18)O值和δ~2H值分别为-31.11‰~-7.81‰和-187.26‰~-52.38‰,从内陆输送的水汽同位素值明显更低;在垂直方向上,随着高度的升高,大气中水汽浓度、δ~(18)O值和δ~2H值都逐渐减小;大气中水汽的δ~(18)O值和δ~2H值在8~24 h内具有周期性变化。  相似文献   

9.
夏半年青藏高原“湿池”的水汽分布及水汽输送特征   总被引:8,自引:0,他引:8  
采用1948-2007年共计60年的NCEP/NCAR再分析资料.计算了夏半年(4-9月)青藏高原大气中的可降水量、水汽输送通量和水汽输送通量散度,分析了夏半年青藏高原可降水量的分布和变化特征,青藏高原及其附近的水汽输送.结果表明:在对流层中层的青藏高原上空,夏季是一个明显的大气水汽含量高中心,"湿池"特征非常显著,湿池主要有三个大的可降水量中心,即高原的西南部、东南部和高原南侧.4-9月,高原上的可降水量变化很大,高原的增湿的速度小于减湿的速度.水汽进人高原主要通过三条水汽通道,即西风带水汽输送通道、印度洋-孟别拉湾水汽通道和南海-孟加托湾水汽通道.水汽主要在高原西南侧、喜马拉雅山中段和高原东南侧进入高原.  相似文献   

10.
湖北宜昌地区大气降水中的稳定同位素特征   总被引:9,自引:1,他引:8  
根据宜昌2007年5—11月大气降水中稳定同位素和气象资料,分析了宜昌地区大气降水中稳定同位素的变化特征。结果表明,宜昌降水中氘过剩值(d)偏高,说明宜昌地区大气降水的水汽原蒸发较快;稳定同位素与降水时的平均温度呈正相关,并且存在阶段性差异,δ~(18)O的分馏时段与δD相反;但与降水量的相关性不明显,只表现在夏季的6月和7月。研究得出,宜昌大气降水线与全球和全国存在差异,主要体现在宜昌的地理环境、地理背景以及宜昌的大气环流模式上。  相似文献   

11.
根据2005年8~10月在纳木错收集的降水样和相关气象观测,分析该地区降水中δ18O变化特征及其与水汽来源关系,揭示不同水汽来源降水中δ18O与温度之间关系.观测期间水汽来源以西南季风和青藏高原本地气团输送为主.结果表明,纳木错流域夏、秋季节历次降水中δ18O变化主导因素是水汽来源不同.远距离输送夏季风海洋性气团形成的降水δ18O值较低,而局地大陆性气团降水δ18O较高.对同源的降水事件,气温和δ18O值有一定正相关性,因而可能是次一级的响因素.  相似文献   

12.
青藏高原西北部大气降水稳定同位素时空特征变化   总被引:1,自引:0,他引:1  
作为水环境的重要指示剂,稳定同位素已经成为区域水文学、气候学研究的重要工具。降水作为水循环的输入项,其同位素组成是研究山地地表水过程、地下水形成转化、冰川变化等问题的必要信息。为了进一步增加对于青藏高原西北部降水过程及其控制因素的认识,本文基于青藏高原西北部五个长期观测站点降水中δD和δ18O数据,研究了青藏高原西北部与塔里木盆地交界地区大气降水稳定同位素时空分布特征。分析结果显示该地区降水稳定同位素季节变化较为明显,表现出夏高冬低的变化趋势,不同月份呈现出不同的空间分布特征。除狮泉河站降水δ18O值与温度关系不显著外,其余站点δ18O值随温度升高而增加。区域内降水量对降水δ18O值的影响不显著,降水稳定同位素高程效应明显,降水δ18O值随海拔上升而降低。降水过量氘(d值)的分布也呈现出显著的季节差异,总体表现出夏半年高、冬半年低的特点,受水汽再循环的影响,西合休站夏季降水的d值呈现较高的水平。研究表明,气温是控制该地区降水同位素分馏的重要因素,通过对于该区域降水蒸发比的计算发现,该地区临近沙漠的和田站的降水同位素受蒸发作用最为显著,而高海拔地区的狮泉河站降水受蒸发影响最小。  相似文献   

13.
利用2015年8月至2016年7月在印度河上游流域Bagrot山谷降水稳定同位素(δ18O和δD)观测结果以及当地气象资料,利用同位素示踪及统计分析方法,并结合HYSPLIT模型,对研究区降水稳定同位素变化特征、大气水线以及水汽来源进行了分析。结果表明,观测期间Bagrot山谷降水稳定同位素的季节变化明显,δ18O与δD秋冬季偏低,春夏季偏高,且与气温变化一致,存在显著的温度效应,而降水量效应不明显。而且发现,研究区局地大气水线截距和斜率均低于全球的,反映了降水过程中云下二次蒸发作用较为强烈,特别是,不同的降水形态导致该研究区局地大气水线的斜率和截距不同。当液态降水(降雨)发生时,由于在较为干旱的气候环境下,雨滴在降落的过程中受到二次蒸发相对较强,使得局地大气水线的斜率和截距偏低;而当固态降水(降雪)发生时,由于温度较低,受再循环水汽和二次蒸发的影响较小,导致局地大气水线的斜率和截距均偏高。Bagrot山谷及其周边地区,从南到北局地大气水线的斜率相差不大,而其截距总体上随着纬度升高而降低,可能与云下二次蒸发导致稳定同位素发生的不平衡分馏逐渐强烈有关。通过Bagrot山谷站点降水稳定同位素观测结果并结合HYSPLIT模型的后向追踪,研究还发现,研究区全年主要受西风环流以及局地环流的影响。但与研究区以北的临近站点(慕士塔格、和田等)相比有所不同,由于Bagrot山谷位置更靠南,其仍然偶尔受到来自南方的海洋性水汽影响。这一研究结果可能对该地区树轮稳定同位素记录的解译具有一定的指示意义。  相似文献   

14.
对1996/1997年中国首次南极内陆冰盖考察获得的南极洲伊丽莎白公主地区两个雪坑样品的阴离子、阳离子和δ18O进行对比分析,结果表明NO-3的浓度变化和δ18O的变化同相,Cl-的浓度变化和δ18O的变化异相,两者的变化和δ18O的变化一样,都形成明显的季节变化层,这为研究者在本地区冰盖内划分年层、建立时间序列提供了重要的依据,但与之相反的是,各种阳离子的时间序列却不明显。另外,两个雪坑中的nssSO42-在1995/1994和1993/1992都表现出非常高的浓度值,很可能是1991年6月和1991年8月的Pinatubo火山和CerroHudson火山的爆发在本地区冰雪中的反应  相似文献   

15.
敦煌盆地降水稳定同位素特征及水汽来源   总被引:5,自引:0,他引:5  
郭小燕  冯起  李宗省  郭瑞  贾冰 《中国沙漠》2015,35(3):715-723
基于敦煌盆地2012年11月至2013年11月降水氢、氧稳定同位素数据 (δD、δ18O和d-excess),结合GNIP降水同位素监测资料和HYSPLIT 4模型对降水后向气团传输路径模拟结果,对敦煌盆地降水稳定同位素特征及水汽来源进行研究。结果表明:敦煌盆地降水δD和δ18O存在明显的季节效应,即降水δD和δ18O具有夏高冬低的变化特征;同时降水δD和δ18O表现出显著的温度效应,温度每升高1 ℃,δD增加6.89‰,δ18O增加0.92‰。敦煌盆地局地大气水线(LMWL)为δD=7.45δ18O+2.72(R2=0.98),受降水二次蒸发的影响,其斜率和截距均低于全球大气水线(GMWL)。降水d-excess受当地气温和相对湿度的影响,冬半年(11月至次年4月)偏正,夏半年(5-10月)偏负。从全年来看,敦煌盆地降水水汽主要来源于西风输送,冬季和春季受极地气团的影响,夏季部分降水事件受西南季风和局地再循环水汽的影响。  相似文献   

16.
新疆大气水汽通量及其净收支的计算和分析   总被引:4,自引:0,他引:4  
刘蕊  杨青 《中国沙漠》2010,30(5):1221-1228
通过对NCEP 2.5°×2.5°再分析资料与NCEP 1°×1°再分析资料和探空资料的比较,讨论了该资料在新疆的适用性,并在此基础上计算和分析了新疆1948—2007年60 a的大气水汽通量及其净收支情况。结果表明,新疆大气水汽输送主要受三支水汽输送带影响:西伯利亚和蒙古方向的西北风水汽输送带、孟加拉湾路径到达新疆南部的西南风水汽输送带和来自大西洋的西风水汽输送带;夏季新疆主要受两股水汽通量影响,即西风和西北风,冬季新疆则主要受西风水汽输送带的影响,仅南疆盆地受来自青藏高原中西部的西南暖湿气流的影响;新疆地区空中水汽1978年以前主要来源于经向输送,而1978年以后纬向输送增加,其水汽净收支由经向和纬向水汽共同提供,但经向水汽的贡献仍最大。  相似文献   

17.
希夏邦马峰冰川粒雪中环境季节变化记录研究   总被引:9,自引:0,他引:9  
在希夏邦马峰达索普冰川海技7000m冰雪平台钻取14m粒雪芯一支。通过对粒雪芯中δ^18O和主要离子浓度的季节变化分析,认识希夏邦马峰地区大气环境的季节变化特征。相关分析和经验正交函数(EOF)分析结果表明,达索普粒雪芯内的δ^18O与Ca^2+、Mg^2+、SO4^2-、NO3^-和NH4^+浓度之间正相关显著,而与Na^+、Cl^-和K^+浓度之间的关系不明显。EOF1代表了以尘埃来源为主的离  相似文献   

18.
云南降水中稳定同位素变化的模拟和比较   总被引:6,自引:0,他引:6  
利用MUGCM的模拟,云南地区日、月、年时间尺度下降水中稳定同位素的变化、降水量效应以及δD/δ18O之间的关系被分析。无论是在日时间尺度下还是在月、年时间尺度下,降水同位素均存在显著的降水量效应。与实测结果相比,模拟的降水中δ18O与降水量之间具有更强的相关性。对于单站而言,蒙自站和腾冲站的大气水线被较好地模拟。但在思茅站和昆明站,模拟结果未能准确再现实际降水中δD与δ18O的关系,模拟的大气水线斜率比实测结果偏高。这意味着,在云南这个特殊的地区,模式可能高估了HDO的贫化。  相似文献   

19.
采用1979-2016年ECMWF1.5°×1.5°逐月再分析资料及同期37个气象站点的降水资料,利用一元线性回归、累积距平、Kriging及IDW(反距离加权)等方法分析了祁连山地区大气水汽含量时空分布特征、降水转化率空间变化规律以及风场分布规律,并对比分析了中国西部不同地区降水转化率的变化趋势。结果表明:(1)1979-2016年祁连山地区大气水汽含量整体呈增加趋势,且季节变化明显。其中夏季是各层大气水汽含量最多的季节,高达329.24 mm,占多年平均大气水汽含量的48.1%。(2)近38 a来,祁连山地区的大气水汽含量呈东南多、西北少的空间分布,且随海拔的升高而逐渐减少,整层大气水汽主要集中在5 000 m以下。(3)祁连山地区的降水转化率从空间上表现出由东向西递减的趋势,说明该地区空中云水资源的开发潜力自东向西逐渐增强,空中云水资源的开发潜力区域差异明显;季风所携带的水汽对其影响区域的降水贡献率较高,西风所携带的水汽则对其影响区域的降水贡献率较低。(4)中国西部地区降水转化率呈向心式递减的趋势,且区域空间波动较大。  相似文献   

20.
雅鲁藏布江流域降水中δ18O 的时空变化   总被引:5,自引:0,他引:5  
通过研究2005年西藏雅鲁藏布江流域拉孜、奴各沙、羊村和奴下4个站点降水中的δ18O变化,揭示了雅鲁藏布江流域降水中稳定同位素的时空变化规律.研究显示,雅鲁藏布江流域降水中δ18O季节变化明显,高值出现在季风降水之前的春季,而低值出现在季风降水季节,其间降水中δ18O具有明显的"降水量效应";从空间上看,降水中的δ18O从下游至上游递减,造成这种分布特征主要是由于"高程效应"以及水汽远距离输送导致其中的18O被贫化的结果.经计算表明,雅鲁藏布江流域降水中δ18O由于"高程效应"造成的递减率为0.34‰/100m,而水平方向上自东向西由于水汽远距离输送造成的递减率为0.7‰/100km.从季风期间大范围的降水过程来看,降水中δ18O的空间变化主要受"降水量效应"制约.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号