首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
GPS天线相位中心误差是影响GPS测量精度的一项重要误差源。因此,在进行高精度的GPS定位测量时,必须进行天线定向,并对天线相位中心进行必要的模型改正。介绍了采用规范中常规相对定位检测法,检测出天线相位中心偏差的水平分量与垂直分量,并分析了该方法存在的不足。针对该方法的不足,提出了一种改进的新检测方法。实例表明,新方法可以快速简便地检测出天线相位中心偏差的水平分量,并具有较高的精度和可靠性,适合野外对GPS天线的检测。  相似文献   

2.
利用完全旋转法检测GPS接收机天线相位中心三维偏差   总被引:1,自引:1,他引:0  
介绍用完全旋转法测定GPS接收机天线相位中心偏差的原理方法.根据天线相位中心的几何关系,在超短基线相对定位法的基础上,利用三台GPS接收机天线的完全旋转,测定天线的水平相位中心偏差;将天线倾斜45°角,测定天线的垂直相位偏差.利用此种方法求得的天线相位偏差,水平分量精度大约在±0.5 mm左右,垂直分量精度约±0.7 mm,与传统方法相当,但观测时段却大大减少.  相似文献   

3.
GNSS天线相位中心偏差是GNSS天线接收卫星信号的电气中心与其机械几何中心之差。相位偏差具有一定的稳定性,呈现系统误差性质。现行规程将相位偏差按限差要求加以检测,而没有按系统误差加以检定并进行改正,本文对规程的检定方法加以改进,定量检定天线相位偏差半径r和偏差角a,并依据r值的大小,给出相位偏差在GNSS测量中的采用原则,对两种改进方法进行了测量不确定度分析。  相似文献   

4.
GPS接收机天线相位中心偏差的一种检定与计算方法   总被引:6,自引:0,他引:6  
GPSA接收机的天线相位中心是指微波天红线的电气中心,其理论设计应与天线几何中心一致,天线相位中心与天线几何中心之差称为天线相位中心偏差,在GPS检定中,天线相位中心偏差的是必不可少的,本文利用几何关系和最小二乘法来计算天线相位中心偏差。  相似文献   

5.
天线相位中心是指微波天线的电气中心,其设计中心与天线几何中心不一致。天线相位中心最大平均偏差可达数厘米,为此,需对GNSS测量型接收机天线相位中心偏差进行标定。目前国内GNSS测量型接收机的检定规程中,天线相位中心采用室外天线旋转法进行标定,并以GNSS测量型接收机标称精度中所谓的“固定标准差”作为阈值进行判定。笔者认为GNSS测量型接收机标称精度中的固定标准差与星历类型、数据处理软件、观测时间长度、天线相位中心偏差等因素相关,不能作为天线相位中心偏差的检测门限;天线相位中心偏差有独立的指标要求,也有独立的精确检测方法,因此建议按照天线相位中心偏差的指标要求作为检测门限。  相似文献   

6.
北斗天线电气相位中心偏差检验试验研究   总被引:1,自引:0,他引:1  
为满足北斗双星定位系统精密定位、定向的工程需要,提出一种北斗天线电气相位中心常值偏差3维检验方法,并建立了相应的数学模型.该方法通过基线旋转、单天线旋转、交换天线,利用载波相位单差、基线长度、天线高差测量信息来估计天线电气相位中心偏差,并且在单天线旋转条件下对不同方向、不同天线间单差观测方程求差,以减少未知参数个数.最后,应用此模型检验一对北斗天线,检验结果表明,在单差均方差为0.005周,基线长度、天线间高差均方差为1 mm的条件下,天线间电气相位中心偏差水平分量的检验精度达0.3 mm.论文所述方法操作简单,适合在野外对北斗天线进行电气相位中心偏差检验.  相似文献   

7.
通过GNSS天线相位中心偏差差值实验,对不同天线类型、不同机构的天线相位中心偏差进行组合,通过对数据比较分析,采用统一机构的天线相位中心偏差参数可有效降低天线相位中心偏差对GNSS点位精度的影响.  相似文献   

8.
GPS接收机天线相位中心三维位置偏差野外测定方法   总被引:5,自引:0,他引:5  
本文讨论用野外观测方法测定GPS接收机天红相位中心三维位置偏差的原理方法。该方法克服了以往在野外只能测定天线相位中心二维(平面)位置偏差的局限性。实测结果表明,它能够以毫米级精度测定GPS天线相位中心的三维位置偏差,这是一种既方便实用,又能满足精度测定GPS天线相中心偏差的方法。  相似文献   

9.
分析了中国境内IGS跟踪站磁偏角大小;并按最大磁偏角对具有代表性的GPS接收机天线的天线相位中心偏差计算了对应的偏移量。结果表明,天线指北偏差对定位结果的影响达到了亚mm级。  相似文献   

10.
GPS接收机天线相位中心偏差的三维检定研究   总被引:11,自引:1,他引:11  
根据GPS接收机天线相位中心的几何关系,在超短基线相对定位法的基础上,利用旋转天线,结合精密水准测量,给出了一种天线相位中心偏差三雏检验的方法。实例表明,该方法具有较高的精度和可靠性,适合于在野外对GPS接收机天线相位中心偏差进行实际检定。  相似文献   

11.
GPS接收机天线相位中心与其几何中心不重合性构成了GPS接收机天线相位中心误差,如何减少相位中心偏移是天线设计和GPS数据处理中的重要问题。本文在分析GPS接收机天线相位中心在垂直方向上偏差的检测原理的基础上,讨论GPS天线相位中心垂直分量偏差对GPS高程精度的影响,应用实例得出一些有益的结论。  相似文献   

12.
利用厂商模型、MGEX模型和ESA模型对BDS卫星天线相位中心偏差进行改正,结果表明,3种模型对BDS精密单点定位精度均有所提升,其中,水平方向提升1~2 cm,高程方向定位精度由1 dm提升为厘米级,ESA模型优于另外两种模型。利用GPS接收机天线相位中心偏差改正值对BDS接收机天线相位中心偏差进行改正,其精度改善情况随天线类型的不同而存在差异,水平方向精度影响为毫米级,高程方向与天线类型有关,精度影响最大可达厘米级。  相似文献   

13.
吴正  胡友健  敖敏思  于宪煜  郑广 《地理空间信息》2012,10(6):56-58,78,4,3
由于天线本身的特性及机械加工等原因,GPS卫星和接收机天线相位中心与其几何中心不重合,从而产生相位中心偏差。某些类型的天线该偏差甚至可达数cm,直接影响高精度GPS测量的精确可靠性[1]。讨论了GAMIT软件在高精度GPS数据处理中进行天线相位中心改正的原理、方法和策略,结合美国IGS观测站及南加州区域站观测数据,对改正方法及策略进行了实验对比与分析。结果表明:对接收机天线相位中心和卫星天线相位中心采用模型改正,而卫星天线相位中心偏移不改正,所得到的基线解算结果较好[2];地面接收机天线方位角的变化对U方向的基线解算结果有较大影响,在高精度GPS测量中,必须进行天线方位角的变化改正。  相似文献   

14.
根据多年GPS接收机检验工作实践经验,详细论述了GPS接收机天线相位中心一致性检测方法、原理和具体步骤,并对测地型GPS静态测量和RTK测量精度检测和计算方法、导航型GPS接收机的定位误差检测和计算方法作了阐述。  相似文献   

15.
GPS Antenna Calibration at the National Geodetic Survey   总被引:15,自引:2,他引:13  
The precise point whose position is being measured when a GPS baseline is determined is generally assumed to be the phase center of the GPS antenna. However, the phase center of a GPS antenna is neither a physical point nor a stable point. For any given GPS antenna, the phase center will change with the changing direction of the signal from a satellite. Ideally, most of this phase center variation depends on satellite elevation. Azimuthal effects are only introduced by the local environment around each individual antenna site. These phase center variations affect the antenna offsets that are needed to connect GPS measurements to physical monuments. Ignoring these phase center variations can lead to serious (up to 10 cm) vertical errors. This article will describe the procedure by which the National Geodetic Survey is calibrating GPS antennas and how this information may be obtained and used to avoid problems from these antenna variations. ? 1999 John Wiley & Sons, Inc.  相似文献   

16.
本文讨论了GPS测量的重要误差来源之一——接收机天线相位中心漂移误差,研究了表征平均相位中心的基本参数及其检测和处理方法。如果用户设备进行了这种检测,并对观测成果作了相应的修正,目前大部分商品接收机在几十公里以内的短过测量中,精度可以提高到3 mm+2 ppm·d(d为边长,单位:km),同时解决了混合机组参加GPS网观测和处理的难题。  相似文献   

17.
分析了GPS天线积雪对载波信号场强、功率的影响,推导了载波信号传播延迟的简化计算公式,利用精密单点定位(PPP)计算了测站在GPS天线积雪产生和消除前后的单日解。结果显示,天线积雪使得天线相位中心产生偏移,对平面和高程方向的影响为数个cm,甚至更大。  相似文献   

18.
Improved antenna phase center models for GLONASS   总被引:6,自引:2,他引:4  
Thanks to the increasing number of active GLONASS satellites and the increasing number of multi-GNSS tracking stations in the network of the International GNSS Service (IGS), the quality of the GLONASS orbits has become significantly better over the last few years. By the end of 2008, the orbit RMS error had reached a level of 3–4 cm. Nevertheless, the strategy to process GLONASS observations still has deficiencies: one simplification, as applied within the IGS today, is the use of phase center models for receiver antennas for the GLONASS observations, which were derived from GPS measurements only, by ignoring the different frequency range. Geo++ GmbH calibrates GNSS receiver antennas using a robot in the field. This procedure yields now separate corrections for the receiver antenna phase centers for each navigation satellite system, provided its constellation is sufficiently populated. With a limited set of GLONASS calibrations, it is possible to assess the impact of GNSS-specific receiver antenna corrections that are ignored within the IGS so far. The antenna phase center model for the GLONASS satellites was derived in early 2006, when the multi-GNSS tracking network of the IGS was much sparser than it is today. Furthermore, many satellites of the constellation at that time have in the meantime been replaced by the latest generation of GLONASS-M satellites. For that reason, this paper also provides an update and extension of the presently used correction tables for the GLONASS satellite antenna phase centers for the current constellation of GLONASS satellites. The updated GLONASS antenna phase center model helps to improve the orbit quality.  相似文献   

19.
GPS接收机天线相位中心偏差参数检测方法的改进   总被引:1,自引:0,他引:1  
对文献[1]介绍的GPS接收机天线相位中心偏差参数检测的一般方法,在计算方法上作了简化,使概念更加明确;为确保偏差参数和基线分量的估值计算无误,对检测步骤作适当修改,所得结果仍与原步骤计算结果相同,但计算过程提供了上、下半测回较差的检核,提高了检测的可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号