首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Sediment Melts at Sub-arc Depths: an Experimental Study   总被引:14,自引:0,他引:14  
The phase and melting relations in subducted pelites have beeninvestigated experimentally at conditions relevant for slabsat sub-arc depths (T = 600–1050°C, P = 2·5–4·5GPa). The fluid-present experiments produced a dominant paragenesisconsisting of garnet–phengite–clinopyroxene–coesite–kyanitethat coexists with a fluid phase at run conditions. Garnet containsdetectable amounts of Na2O (up to 0·5 wt%), P2O5 (upto 0·56 wt%), and TiO2 (up to 0·9 wt%) in allexperiments. Phengite is stable up to 1000°C at 4·5GPa and is characterized by high TiO2 contents of up to 2 wt%.The solidus has been determined at 700°C, 2·5 GPaand is situated between 700 and 750°C at 3·5 GPa.At 800°C, 4·5 GPa glass was present in the experiments,indicating that at such conditions a hydrous melt is stable.In contrast, at 700°C, 3·5 and 4·5 GPa, asolute-rich, non-quenchable aqueous fluid was present. Thisindicates that the solidus is steeply sloping in PT space.Fluid-present (vapour undersaturated) partial melting of thepelites occurs according to a generalized reaction phengite+ omphacite + coesite + fluid = melt + garnet. The H2O contentof the produced melt decreases with increasing temperature.The K2O content of the melt is buffered by phengite and increaseswith increasing temperature from 2·5 to 10 wt%, whereasNa2O decreases from 7 to 2·3 wt%. Hence, the melt compositionschange from trondhjemitic to granitic with increasing temperature.The K2O/H2O increases strongly as a function of temperatureand nature of the fluid phase. It is 0·0004–0·002in the aqueous fluid, and then increases gradually from about0·1 at 750–800°C to about 1 at 1000°C inthe hydrous melt. This provides evidence that hydrous meltsare needed for efficient extraction of K and other large ionlithophile elements from subducted sediments. Primitive subduction-relatedmagmas typically have K2O/H2O of 0·1–0·4,indicating that hydrous melts rather than aqueous fluids areresponsible for large ion lithophile element transfer in subductionzones and that top-slab temperatures at sub-arc depths are likelyto be 700–900°C. KEY WORDS: experimental petrology; pelite; subduction; UHP metamorphism; fluid; LILE  相似文献   

2.
To investigate eclogite melting under mantle conditions, wehave performed a series of piston-cylinder experiments usinga homogeneous synthetic starting material (GA2) that is representativeof altered mid-ocean ridge basalt. Experiments were conductedat pressures of 3·0, 4·0 and 5·0 GPa andover a temperature range of 1200–1600°C. The subsolidusmineralogy of GA2 consists of garnet and clinopyroxene withminor quartz–coesite, rutile and feldspar. Solidus temperaturesare located at 1230°C at 3·0 GPa and 1300°C at5·0 GPa, giving a steep solidus slope of 30–40°C/GPa.Melting intervals are in excess of 200°C and increase withpressure up to 5·0 GPa. At 3·0 GPa feldspar, rutileand quartz are residual phases up to 40°C above the solidus,whereas at higher pressures feldspar and rutile are rapidlymelted out above the solidus. Garnet and clinopyroxene are theonly residual phases once melt fractions exceed 20% and garnetis the sole liquidus phase over the investigated pressure range.With increasing melt fraction garnet and clinopyroxene becomeprogressively more Mg-rich, whereas coexisting melts vary fromK-rich dacites at low degrees of melting to basaltic andesitesat high melt fractions. Increasing pressure tends to increasethe jadeite and Ca-eskolaite components in clinopyroxene andenhance the modal proportion of garnet at low melt fractions,which effects a marked reduction in the Al2O3 and Na2O contentof the melt with pressure. In contrast, the TiO2 and K2O contentsof the low-degree melts increase with increasing pressure; thusNa2O and K2O behave in a contrasted manner as a function ofpressure. Altered oceanic basalt is an important component ofcrust returned to the mantle via plate subduction, so GA2 maybe representative of one of many different mafic lithologiespresent in the upper mantle. During upwelling of heterogeneousmantle domains, these mafic rock-types may undergo extensivemelting at great depths, because of their low solidus temperaturescompared with mantle peridotite. Melt batches may be highlyvariable in composition depending on the composition and degreeof melting of the source, the depth of melting, and the degreeof magma mixing. Some of the eclogite-derived melts may alsoreact with and refertilize surrounding peridotite, which itselfmay partially melt with further upwelling. Such complex magma-genesisconditions may partly explain the wide spectrum of primitivemagma compositions found within oceanic basalt suites. KEY WORDS: eclogite; experimental petrology; mafic magmatism; mantle melting; oceanic basalts  相似文献   

3.
High-Mg chloritoid (XMg = 0·40–0·47) andrelatively high-Mg staurolite (XMg = 0·25–0·28)coexisting with kyanite and garnet were identified in a mica–garnet-richrock associated with very high-pressure eclogites in the BugheaComplex of the Leaota Massif (South Carpathians). Major andtrace element geochemical data for both fresh eclogites andassociated rocks which represent a metasomatic or retrogradealteration rind of the eclogites, indicate a pelitic precursor.Magnesian chloritoid was found as inclusions in garnet as partof a chloritoid–kyanite–garnet assemblage whichis indicative of high-pressure conditions. The host garnet showsa typically prograde chemical zoning pattern. The chloritoid-bearingassemblage is confined to the inner part of the garnet porphyroblasts,whereas the matrix assemblage in equilibrium with Mg-rich garnetrims has exceeded the thermal stability limit of chloritoid.Pressure–temperature pseudosections for simplified compositionsapproaching the rock bulk-chemistry show a high-pressure fieldfor the identified chloritoid-bearing assemblage in good agreementwith pressure–temperature estimates in the CFMASH andKCFMASH chemical subsystems using analysed mineral compositions.The derived pressure–temperature path is clockwise, indicatingoverprinting during exhumation from 1·8 GPa and 580°Cto 1·15 GPa and 620°C, at a water activity approachingaH2O = 1. These conditions were attained in a subduction mélangeindicating transient thermal perturbations of a subduction channel. KEY WORDS: high-pressure metapelite; Mg-rich chloritoid; PT path; PT pseudosection; very high-pressure eclogite  相似文献   

4.
Two series of anhydrous experiments have been performed in anend-loaded piston cylinder apparatus on a primitive, mantle-derivedtholeiitic basalt at 0·7 GPa pressure and temperaturesin the range 1060–1270°C. The first series are equilibriumcrystallization experiments on a single basaltic bulk composition;the second series are fractionation experiments where near-perfectfractional crystallization was approached in a stepwise mannerusing 30°C temperature increments and starting compositionscorresponding to that of the previous, higher temperature glass.At 0·7 GPa liquidus temperatures are lowered and thestability of olivine and plagioclase is enhanced with respectto clinopyroxene compared with phase equilibria of the samecomposition at 1·0 GPa. The residual solid assemblagesof fractional crystallization experiments at 0·7 GPaevolve from dunites, followed by wehrlites, gabbronorites, andgabbros, to diorites and ilmenite-bearing diorites. In equilibriumcrystallization experiments at 0·7 GPa dunites are followedby plagioclase-bearing websterites and gabbronorites. In contrastto low-pressure fractionation of tholeiitic liquids (1 bar–0·5GPa), where early plagioclase saturation leads to the productionof troctolites followed by (olivine) gabbros at an early stageof differentiation, pyroxene still crystallizes before or withplagioclase at 0·7 GPa. The liquids formed by fractionalcrystallization at 0·7 GPa evolve through limited silicaincrease with rather strong iron enrichment following the typicaltholeiitic differentiation path from basalts to ferro-basalts.Silica enrichment and a decrease in absolute iron and titaniumconcentrations are observed in the last fractionation step afterilmenite starts to crystallize, resulting in the productionof an andesitic liquid. Liquids generated by equilibrium crystallizationexperiments at 0·7 GPa evolve through constant SiO2 increaseand only limited FeO enrichment as a consequence of spinel crystallizationand closed-system behaviour. Empirical calculations of the (dry)liquid densities along the liquid lines of descent at 0·7and 1·0 GPa reveal that only differentiation at the baseof the crust (1·0 GPa) results in liquids that can ascendthrough the crust and that will ultimately form granitoid plutonicand/or dacitic to rhyodacitic sub-volcanic to volcanic complexes;at 0·7 GPa the liquid density increases with increasingdifferentiation as a result of pronounced Fe enrichment, renderingit rather unlikely that such differentiated melt will reachshallow crustal levels. KEY WORDS: tholeiitic magmas; experimental petrology; equilibrium crystallization; fractional crystallization  相似文献   

5.
Two series of anhydrous experiments have been performed in anend-loaded piston cylinder apparatus on a primitive, mantle-derivedtholeiitic basalt at 1·0 GPa pressure and temperaturesin the range 1060–1330°C. The experimental data provideconstraints on phase equilibria, and solid and liquid compositionsalong the liquid line of descent of primary basaltic magmasdifferentiating in storage reservoirs located at the base ofthe continental crust. The first series are equilibrium crystallizationexperiments on a single basaltic bulk composition; the secondseries are fractionation experiments where near-perfect fractionalcrystallization was approached in a stepwise manner using 30°Ctemperature steps and starting compositions corresponding tothe liquid composition of the previous, higher-temperature glasscomposition. Liquids in the fractional crystallization experimentsevolve with progressive SiO2 increase from basalts to dacites,whereas the liquids in the equilibrium crystallization experimentsremain basaltic and display only a moderate SiO2 increase accompaniedby more pronounced Al2O3 enrichment. The principal phase equilibriacontrols responsible for these contrasting trends are suppressionof the peritectic olivine + liquid = opx reaction and earlierplagioclase saturation in the fractionation experiments comparedwith the equilibrium experiments. Both crystallization processeslead to the formation of large volumes of ultramafic cumulatesrelated to the suppression of plagioclase crystallization relativeto pyroxenes at high pressures. This is in contrast to low-pressurefractionation of tholeiitic liquids, where early plagioclasesaturation leads to the production of troctolites followed by(olivine-) gabbros at an early stage of differentiation. KEY WORDS: liquid line of descent; tholeiitic magmas; equilibrium crystallization; fractional crystallization  相似文献   

6.
An unusual quartz-bearing orthopyroxene-rich websterite xenolithhas been found in an alkali basaltic tuff at Szigliget, Bakony–BalatonHighland Volcanic Field (BBHVF), western Hungary. Ortho- andclinopyroxenes are enriched in light rare earth elements (LREE),middle REE and Ni, and depleted in Nb, Ta, Sr and Ti comparedwith ortho- and clinopyroxenes occurring in either peridotiteor lower crustal granulite xenoliths from the BBHVF. Both ortho-and clinopyroxenes in the xenolith contain primary and secondarysilicate melt inclusions, and needle-shaped or rounded quartzinclusions. The melt inclusions are rich in SiO2 and alkalisand poor in MgO, FeO and CaO. They are strongly enriched inLREE and large ion lithophile elements, and display negativeNb, Ta and Sr anomalies, and slightly positive Pb anomalies.The xenolith is interpreted to represent a fragment of an orthopyroxene-richbody that crystallized in the upper mantle from a hybrid meltthat formed by interaction of mantle peridotite with a quartz-saturatedsilicate melt that was released from a subducted oceanic slab.Although the exact composition of the slab melt cannot be determined,model calculations on major and trace elements suggest involvementof a metasedimentary component. KEY WORDS: quartz; mantle; silicate melt inclusion; SiO2-rich melt; subduction; Carpathian-Pannonian Region  相似文献   

7.
Crystallization experiments at 400 MPa, oxidized condition (logfO2= NNO + 1, where NNO is nickel–nickel oxide buffer) andover a range of temperatures (850–950°C) and fluidcomposition (XH2Oin = 0·3–1) have been carriedout to constrain the storage conditions of the sulphur-richmagma of the Huerto Andesite (an anhydrite, pyrrhotite, andS-rich apatite-bearing, post-Fish Canyon Tuff mafic lava). Theresults are used to evaluate the role of fluids released fromthe crystallization of magmas such as the Huerto Andesite onthe remobilization of the largely crystallized dacitic FishCanyon magma body. Experiments were performed using the naturalandesitic bulk composition with and without added sulphur. Thepresence of sulphur slightly affects the phase equilibria bychanging the phase proportions, stability fields of plagioclase,pyroxenes and ilmenite, and also affects the plagioclase composition.Phase equilibria and mineral composition data indicate thatthe magma may have contained 4·5 wt % water in the meltand that the pre-eruptive temperature was 875 ± 25°C.Assuming that the magma was in equilibrium with a fluid phase,the CO2 concentration of the melt is estimated to be in therange 2000–4000 ppm (at 400 MPa). Before eruption, theandesite had an oxidation state very close to, or slightly within,the co-stability field of anhydrite–pyrrhotite at NNO+ 1·1. At these conditions, the sulphur content in themelt is 500 ppm. Assuming open-system degassing resulting fromcontinuing crystallization at depth, most of the CO2 dissolvedin the andesitic melt should be released after the crystallizationof <10 vol. % of the magma, corresponding to a cooling from875 to 825–850°C. Thus, the fluids released owingto crystallization processes should be mainly composed of waterat temperatures below 825°C. KEY WORDS: experimental study; andesite; volatile; Fish Canyon Tuff; Huerto Andesite  相似文献   

8.
Triassic I- and A-type granites of the Chaelundi Complex, NewEngland Fold Belt, eastern Australia, were generated in a subduction-relatedtectonic setting. Although isotopic ages of the suites are indistinguishable,field relations indicate that the A-type is younger. The mostmafic granitoids from each suite have similar silica contents(66–68% SiO2), slightly LREE enriched patterns withoutEu anomalies, low Rb/Sr and K/Ba ratios, and high K/Rb ratios,suggesting that both represent parental magmas. The A-type isdistinguished mineralogically by abundant orthoclase and sodicplagioclase (total >60%), ferro-hornblende, annite and allanite.In contrast, the I-type has more hornblende and biotite, whichare more magnesian in composition, and less feldspar. The parentalmagmas of both suites have many similar geochemical characteristics,although the A-type has slightly higher alkalis, Zr, Hf, Znand LREE, and lower CaO, MgO, Sr, V, Cr, Ni and Fe3+/Fe. Thegeochemical properties characteristic of leucocratic A-typegranites, such as high Ga/Al, Nb, , HREE and F contents, areonly manifest in the more felsic members of the A-type suite.These features were produced by 70% fractional crystallizationof feldspar, hornblende, quartz and biotite. Both granite suites were generated by water-undersaturated partialmelting of a similar source, but the A-type parent magma resultedfrom lower aH2O conditions during partial melting. Generationand rapid ascent of the earlier 1-type magma during disequilibriumpartial melting produced a relatively anhydrous, but not refractory,charnockitic lower crust. Continued thermal input from mantle-derivedmagmas, during continuing subduction, partially melted the ‘charnockitized’lower crust at temperatures in excess of 900C, to produce A-typemagmas. Charnockitic magmas (C-type) form in a similar way toA-type magmas, although their different composition reflectsvariations in the anhydrous lower-crustal mineral assemblagesthat remain after the previous (1-type) granite-forming event. The New England Fold Belt was a subduction—accretion complexuntil the late Carboniferous, when the deeper parts underwentpartial melting to produce S-type granites. As the I-and A-typegranites intruded penecontemporaneously, a tonalitic sourcemodel for genesis of the Chaelundi A-type is untenable. KEY WORDS: A-type; charnockitization; eastern Australia *Corresponding author.  相似文献   

9.
Fault bound blocks of granulite and enderbite occur within upperamphibolite-facies migmatitic tonalitic–trondhjemitic–granodioritic(TTG) gneisses of the Iisalmi block of Central Finland. Theseunits record reworking and partial melting of different levelsof the Archean crust during a major tectonothermal event at2·6–2·7 Ga. Anhydrous mineral assemblagesand tonalitic melts in the granulites formed as a result ofhydrous phase breakdown melting reactions involving amphiboleat peak metamorphic conditions of 8–11 kbar and 750–900°C.A nominally fluid-absent melting regime in the granulites issupported by the presence of carbonic fluid inclusions. Thegeochemical signature of light rare earth element (LREE)-depletedmafic granulites can be modelled by 10–30 wt % partialmelting of an amphibolite source rock leaving a garnet-bearingresidue. The degree of melting in intermediate granulites isinferred to be less than 10 wt % and was restricted by the availabilityof quartz. Pressure–temperature estimates for the TTGgneisses are significantly lower than for the granulites at660–770°C and 5–6 kbar. Based on the P–Tconditions, melting of the TTG gneisses is inferred to haveoccurred at the wet solidus in the presence of an H2O-rich fluid.A hydrous mineralogy, abundant aqueous fluid inclusions andthe absence of carbonic inclusions in the gneisses are in accordancewith a water-fluxed melting regime. Low REE contents and strongpositive Eu anomalies in most leucosomes irrespective of thehost rock composition suggest that the leucosomes are not meltcompositions, but represent plagioclase–quartz assemblagesthat crystallized early from felsic melts. Furthermore, similarplagioclase compositions in leucosomes and adjacent mesosomesare not a ‘migmatite paradox’, as both record equilibrationwith the same melt phase percolating along grain boundaries. KEY WORDS: Archean continental crust; fluid inclusion; granulite; migmatite; partial melting  相似文献   

10.
Liquid Immiscibility and the Evolution of Basaltic Magma   总被引:9,自引:0,他引:9  
This experimental study examines relationships between alternativeevolution paths of basaltic liquids (the so-called Bowen andFenner trends), and silicate liquid immiscibility. Syntheticanalogues of natural immiscible systems exhibited in volcanicglasses and melt inclusions were used as starting mixtures.Conventional quench experiments in 1 atm gas mixing furnacesproved unable to reproduce unmixing of ferrobasaltic melts,yielding instead either turbid, opalescent glasses, or crystallizationof tridymite and pyroxenes. In contrast, experiments involvingin situ high-temperature centrifugation at 1000g (g = 9·8m/s2) did yield macroscopic unmixing and phase separation. Centrifugationfor 3–4 h was insufficient to complete phase segregation,and resulted in sub-micron immiscible emulsions in quenchedglasses. For a model liquid composition of the Middle Zone ofthe Skaergaard intrusion at super-liquidus temperatures of 1110–1120°C,centrifugation produced a thin, silicic layer (64·5 wt%SiO2 and 7·4 wt% FeO) at the top of the main Fe-richglass (46 wt% SiO2 and 21 wt% FeO). The divergent compositionsat the top and bottom were shown in a series of static runsto crystallize very similar crystal assemblages of plagioclase,pyroxene, olivine, and Fe–Ti oxides. We infer from theseresults that unmixing of complex aluminosilicate liquids maybe seriously kinetically hampered (presumably by a nucleationbarrier), and thus conventional static experiments may not correctlyreproduce it. In the light of our centrifuge experiments, immiscibilityin the Skaergaard intrusion could have started already at thetransition from the Lower to the Middle Zone. Thus, magma unmixingmight be an important factor in the development of the Fe-enrichmenttrend documented in the cumulates of the Skaergaard LayeredSeries. KEY WORDS: liquid immiscibility; Skaergaard; layered intrusions; experimental petrology  相似文献   

11.
Phase Relations of Peralkaline Silicic Magmas and Petrogenetic Implications   总被引:16,自引:5,他引:16  
The phase relationships of three peralkaline rhyolites fromthe Kenya Rift have been established at 150 and 50 MPa, at oxygenfugacities of NNO - 1·6 and NNO + 3·6 (log fO2relative to the Ni–NiO solid buffer), between 800 and660°C and for melt H2O contents ranging between saturationand nominally anhydrous. The stability fields of fayalite, sodicamphiboles, chevkinite and fluorite in natural hydrous silicicmagmas are established. Additional phases include quartz, alkalifeldspar, ferrohedenbergite, biotite, aegirine, titanite, montdoriteand oxides. Ferrohedenbergite crystallization is restrictedto the least peralkaline rock, together with fayalite; it isreplaced at low melt water contents by ferrorichterite. Riebeckite–arfvedsoniteappears only in the more peralkaline rocks, at temperaturesbelow 750°C (dry) and below 670°C at H2O saturation.Under oxidizing conditions, it breaks down to aegirine. In themore peralkaline rocks, biotite is restricted to temperaturesbelow 700°C and conditions close to H2O saturation. At 50MPa, the tectosilicate liquidus temperatures are raised by 50–60°C,and that of amphibole by 30°C. Riebeckite–arfvedsonitestability extends down nearly to atmospheric pressure, as aresult of its F-rich character. The solidi of all three rocksare depressed by 40–100°C compared with the solidusof the metaluminous granite system, as a result of the abundanceof F and Cl. Low fO2 lowers solidus temperatures by at least30°C. Comparison with studies of metaluminous and peraluminousfelsic magmas shows that plagioclase crystallization is suppressedas soon as the melt becomes peralkaline, whatever its CaO orvolatile contents. In contrast, at 100 MPa and H2O saturation,the liquidus temperatures of quartz and alkali feldspar arenot significantly affected by changes in rock peralkalinity,showing that the incorporation of water in peralkaline meltsdiminishes the depression of liquidus temperatures in dry peralkalinesilicic melts compared with dry metaluminous or peraluminousvarieties. At 150 MPa, pre-eruptive melt H2O contents rangefrom 4 wt % in the least peralkaline rock to nearly 6 wt % inthe two more peralkaline compositions, in broad agreement withprevious melt inclusion data. The experimental results implymagmatic fO2 at or below the fayalite–quartz–magnetitesolid buffer, temperatures between 740 and 660°C, and meltevolution under near H2O saturation conditions. KEY WORDS: peralkaline; rhyolite; phase equilibria  相似文献   

12.
Fluid-saturated subsolidus experiments from 2·0 to 6·5GPa, and from 680 to 800°C have been performed on threemodel peridotites in the system Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O(NCFMASH). Amphibole and chlorite coexist up to 2·4 GPa,700°C. Chlorite persists to 4·2 GPa at 680°C.Starting from 4·8 GPa, 680°C a 10 Å phase structurereplaces chlorite in all compositions. The 10 Å phasestructure contains significant Al2O3 (up to 10·53 wt%) deviating from the MgO–SiO2–H2O 10 Å phase(MSH 10 Å phase). A mixed layered structure (chlorite–MSH10 Å phase) is proposed to account for aluminium observed.In the Tinaquillo lherzolite amphibole breakdown occurs viathe reaction Thermal stabilityof chlorite (chlorite + orthopyroxene = forsterite + garnet+ H2O) is shifted towards lower temperatures, compared withthe system MASH. Furthermore, the chlorite thermal breakdownis also related to the degenerate reaction Chlorite and the Al-10 Å phase structurecontribute significantly to the water budget in subduction zonesin the depth range relevant for arc magmatism, whereas amphibole-relatedfluid release is restricted to the forearc region. Chloriteand Al-10 Å phase breakdowns might explain the occurrenceof a double seismic zone by dehydration embrittlement. KEY WORDS: amphibole; chlorite; high pressure; peridotites; subduction zones  相似文献   

13.
The Chonos Metamorphic Complex forms part of a belt of low-grademetamorphic rocks in the Chilean Coastal Cordillera that areinterpreted as Palaeozoic–Mesozoic accretionary complexes.It comprises metapsammopelitic schists, metabasites and meta-ironstonesoccurring in two contrasting units. Special attention duringmicroprobe study of key samples was given to the chemical zonationof minerals. Subsequently, conventional geothermobarometry andthat using thermodynamic calculations were applied. The Easternbelt comprises rocks that are metamorphosed to pumpellyite–actinolitefacies conditions and show a low degree of deformation withwell-preserved sedimentary and igneous structures. Maximum P–Tconditions were around 5·5 kbar and 250–280°C.The rocks of the Western belt are characterized by a transitionbetween greenschist and albite–epidote–amphibolitefacies metamorphism and show a penetrative tectonic transpositionfoliation S2 formed close to the pressure maximum. Maximum P–Tconditions vary around 8–10 kbar and 380–500°Coverstepping the stilpnomelane + phengite stability. High pressuresin this belt are confirmed by regionally distributed phengiteswith high Si contents up to 3·5 Si per formula unit.Regional distribution of maximum temperatures is reflected bythe composition of actinolitic hornblendes within the metabasites.In a garnet-bearing metabasite of the Western belt, oscillatorygrowth zoning of garnet was observed. The composition of correspondingmineral inclusions suggests that a prograde P–T path duringgarnet growth evolved from 7·5 kbar and 375°C toabout 9·4 kbar and 500°C. Late garnet grew synkinematicallywith penetrative deformation. The retrograde P–T pathin the rocks of the Western belt is constrained by the compositionof mainly late strain-free minerals and involves slight coolingduring decompression. Both belts are part of a subduction system.The apparent P–T gap between the belts is due to theirjuxtaposition during exhumation. The Eastern belt constitutesthe transition towards the backstop system of the accretionaryprism that is represented by the Western belt, whereas the absenceof very low grade rocks west of the Western belt is attributedto tectonic erosion, which was possibly caused by subductionof a ridge. KEY WORDS: Chonos Metamorphic Complex; accretionary complex; high-pressure–low-temperature metamorphism; oscillatory garnet zonation; phengite; P–T paths  相似文献   

14.
The occurrence of actinolite in magnetite deposits of possiblemagmatic origin has prompted an experimental investigation ofthe upper thermal stability of Mg-rich actinolite to determinehow the stability of actinolite changes with increasing Fe content.Experiments were carried out primarily on the compositionalre-equilibration of natural tremolite [molar Fe/(Fe + Mg) =Fe-number = 0·014] in the presence of synthetic clinopyroxene(Ca0·80Fe0·67Mg0·54Si2·00O6), syntheticpigeonite/orthopyroxene (Ca0·08Fe1·19Mg0·70Si2·02O6),quartz, and water to a more Fe-rich actinolite over the rangeof 600–880°C, 1 and 4 kbar, at the Ni–NiO oxygenbuffer, for durations of 1–2 weeks. The bulk compositionof the mineral mixture is close to actinolite with Fe-number= 0·5. These experiments constitute a half-reversal ofthe amphibole composition, which, when approached from a Mg-richstarting composition, provides information on the minimum Fecontent of actinolite at a given temperature. Compositionalchanges were monitored by electron microprobe analysis of amphibolerim compositions and/or overgrowths on the original tremolite.At 4 kbar and 880–800°C, tremolite shows strong re-equilibrationwith overgrowths of an Fe-rich but low-Ca (1·7 > Ca> 1·4) actinolite; Fe-rich cummingtonite (Ca <0·7)begins to nucleate at 860°C. At 800–700°C, tremoliteshows weak compositional re-equilibration but strong nucleationof Fe-rich cummingtonite. Similar results were observed at 1kbar, with tremolite showing strong re-equilibration to low-Caactinolite at 790–600°C with cummingtonite nucleationat 800°C and below. The wide variation in Ca contents ofthe re-equilibrated amphiboles was unexpected. Additional univariantreversal experiments were carried out on the thermal decompositionof a natural actinolite (Fe-number = 0·22) from PleitoMelón, Chile, indicating the breakdown of actinoliteto clinopyroxene, orthopyroxene, quartz, and water at 780°Cand 1 kbar, and 850°C and 4 kbar. Considering only amphiboleswith Ca >1·7 a.p.f.u., the thermal stability of actinoliteis observed to decrease in a linear manner over the PTrange investigated with a dT/dFe-number slope of –372°C/Fe-numberat 1 kbar and –546°C/Fe-number at 4 kbar. The highthermal stabilities (750–900°C) of actinolites withFe-numbers in the range of 0–0·4 overlap with therange of water-saturated melting for a typical andesite or tonalite.These conditions also overlap the field of experimental Fe–P-richmelt formation, suggesting that actinolite may have an igneousorigin in Kiruna-type ore deposits. KEY WORDS: actinolite; mineral stability; Kiruna deposits, thermodynamic values; cummingonite  相似文献   

15.
Neogene basanite lavas of Kozákov volcano, located alongthe Lusatian fault in the northeastern Czech Republic, containabundant anhydrous spinel lherzolite xenoliths that providean exceptionally continuous sampling of the upper two-thirdsof central European lithospheric mantle. The xenoliths yielda range of two-pyroxene equilibration temperatures from 680°Cto 1070°C, and are estimated to originate from depths of32–70 km, based on a tectonothermal model for basalticunderplating associated with Neogene rifting. The sub-Kozákovmantle is layered, consisting of an equigranular upper layer(32–43 km), a protogranular intermediate layer that containsspinel–pyroxene symplectites after garnet (43–67km), and an equigranular lower layer (67–70 km). Negativecorrelations of wt % TiO2, Al2O3, and CaO with MgO and clinopyroxenemode with Cr-number in the lherzolites record the effects ofpartial fusion and melt extraction; Y and Yb contents of clinopyroxeneand the Cr-number in spinel indicate 5 to 15% partial melting.Subsequent metasomatism of a depleted lherzolite protolith,probably by a silicate melt, produced enrichments in the largeion lithophile elements, light rare earth elements and highfield strength elements, and positive anomalies in primitivemantle normalized trace element patterns for P, Zr, and Hf.Although there are slight geochemical discontinuities at theboundaries between the three textural layers of mantle, theretends to be an overall decrease in the degree of depletion withdepth, accompanied by a decrease in the magnitude of metasomatism.Clinopyroxene separates from the intermediate protogranularlayer and the lower equigranular layer yield 143Nd/144Nd valuesof 0·51287–0·51307 (Nd = +4·6 to+8·4) and 87Sr/86Sr values of 0·70328–0·70339.Such values are intermediate with respect to the Nd–Srisotopic array defined by anhydrous spinel peridotite xenolithsfrom central Europe and are similar to those associated withthe present-day low-velocity anomaly in the upper mantle beneathEurope. The geochemical characteristics of the central Europeanlithospheric mantle reflect a complex evolution related to Devonianto Early Carboniferous plate convergence, accretion, and crustalthickening, Late Carboniferous to Permian extension and gravitationalcollapse, and Neogene rifting, lithospheric thinning, and magmatism. KEY WORDS: xenoliths; lithospheric mantle; REE–LILE–HFSE; Sr–Nd isotopes; Bohemian Massif  相似文献   

16.
We present whole-rock major- and trace-element and Nd–Sr–Pbradiogenic isotope data for Cretaceous igneous suites from easternCuba. These rocks are related to the Greater Antilles paleo-islandarc magmatism and have three different igneous styles. Group1 consists of tholeiitic basalts and rare basaltic andesitesthat have normal mid-ocean ridge basalt (N-MORB)-like compositionssimilar to those found in back-arc basin basalts (TiO2 = 1·2–2·9wt%; La/Yb(N) = 0·7–0·9, Th/Nb = 0·06–0·08,and initial 208Pb/ 204Pb = 37·65–37·74).Group 2 comprises basaltic and rare basaltic andesitic subvolcanicdykes with major- and trace-element and isotopic compositionssimilar to those of island arc tholeiites (TiO2 = 0·7–1·4wt%; La/Yb(N) = 0·6–0·9, Th/Nb = 0·06–0·68,and initial 208Pb/ 204Pb = 37·74–38·25).Group 3 is composed of low-Ti (TiO2 = 0·3–0·9wt%) calcalkaline igneous rocks that have an unambiguous subduction-relatedcharacter (La/Yb(N) = 1·1–5·0, Th/Nb = 0·35–1·55,and initial 208Pb/ 204Pb = 37·94–38·39).The parental magmas of the three groups formed by variable meltingdegrees (< 5–25%) of spinel lherzolite, with more depletedmantle sources for Groups 2 and 3 than Group 1. The trace-elementand radiogenic isotope compositions of primitive Group 3 samplesare strongly bimodal. One subgroup of samples is characterizedby low Ta/Yb (0·02–0·03) and Th/La (0·10–0·13),slightly subchondritic Nb/Ta (13·3–17·3),and relatively high initial 206Pb/204Pb (18·57–18·62)and Nd (7·6–9·4). The remaining primitiveGroup 3 samples have higher Ta/Yb (0·06–0·11)and Th/La (0·24–0·32), and highly subchondriticNb/Ta (7·6–9·1), coupled with lower initial206Pb/204Pb (18·24–18·29) and Nd (3·4–5·5).These signatures were induced by two distinct slab componentsthat mainly reflect the contributions of Cretaceous Atlanticmarine and North American continental sediments, respectively.Nb/Ta in the first subgroup was influenced by melting of rutile-bearingsubducted crust, whereas in the second it was inherited fromrecycled continental sediments. The involvement of Atlanticand North American sediments in Cuban Cretaceous magmatism indicatesthat the Proto-Caribbean (North American-Proto Atlantic) lithospheresubducted beneath the Greater Antilles arc during the Late Cretaceous(pre-Campanian), consistent with geotectonic models involvingonset of SW-dipping subduction beneath the Greater Antillespaleo-arc during the Aptian. The variable mantle source depletionand magnitude of the subduction component probably reflect differentsettings across the arc, from the arc front to a back-arc spreadingridge. KEY WORDS: eastern Cuba; Greater Antilles paleo-island arc; mantle source depletion; Nb/Ta fractionation; slab component  相似文献   

17.
As a pilot study of the role of water in the attenuation ofseismic waves in the Earth's upper mantle, we have performeda series of seismic-frequency torsional forced-oscillation experimentson a natural (Anita Bay) dunite containing accessory hydrousphases, at high temperatures to 1300°C and confining pressure(Pc) of 200 MPa, within a gas-medium high-pressure apparatus.Both oven-dried and pre-fired specimens wrapped in Ni–Fefoil within the (poorly) vented assembly were recovered essentiallydry after 50–100 h of annealing at 1300°C followedby slow staged cooling. The results for those specimens indicatebroadly similar absorption-band viscoelastic behaviour, butwith systematic differences in the frequency dependence of strain-energydissipation Q–1, attributed to differences in the smallvolume fraction of silicate melt and its spatial distribution.In contrast, it has been demonstrated that a new assembly involvinga welded Pt capsule retains aqueous fluid during prolonged exposureto high temperatures—allowing the first high-temperaturetorsional forced-oscillation measurements under high aqueousfluid pore pressure Pf. At temperatures >1000°C, a markedreduction in shear modulus, without concomitant increase inQ–1, is attributed to the widespread wetting of grainboundaries resulting from grain-scale hydrofracturing and themaintenance of conditions of low differential pressure Pd =Pc – Pf . Staged cooling from 1000°C is accompaniedby decreasing Pf and progressive restoration of significantlypositive differential pressure resulting in a microstructuralregime in which the fluid on grain boundaries is increasinglyrestricted to arrays of pores. The more pronounced viscoelasticbehaviour observed within this regime for the Pt-encapsulatedspecimen compared with the essentially dry specimens may reflectboth water-enhanced solid-state relaxation and the direct influenceof the fluid phase. The scenario of overpressurized fluids andhydrofracturing in the Pt-encapsulated dunite specimen may havesome relevance to the high Q–1 and low-velocity zonesobserved in subduction-zone environments. The outcomes of thisexploratory study indicate that the presence of water can havea significant effect on the seismic wave attenuation in theupper mantle and provide the foundation for more detailed studieson the role of water. KEY WORDS: seismic wave attenuation; water; dunite; hydrous mineral; shear modulus; viscoelasticity; olivine; grain-scale hydrofracturing  相似文献   

18.
Olivine + clinopyroxene ± amphibole cumulates have beenwidely documented in island arc settings and may constitutea significant portion of the lowermost arc crust. Because ofthe low melting temperature of amphibole (1100°C), suchcumulates could melt during intrusion of primary mantle magmas.We have experimentally (piston-cylinder, 0·5–1·0GPa, 1200–1350°C, Pt–graphite capsules) investigatedthe melting behaviour of a model amphibole–olivine–clinopyroxenerock, to assess the possible role of such cumulates in islandarc magma genesis. Initial melts are controlled by pargasiticamphibole breakdown, are strongly nepheline-normative and areAl2O3-rich. With increasing melt fraction (T > 1190°Cat 1·0 GPa), the melts become ultra-calcic while remainingstrongly nepheline-normative, and are saturated with olivineand clinopyroxene. The experimental melts have strong compositionalsimilarities to natural nepheline-normative ultra-calcic meltinclusions and lavas exclusively found in arc settings. Theexperimentally derived phase relations show that such naturalmelt compositions originate by melting according to the reactionamphibole + clinopyroxene = melt + olivine in the arc crust.Pargasitic amphibole is the key phase in this process, as itlowers melting temperatures and imposes the nepheline-normativesignature. Ultra-calcic nepheline-normative melt inclusionsare tracers of magma–rock interaction (assimilative recycling)in the arc crust. KEY WORDS: experimental melting; subduction zone; ultra-calcic melts; wehrlite  相似文献   

19.
The Paleoproterozoic metaplutonic rocks of the CaicóComplex Basement (Seridó region, NE Brazil) provide importantand crucial insights into the petrogenetic processes governingcrustal growth and may potentially be a proxy for understandingthe Archean–Proterozoic transition. These rocks consistof high-K calc-alkaline diorite to granite, with Rb–Sr,U–Pb, Pb–Pb and Sm–Nd ages of c. 2·25–2·15Ga. They are metaluminous, with high YbN, K2O/Na2O and Rb/Sr,low ISr ratios, and are large ion lithophile elements (LILE)enriched. Petrographic and geochemical data demonstrate thatthey belong to differentiated series that evolved by low-pressurefractionation, thus resulting in granodioritic liquids. We proposea model in which the petrogenesis of the Caicó Complexorthogneisses begins with partial melting of a metasomaticallyenriched spinel- to garnet-bearing lherzolite (with high-silicaadakite melt as the metasomatic agent), generating a basic magmathat subsequently evolved at depth through fractional crystallizationof olivine, followed by low-pressure intracrustal fractionation.A subduction zone setting is proposed for this magmatism, toaccount for both negative anomalies in high field strength elements(HFSE) and LILE enrichment. Mantle-derived juvenile magmatismwith the same age is also known in the São Franciscoand West Africa cratons, as well as in French Guyana, and thusthe Archean–Proterozoic transition marks a very importantcontinental accretion event. It also represents a transitionfrom slab-dominated (in the Archean) to wedge-dominated post-Archeanmagmatism. KEY WORDS: calc-alkaline; magmatism; NE Brazil; Paleoproterozoic; petrogenesis  相似文献   

20.
Phase equilibria simulations were performed on naturally quenchedbasaltic glasses to determine crystallization conditions priorto eruption of magmas at the Mid-Atlantic Ridge (MAR) east ofAscension Island (7–11°S). The results indicate thatmid-ocean ridge basalt (MORB) magmas beneath different segmentsof the MAR have crystallized over a wide range of pressures(100–900 MPa). However, each segment seems to have a specificcrystallization history. Nearly isobaric crystallization conditions(100–300 MPa) were obtained for the geochemically enrichedMORB magmas of the central segments, whereas normal (N)-MORBmagmas of the bounding segments are characterized by polybariccrystallization conditions (200–900 MPa). In addition,our results demonstrate close to anhydrous crystallization conditionsof N-MORBs, whereas geochemically enriched MORBs were successfullymodeled in the presence of 0·4–1 wt% H2O in theparental melts. These estimates are in agreement with direct(Fourier transform IR) measurements of H2O abundances in basalticglasses and melt inclusions for selected samples. Water contentsdetermined in the parental melts are in the range 0·04–0·09and 0·30–0·55 wt% H2O for depleted and enrichedMORBs, respectively. Our results are in general agreement (within±200 MPa) with previous approaches used to evaluate pressureestimates in MORB. However, the determination of pre-eruptiveconditions of MORBs, including temperature and water contentin addition to pressure, requires the improvement of magma crystallizationmodels to simulate liquid lines of descent in the presence ofsmall amounts of water. KEY WORDS: MORB; Mid-Atlantic Ridge; depth of crystallization; water abundances; phase equilibria calculations; cotectic crystallization; pressure estimates; polybaric fractionation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号