首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Land-use/land-cover changes(LUCCs) have links to both human and nature interactions. China's Land-Use/cover Datasets(CLUDs) were updated regularly at 5-year intervals from the late 1980s to 2010, with standard procedures based on Landsat TM\ETM+ images. A land-use dynamic regionalization method was proposed to analyze major land-use conversions. The spatiotemporal characteristics, differences, and causes of land-use changes at a national scale were then examined. The main findings are summarized as follows. Land-use changes(LUCs) across China indicated a significant variation in spatial and temporal characteristics in the last 20 years(1990–2010). The area of cropland change decreased in the south and increased in the north, but the total area remained almost unchanged. The reclaimed cropland was shifted from the northeast to the northwest. The built-up lands expanded rapidly, were mainly distributed in the east, and gradually spread out to central and western China. Woodland decreased first, and then increased, but desert area was the opposite. Grassland continued decreasing. Different spatial patterns of LUC in China were found between the late 20th century and the early 21st century. The original 13 LUC zones were replaced by 15 units with changes of boundaries in some zones. The main spatial characteristics of these changes included(1) an accelerated expansion of built-up land in theHuang-Huai-Hai region, the southeastern coastal areas, the midstream area of the Yangtze River, and the Sichuan Basin;(2) shifted land reclamation in the north from northeast China and eastern Inner Mongolia to the oasis agricultural areas in northwest China;(3) continuous transformation from rain-fed farmlands in northeast China to paddy fields; and(4) effectiveness of the "Grain for Green" project in the southern agricultural–pastoral ecotones of Inner Mongolia, the Loess Plateau, and southwestern mountainous areas. In the last two decades, although climate change in the north affected the change in cropland, policy regulation and economic driving forces were still the primary causes of LUC across China. During the first decade of the 21st century, the anthropogenic factors that drove variations in land-use patterns have shifted the emphasis from one-way land development to both development and conservation. The "dynamic regionalization method" was used to analyze changes in the spatial patterns of zoning boundaries, the internal characteristics of zones, and the growth and decrease of units. The results revealed "the pattern of the change process," namely the process of LUC and regional differences in characteristics at different stages. The growth and decrease of zones during this dynamic LUC zoning, variations in unit boundaries, and the characteristics of change intensities between the former and latter decades were examined. The patterns of alternative transformation between the "pattern" and "process" of land use and the causes for changes in different types and different regions of land use were explored.  相似文献   

2.
Rice's spatial-temporal distributions, which are critical for agricultural, environ- mental and food security research, are affected by natural conditions as well as socio-eco- nomic developments. Based on multi-source data, an effective model named the Spatial Production Allocation Model (SPAM) which integrates arable land distribution, administrative unit statistics of crop data, agricultural irrigation data and crop suitability data, was used to get a series of spatial distributions of rice area and production with 10-km pixels at a national scale -it was applied from the early 1980s onwards and used to analyze the pattern of spatial and temporal changes. The results show that significant changes occurred in rice in China during 1980-2010. Overall, more than 50% of the rice area decreased, while nearly 70% of rice production increased in the change region during 1980-2010. Spatially, most of the increased area and production were in Northeast China, especially, in Jilin and Heilongjiang; most of the decreased area and production were located in Southeast China, especially, in regions of rapidly urbanization in Guangdong, Fujian and Zhejiang. Thus, the centroid of rice area was moved northeast approximately 230 km since 1980, and rice production about 320 km, which means rice production moved northeastward faster than rice area because of the significant rice yield increase in Northeast China. The results also show that rice area change had a decisive impact on rice production change. About 54.5% of the increase in rice pro- duction is due to the expansion of sown area, while around 83.2% of the decrease in rice production is due to contraction of rice area. This implies that rice production increase may be due to area expansion and other non-area factors, but reduced rice production could largely be attributed to rice area decrease.  相似文献   

3.
Spatially explicit modeling techniques recently emerged as an alternative to monitor land use changes. This study adopted the well-known CLUE-S(Conversion of Land Use and its Effects at Small regional extent) model to analyze the spatio-temporal land use changes in a hot-spot in Northeast China(NEC). In total,13 driving factors were selected to statistically analyze the spatial relationships between biophysical and socioeconomic factors and individual land use types. These relationships were then used to simulate land use dynamic changes during 1980–2010 at a 1 km spatial resolution,and to capture the overall land use change patterns. The obtained results indicate that increases in cropland area in NEC were mainly distributed in the Sanjiang Plain and the Songnen Plain during 1980–2000,with a small reduction between 2000 and 2010. An opposite pattern was identified for changes in forest areas. Forest decreases were mainly distributed in the Khingan Mountains and the Changbai Mountains between 1980 and 2000,with a slight increase during 2000–2010. The urban areas have expanded to occupy surrounding croplands and grasslands,particularly after the year 2000. More attention is needed on the newly gained croplands,which have largely replaced wetlands in the Sanjiang Plain over the last decade. Land use change patterns identified here should be considered in future policy making so as to strengthen local eco-environmental security.  相似文献   

4.
Land-use/land-cover changes (LUCCs) have links to both human and nature inter- actions. China's Land-Use/cover Datasets (CLUDs) were updated regularly at 5-year inter- vals from the late 1980s to 2010, with standard procedures based on Landsat TM/ETM+ im- ages. A land-use dynamic regionalization method was proposed to analyze major land-use conversions. The spatiotemporal characteristics, differences, and causes of land-use changes at a national scale were then examined. The main findings are summarized as fol- lows. Land-use changes (LUCs) across China indicated a significant variation in spatial and temporal characteristics in the last 20 years (1990-2010). The area of cropland change de- creased in the south and increased in the north, but the total area remained almost un- changed. The reclaimed cropland was shifted from the northeast to the northwest. The built-up lands expanded rapidly, were mainly distributed in the east, and gradually spread out to central and western China. Woodland decreased first, and then increased, but desert area was the opposite. Grassland continued decreasing. Different spatial patterns of LUC in China were found between the late 20th century and the early 21st century. The original 13 LUC zones were replaced by 15 units with changes of boundaries in some zones. The main spatial characteristics of these changes included (1) an accelerated expansion of built-up land in the Huang-Huai-Hai region, the southeastern coastal areas, the midstream area of the Yangtze River, and the Sichuan Basin; (2) shifted land reclamation in the north from northeast China and eastern Inner Mongolia to the oasis agricultural areas in northwest China; (3) continuous transformation from rain-fed farmlands in northeast China to paddy fields; and (4) effective- ness of the "Grain for Green" project in the southern agricultural-pastoral ecotones of Inner Mongolia, the Loess Plateau, and southwestern mountainous areas. In the last two decades, although climate change in the north affected the change in cropland, policy regulation and economic driving forces were still the primary causes of LUC across China. During the first decade of the 21st century, the anthropogenic factors that drove variations in land-use pat- terns have shifted the emphasis from one-way land development to both development and conservation. The "dynamic regionalization method" was used to analyze changes in the spatial patterns of zoning boundaries, the internal characteristics of zones, and the growth and decrease of units. The results revealed "the pattern of the change process," namely the process of LUC and regional differences in characteristics at different stages. The growth and decrease of zones during this dynamic LUC zoning, variations in unit boundaries, and the characteristics of change intensities between the former and latter decades were examined. The patterns of alternative transformation between the "pattern" and "process" of land use and the causes for changes in different types and different regions of land use were explored.  相似文献   

5.
China is a disaster prone country, and a comprehensive understanding of change of disasters is very important for China’s agricultural development. In this study, statistical techniques and geographic information system tools are employed to quantify the main agriculture disasters changes and effects on grain production in China during the period of 1990–2011. The results show that China’s grain production was severely affected by disasters including drought, flood, hail, frost and typhoon. The annual area covered by these disasters reached up to 48.7×106 ha during the study period, which accounted for 44.8% of the total sown area, and about 55.1% of the per unit area grain yield change was caused by disasters. In addition, all of the disasters showed high variability, different changing trends, and spatial distribution. Drought, flood, and hail showed significantly decreasing trends, while frost and typhoon showed increasing trends. Drought and flood showed gradual changes and were distributed across the country, and disasters became more diversified from north to south. Drought was the dominated disaster type in northern China, while flood was the most important disaster type in the southern part. Hail was mainly observed in central and northern China, and frost was mainly distributed in southern China. Typhoon was greatly limited to the southeast coast. Furthermore, the resilience of grain production of each province was quite different, especially in several major grain producing areas, such as Shandong, Liaoning, Jilin and Jiangsu, where grain production was seriously affected by disasters. One reason for the difference of resilience of grain production was that grain production was marginalized in developed provinces when the economy underwent rapid development. For China’s agricultural development and grain security, we suggest that governments should place more emphasis on grain production, and invest more money in disaster prevention and mitigation, especially in the major grain producing provinces.  相似文献   

6.
Lake area information in the Badain Jaran Desert in 1973, 1990, 2000, and 2010 was obtained by visual interpretation and water index analysis of remote sensing images, based on the spatial and temporal characteristics of lake area changes during 37 years. Results indicated that the nttmber of lakes declined from 94 to 82 and the total surface area was reduced by 3.69 km2 during 1973-2010. The desert lake area reduced by different degrees in different periods, but this occurred most rapidly during 1973-1990. According to the statistics of lake area changes, lake area decreases mainly occurred in the lakes with areas less than 0.2 km2, while the areas of lakes greater than 0.9 km2 only fluctuated. The changes of lake areas were probably due to changes in the quantity of underground water supplies rather than the effects of local climate change or human factors.  相似文献   

7.
During the last decade of the 20th century, extensive conversion in agricultural land use took place in Northeast China. The goal of this study is to ascertain its spatial distribution and regional differentiation, determine its causes, and analyze its environmental impact, Especially we attempt to elucidate how institutional constraints have facilitated the change at a time of agrarian restructuring when newly emerging free market was hybridized with the former planned economy. Information on six categories of land use was mapped from interpretation of Landsat TM images recorded in 1990,1995 and 2000. Most of land use changes took place during the first half of the decade, coinciding with abrupt and chaotic changes in government directives. Farmland was changed mainly to woodland,water body and built-up areas while woodland and grassland were converted chiefly to farmland.Spatially, the change from farmland to woodland was restricted to the west of the study area. The change from grassland to farmland took place in the grazing and farming interlocked west. These chaotic and occasionally conflicting changes were largely caused by lack of stability and consistency in agricultural land use policies promulgated. They have exerted adverse impacts on the local environment, including land degradation, increased flooding, and modified climate regime.  相似文献   

8.
Land use/cover change is an important theme on the impacts of human activities on the earth systems and global environmental change. National land-use changes of China during 2010–2015 were acquired by the digital interpretation method using the high-resolution remotely sensed images, e.g. the Landsat 8 OLI, GF-2 remote sensing images. The spatiotemporal characteristics of land-use changes across China during 2010–2015 were revealed by the indexes of dynamic degree model, annual land-use changes ratio etc. The results indicated that the built-up land increased by 24.6×10~3 km~2 while the cropland decreased by 4.9×10~3 km~2, and the total area of woodland and grassland decreased by 16.4×10~3 km~2. The spatial pattern of land-use changes in China during 2010–2015 was concordant with that of the period 2000–2010. Specially, new characteristics of land-use changes emerged in different regions of China in 2010–2015. The built-up land in eastern China expanded continually, and the total area of cropland decreased, both at decreasing rates. The rates of built-up land expansion and cropland shrinkage were accelerated in central China. The rates of built-up land expansion and cropland growth increased in western China, while the decreasing rate of woodland and grassland accelerated. In northeastern China, built-up land expansion slowed continually, and cropland area increased slightly accompanied by the conversions between paddy land and dry land. Besides, woodland and grassland area decreased in northeastern China. The characteristics of land-use changes in eastern China were essentially consistent with the spatial govern and control requirements of the optimal development zones and key development zones according to the Major Function-oriented Zones Planning implemented during the 12 th Five-Year Plan(2011–2015). It was a serious challenge for the central government of China to effectively protect the reasonable layout of land use types dominated with the key ecological function zones and agricultural production zones in centraland western China. Furthermore, the local governments should take effective measures to strengthen the management of territorial development in future.  相似文献   

9.
Rapeseed is one of the major oil crops in China and it is very sensitive to climate change.The Yangtze River Basin is the main rapeseed production area in China.Therefore,a better understanding of the impact of climate change on rapeseed production in the basin is of both scientific and practical importance to Chinese oil industry and food security.In this study,based on climate data from 5 General Circulation Models(GCMs) with 4 representative concentration pathways(RCPs) in 2011–2040(2020 s),2041–2070(2050 s) and 2071–2100(2080 s),we assessed the changes in rapeseed production potential between the baseline climatology of 1981–2010 and the future climatology of the 2020 s,2050 s,and 2080 s,respectively.The key modelling tool – the AEZ model – was updated and validated based on the observation records of 10 representative sites in the basin.Our simulations revealed that:(1) the uncertainty of the impact of climate change on rapeseed production increases with time;(2) in the middle of this century(2050 s),total rapeseed production would increase significantly;(3) the average production potential increase in the 2050 s for the upper,middle and lower reaches of the Yangtze River Basin is 0.939,1.639 and 0.339 million tons respectively;(4) areas showing most significant increases in production include southern Shaanxi,central and eastern Hubei,northern Hunan,central Anhui and eastern Jiangsu.  相似文献   

10.
Quantitative characterization of environmental characteristics of cropland(ECC)plays an important role in maintaining sustainable development of agricultural systems and ensuring regional food security. In this study, the changes in ECC over the Songnen Plain, a major grain crops production region in Northeast China, were investigated for the period 1990–2015. The results revealed significant changes in climate conditions, soil physical properties and cropland use patterns with socioeconomic activities. Trends in climate parameters showed increasing temperature(+0.49°C/decade, p 0.05) and decreasing wind speed(–0.3 m/s/decade, p 0.01) for the growing season, while sunshine hours and precipitation exhibited non-significant trends. Four topsoil parameters including soil organic carbon(SOC), clay, bulk density and pH, indicated deteriorating soil conditions across most of the croplands, although some do exhibited slight improvement. The changing amplitude for each of the four above parameters ranged within –0.052 to 0.029 kg C/kg, –0.38 to 0.30,–0.60 to 0.39 g/cm~3, –3.29 to 2.34, respectively. Crop production significantly increased(44.0 million tons) with increasing sown area of croplands(~2.5 million ha) and fertilizer application(~2.5 million tons). The study reveals the dynamics of ECC in the Songnen Plain with intensive cultivation from 1990 to 2015. Population growth, economic development, and policy reform are shown to strongly influence the spatiotemporal changes in cropland characteristics.The study potentially provides valuable scientific information to support sustainable agroecosystem management in the context of global climate change and national socioeconomic development.  相似文献   

11.
Lake area information in the Badain Jaran Desert in 1973, 1990, 2000, and 2010 was obtained by visual interpretation and water index analysis of remote sensing images, based on the spatial and temporal characteristics of lake area changes during 37 years. Results indicated that the number of lakes declined from 94 to 82 and the total surface area was reduced by 3.69 km2 during 1973–2010. The desert lake area reduced by different degrees in different periods, but this occurred most rapidly during 1973–1990. According to the statistics of lake area changes, lake area decreases mainly occurred in the lakes with areas less than 0.2 km2, while the areas of lakes greater than 0.9 km2 only fluctuated. The changes of lake areas were probably due to changes in the quantity of underground water supplies rather than the effects of local climate change or human factors.  相似文献   

12.
Soil carbon sequestration and potential has been a focal issue in global carbon research. Under the background of global change, the estimation of the size as well as its change of soil organic carbon(SOC) storage is of great importance. Based on soil data from the second national soil survey and field survey during 2011–2012, by using the regression method between sampling soil data and remote sensing data, this paper aimed to investigate spatial distribution and changes of topsoil(0–20 cm) organic carbon storage in grasslands of Inner Mongolia between the 1980 s and 2010 s. The results showed that:(1) the SOC storage in grasslands of Inner Mongolia between the 1980 s and 2010 s was estimated to be 2.05 and 2.17 Pg C, with an average density of 3.48 and 3.69 kg C·m–2, respectively. The SOC storage was mainly distributed in the typical steppe and meadow steppe, which accounted for over 98% of the total SOC storage. The spatial distribution showed a decreased trend from the meadow steppe, typical steppe to the desert steppe, corresponding to the temperature and precipitation gradient.(2) SOC changes during 1982–2012 were estimated to be 0.12 Pg C, at 7.00 g C·m–2·yr–1, which didn't show a significant change, indicating that SOC storage in grasslands of Inner Mongolia remained relatively stable over this period. However, topsoil organic carbon showed different trends of carbon source/sink during the past three decades. Meadow steppe and typical steppe had sequestered 0.15 and 0.03 Pg C, respectively, served as a carbon sink; while desert steppe lost 0.06 Pg C, served as a carbon source. It appears that SOC storage in grassland ecosystem may respond differently to climate change, related to vegetation type, regional climate type and grazing intensity. These results might give advice to decision makers on adopting suitable countermeasures for sustainable grassland utilization and protection.  相似文献   

13.
Hengduan Mountains offer land space for a variety of ecological services. However, the sustainable development and management of land space has been challenged by increased human activities in recent years. This paper performs the spatial pattern analysis of the quantitative and structural changes of various landscapes at different altitudes, and uses the land use data in 1990, 2000, 2010 and 2015 to reveal how various land patterns have changed. The results show that, within the production-living-ecological space schema, the ecological space dominates Hengduan Mountains, while the production and living space was mainly distributed in south region. During 1990–2015, the production-living-ecological spatial changes had been gradually accelerated and the regional differences had become more prominent. The agricultural production space had continuously decreased by 1132.31 km~2, and the industrial and mining production space had rapidly increased by 281.4 km~2 during 1990–2015. The living space had steadily increased, and the ecological space had increased with fluctuations. The land space pattern in Hengduan Mountains was greatly restricted by the terrain, such as altitude and slope. The implementations of China Western Development Strategy and the Returning Farmland to Forest Program had favorably promoted the changes of land spatial pattern in Hengduan Mountains.  相似文献   

14.
长江大通-河口段枯季的径流量变化   总被引:1,自引:1,他引:0  
Based on hydrometric data and extensive investigations on water-extracting projects, this paper presents a preliminary study on water discharge changes between Datong and Xuliujing during dry season. The natural hydrological processes and human factors that influence the water discharge are analyzed with the help of GIS method. The investigations indicate that the water-extracting projects downstream from Datong to Xuliujing had amounted to 64 in number by the end of 2000,with a water-extracting capacity up to 4,626 m3/s averaged in a tidal cycle. The water extraction from the Changjiang River has become the most important factor influencing the water discharge downstream Datong during dry season. The potential magnitude in water discharge changes are estimated based on historical records of water extraction and a water balance model. The computational results were calibrated with the actual data. The future trend in changes of water discharge into the sea during dry season was discussed by taking into consideration of newly built hydro-engineering projects. The water extraction downstream Datong in dry season before 2000 had a great influence on discharges into the sea in the extremely dry year like 1978-1979. It produced a net decrease of more than 490 m^3/s in monthly mean discharges from the Changjiang into the sea. It is expected that the water extraction will continually increase in the coming decades, especially in dry years, when the net decrease in monthly mean water discharge will increase to more than 1000 m^3/s and will give a far-reaching effect on the changes of water discharge from the Changjiang into the sea.  相似文献   

15.
Soil carbon sequestration and potential has been a focal issue in global carbon research. Under the background of global change, the estimation of the size as well as its change of soil organic carbon(SOC) storage is of great importance. Based on soil data from the second national soil survey and field survey during 2011–2012, by using the regression method between sampling soil data and remote sensing data, this paper aimed to investigate spatial distribution and changes of topsoil(0–20 cm) organic carbon storage in grasslands of Inner Mongolia between the 1980 s and 2010 s. The results showed that:(1) the SOC storage in grasslands of Inner Mongolia between the 1980 s and 2010 s was estimated to be 2.05 and 2.17 Pg C, with an average density of 3.48 and 3.69 kg C·m–2, respectively. The SOC storage was mainly distributed in the typical steppe and meadow steppe, which accounted for over 98% of the total SOC storage. The spatial distribution showed a decreased trend from the meadow steppe, typical steppe to the desert steppe, corresponding to the temperature and precipitation gradient.(2) SOC changes during 1982–2012 were estimated to be 0.12 Pg C, at 7.00 g C·m–2·yr–1, which didn't show a significant change, indicating that SOC storage in grasslands of Inner Mongolia remained relatively stable over this period. However, topsoil organic carbon showed different trends of carbon source/sink during the past three decades. Meadow steppe and typical steppe had sequestered 0.15 and 0.03 Pg C, respectively, served as a carbon sink; while desert steppe lost 0.06 Pg C, served as a carbon source. It appears that SOC storage in grassland ecosystem may respond differently to climate change, related to vegetation type, regional climate type and grazing intensity. These results might give advice to decision makers on adopting suitable countermeasures for sustainable grassland utilization and protection.  相似文献   

16.
Land use/cover change has been recognized as a key component in global change and has attracted increasing attention in recent decades. Scenario simulation of land use change is an important issue in the study of land use/cover change, and plays a key role in land use prediction and policy decision. Based on the remote sensing data of Landsat TM images in 1989, 2000 and 2010, scenario simulation and landscape pattern analysis of land use change driven by socio-economic development and ecological protection policies were reported in Zhangjiakou city, a representative area of the Poverty Belt around Beijing and Tianjin. Using a CLUE-S model, along with socio-economic and geographic data, the land use simulation of four scenarios–namely, land use planning scenario, natural development scenario, ecological-oriented scenario and farmland protection scenario–were explored according to the actual conditions of Zhangjiakou city, and the landscape pattern characteristics under different land use scenarios were analyzed. The results revealed the following:(1) Farmland, grassland, water body and unused land decreased significantly during 1989–2010, with a decrease of 11.09%, 2.82%, 18.20% and 31.27%, respectively, while garden land, forestland and construction land increased over the same period, with an increase of 5.71%, 20.91% and 38.54%, respectively. The change rate and intensity of land use improved in general from 1989 to 2010. The integrated dynamic degree of land use increased from 2.21% during 1989–2000 to 3.96% during 2000–2010.(2) Land use changed significantly throughout 1989–2010. The total area that underwent land use change was 4759.14 km2, accounting for 12.53% of the study area. Land use transformation was characterized by grassland to forestland, and by farmland to forestland and grassland.(3) Under the land use planning scenario, farmland, grassland, water body and unused land shrank significantly, while garden land, forestland and construction land increased. Under the natural development scenario, construction land and forestland increased in 2020 compared with 2010, while farmland and unused land decreased. Under the ecological-oriented scenario, forestland increased dra-matically, which mainly derived from farmland, grassland and unused land. Under the farmland protection scenario, farmland was well protected and stable, while construction land expansion was restricted.(4) The landscape patterns of the four scenarios in 2020, compared with those in 2010, were more reasonable. Under the land use planning scenario, the landscape pattern tended to be more optimized. The landscape became less fragmented and heterogeneous with the natural development scenarios. However, under the ecological-oriented scenario and farmland protection scenario, landscape was characterized by fragmentation, and spatial heterogeneity of landscape was significant. Spatial differences in landscape patterns in Zhangjiakou city also existed.(5) The spatial distribution of land use could be explained, to a large extent, by the driving factors, and the simulation results tallied with the local situations, which provided useful information for decision-makers and planners to take appropriate land management measures in the area. The application of the combined Markov model, CLUE-S model and landscape metrics in Zhangjiakou city suggests that this methodology has the capacity to reflect the complex changes in land use at a scale of 300 m×300 m and can serve as a useful tool for analyzing complex land use driving factors.  相似文献   

17.
Land cover change affects surface radiation budget and energy balance by changing surface albedo and further impacts the regional and global climate. In this article, high spatial and temporal resolution satellite products were used to analyze the driving mechanism for surface albedo change caused by land cover change during 1990–2010. In addition, the annual-scale radiative forcing caused by surface albedo changes in China's 50 ecological regions were calculated to reveal the biophysical mechanisms of land cover change affecting climate change at regional scale. Our results showed that the national land cover changes were mainly caused by land reclamation, grassland desertification and urbanization in past 20 years, which were almost induced by anthropogenic activities. Grassland and forest area decreased by 0.60% and 0.11%, respectively. The area of urban and farmland increased by 0.60% and 0.19%, respectively. The mean radiative forcing caused by land cover changes during 1990–2010 was 0.062 W/m2 in China, indicating a warming climate effect. However, spatial heterogeneity of radiative forcing was huge among different ecological regions. Farmland conversing to urban construction land, the main type of land cover change for the urban and suburban agricultural ecological region in Beijing-Tianjin-Tangshan region, caused an albedo reduction by 0.00456 and a maximum positive radiative forcing of 0.863 W/m2, which was presented as warming climate effects. Grassland and forest conversing to farmland, the main type of land cover change for the temperate humid agricultural and wetland ecological region in Sanjiang Plain, caused an albedo increase by 0.00152 and a maximum negative radiative forcing of 0.184 W/m2, implying cooling climate effects.  相似文献   

18.
Land cover change affects surface radiation budget and energy balance by chang- ing surface albedo and further impacts the regional and global climate. In this article, high spatial and temporal resolution satellite products were used to analyze the driving mechanism for surface albedo change caused by land cover change during 1990-2010. In addition, the annual-scale radiative forcing caused by surface albedo changes in China's 50 ecological regions were calculated to reveal the biophysical mechanisms of land cover change affecting climate change at regional scale. Our results showed that the national land cover changes were mainly caused by land reclamation, grassland desertification and urbanization in past 20 years, which were almost induced by anthropogenic activities. Grassland and forest area decreased by 0.60% and 0.11%, respectively. The area of urban and farmland increased by 0.60% and 0.19%, respectively. The mean radiative forcing caused by land cover changes during 1990-2010 was 0.062 W/m2 in China, indicating a warming climate effect. However, spatial heterogeneity of radiative forcing was huge among different ecological regions. Farmland conversing to urban construction land, the main type of land cover change for the urban and suburban agricultural ecological region in Beijing-Tianjin-Tangshan region, caused an albedo reduction by 0.00456 and a maximum positive radiative forcing of 0.863 WIm2, which was presented as warming climate effects. Grassland and forest conversing to farmland, the main type of land cover change for the temperate humid agricultural and wetland ecological region in Sanjiang Plain, caused an albedo increase by 0.00152 and a maximum negative radiative forcing of 0.184 W/m2, implying cooling climate effects.  相似文献   

19.
Over the past few decades,built-up land in China has increasingly expanded with rapid urbanization,industrialization and rural settlements construction.The expansions encroached upon a large amount of cropland,placing great challenges on national food security.Although the impacts of urban expansion on cropland have been intensively illustrated,few attentions have been paid to differentiating the effects of growing urban areas,rural settlements,and industrial/transportation land.To fill this gap and offer comprehensive implications on framing policies for cropland protection,this study investigates and compares the spatio-temporal patterns of cropland conversion to urban areas,rural settlements,and industrial/transportation land from 1987 to 2010,based on land use maps interpreted from remote sensing imagery.Five indicators were developed to analyze the impacts of built-up land expansion on cropland in China.We find that 42,822 km2 of cropland were converted into built-up land in China,accounting for 43.8% of total cropland loss during 1987–2010.Urban growth showed a greater impact on cropland loss than the expansion of rural settlements and the expansion of industrial/transportation land after 2000.The contribution of rural settlement expansion decreased;however,rural settlement saw the highest percentage of traditional cropland loss which is generally in high quality.The contribution of industrial/transportation land expansion increased dramatically and was mainly distributed in major food production regions.These changes were closely related to the economic restructuring,urban-rural transformation and government policies in China.Future cropland conservation should focus on not only finding a reasonable urbanization mode,but also solving the "hollowing village" problem and balancing the industrial transformations.  相似文献   

20.
The Bohai Rim region is one the most important bases for commodity grain pro-duction in China.With the rapid pace of agricultural industrialization,nitrogenous fertilizer has been used at an ever increasing rate,which resulted in the trace of accumulative nitrogen in the soil and caused serious environmental problems.In this study we made use of the farm-land nitrogen balance model to assess the spatial difference of farmland nitrogen nutrient budget in the Bohai Rim region in 2008 with the assistance of GIS.Our results indicated that:1) Farmland in this region has a nitrogen surplus totaling 5.0822 million tons,or an average of 288.54 kg/ha.2) In the Bohai Rim region,farmland nitrogen input and farmland nitrogen budget both show a spatial differentiation.Major grain-producing areas have a higher nitrogen input than that of the grazing-farming areas.The main sources of nitrogen input include chemical fertilizer,organic fertilizer,deposition from atmospheric drying and wetting,and biological fixation,which account for 79.47%,9.53%,4.62%,and 3.58% of the total input,respectively.Therefore,chemical fertilizer is the predominant source of nitrogen input to farmland.3) A total of 3.3398 million tons of nitrogen were output from the farmland via har-vested crops and it accounts for 52.36% of the total nitrogen output from farmland in this region.On average,the amount of nitrogen output from unit farmland is equal to 176.65kg/ha.This study has shed light on farmland nitrogen budget and its spatial variation in the study area,may provide scientific evidences for rationalizing the use of chemical fertilizer and managing agricultural operation on the regional scale and is also valuable for improving the economic and ecological efficiency of fertilizer use at the regional scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号