首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The sensitivity of the representation of the global monsoon annual cycle to horizontal resolution is compared in three AGCMs:the Met Office Unified Model-Global Atmosphere 3.0;the Meteorological Research Institute AGCM3;and the Global High Resolution AGCM from the Geophysical Fluid Dynamics Laboratory.For each model,we use two horizontal resolution configurations for the period 1998–2008.Increasing resolution consistently improves simulated precipitation and low-level circulation of the annual mean and the first two annual cycle modes,as measured by the pattern correlation coefficient and equitable threat score.Improvements in simulating the summer monsoon onset and withdrawal are region-dependent.No consistent response to resolution is found in simulating summer monsoon retreat.Regionally,increased resolution reduces the positive bias in simulated annual mean precipitation,the two annual-cycle modes over the West African monsoon and Northwestern Pacific monsoon.An overestimation of the solstitial mode and an underestimation of the equinoctial asymmetric mode of the East Asian monsoon are reduced in all high-resolution configurations.Systematic errors exist in lower-resolution models for simulating the onset and withdrawal of the summer monsoon.Higher resolution models consistently improve the early summer monsoon onset over East Asia and West Africa,but substantial differences exist in the responses over the Indian monsoon region,where biases differ across the three low-resolution AGCMs.This study demonstrates the importance of a multi-model comparison when examining the added value of resolution and the importance of model physical parameterizations for simulation of the Indian monsoon.  相似文献   

2.
East Asian summer monsoon simulation by a 20-km mesh AGCM   总被引:1,自引:0,他引:1  
East Asian summer monsoon climate simulated by a global 20-km mesh atmospheric general circulation model (AGCM) forced by the global sea surface temperature during the period 1979–1998 is investigated. In comparison with a lower resolution (180-km mesh) model experiment, it is revealed that the 20-km mesh AGCM shows the superiority in simulating orographic rainfall not only its location but also its amount. The Baiu frontal structure is also better simulated in the higher resolution model, which leads to stronger Baiu rainfall. The 20-km model also shows more intense extremes in precipitation. Interannual variability of June–August mean precipitation and seasonal march of the monsoon rain band are also investigated. This paper is a contribution to the AMIP-CMIP Diagnostic Sub-project on General Circulation Model Simulation of the East Asian Climate, coordinated by W.-C. Wang.  相似文献   

3.
This paper examines an issue concerning the simulation of anomalously wet Indian summer monsoons like 1994 which co-occurred with strong positive Indian Ocean Dipole (IOD) conditions in the tropical Indian Ocean. Contrary to observations it has been noticed that standalone atmospheric general circulation models (AGCM) forced with observed SST boundary condition, consistently depicted a decrease of the summer monsoon rainfall during 1994 over the Indian region. Given the ocean?Catmosphere coupling during IOD events, we have examined whether the failure of standalone AGCM simulations in capturing wet Indian monsoons like 1994 can be remedied by including a simple form of coupling that allows the monsoon circulation to dynamically interact with the IOD anomalies. With this view, we have performed a suite of simulations by coupling an AGCM to a slab-ocean model with spatially varying mixed-layer-depth (MLD) specified from observations for the 1994 IOD; as well as four other cases (1983, 1997, 2006, 2007). The specification of spatially varying MLD from observations allows us to constrain the model to observed IOD conditions. It is seen that the inclusion of coupling significantly improves the large-scale circulation response by strengthening the monsoon cross-equatorial flow; leading to precipitation enhancement over the subcontinent and rainfall decrease over south-eastern tropical Indian Ocean??in a manner broadly consistent with observations. A plausible physical mechanism is suggested to explain the monsoonal response in the coupled frame-work. These results warrant the need for improved monsoon simulations with fully coupled models to be able to better capture the observed monsoon interannual variability.  相似文献   

4.
Seasonal simulations of the Indian summer monsoon using a 50-km regional climate model (RCM) are described. Results from three versions of the RCM distinguished by different domain sizes are compared against those of the driving global general circulation model (AGCM). Precipitation over land is 20% larger in the RCMs due to stronger vertical motions arising from finer horizontal resolution. The resulting increase in condensational heating helps to intensify the monsoon trough relative to the AGCM. The RCM precipitation distributions show a strong orographically forced mesoscale component (similar in each version). This component is not present in the AGCM. The RCMs produce two qualitatively realistic intraseasonal oscillations (ISOs) associated respectively with monsoon depressions which propagate northwestward from the Bay of Bengal and repeated northward migrations of the regional tropical convergence zone. The RCM simulations are relatively insensitive to domain size in several respects: (1) the mean bias relative to the AGCM is similar for all three domains; (2) the variability simulated by the RCM is strongly correlated with that of the driving AGCM on both daily and seasonal time scales, even for the largest domain; (3) the mesoscale features and ISOs are not damped by the relative proximity of the lateral boundaries in the version with the smallest domain. Results (1) and (2) contrast strongly with a previous study for Europe carried out with the same model, probably due to inherent differences between mid-latitude and tropical dynamics.  相似文献   

5.
IAP第四代大气环流模式的耦合气候系统模式模拟性能评估   总被引:7,自引:2,他引:5  
本文首先扼要介绍了基于中国科学院大气物理研究所(简称IAP)第四代大气环流模式的新气候系统模式-CAS-ESM-C(中国科学院地球系统模式气候系统模式分量)的发展和结构,之后主要对该模式在模拟大气、海洋、陆面和海冰的气候平均态、季节循环以及主要的年际变率等方面的能力做一个初步的评估.结果表明:模式没有明显的气候漂移,各...  相似文献   

6.
本文利用日本气象研究所(MRI)参加第五次国际耦合模式比较计划(CMIP5)的大气环流模式在高、中、低三种分辨率下的AMIP试验结果,评估了其对华南春雨气候态和年际变率的模拟能力,比较了不同分辨率的模拟结果。结果表明,三种不同水平分辨率(120 km、60 km和20 km)的模式均能再现北半球春季位于中国东南部的降水中心。相较于120 km模式,20 km模式能够更为合理地模拟出华南春雨位于南岭—武夷山脉的降水中心。水汽收支分析表明,60 km、20 km模式高估了水汽辐合,使得华南春雨的降水强度被高估。在年际变率方面,在三种分辨率下,模式均能较好地再现观测中El Ni?o衰减年春季的西北太平洋反气旋以及华南春雨降水正异常。较之120 km模式,60 km、20 km模式模拟的降水正异常的空间分布和强度更接近观测,原因是后者模拟的El Ni?o衰减年春季华南地区的水平水汽平流异常更接近观测。本研究表明,发展高分辨率气候模式是提高华南春雨的气候态和年际变率模拟水平的有效途径之一。  相似文献   

7.
Global monsoon: Dominant mode of annual variation in the tropics   总被引:13,自引:0,他引:13  
This paper discusses the concept of global monsoon. We demonstrate that the primary climatological features of the tropical precipitation and low-level circulation can be represented by a three-parameter metrics: the annual mean and two major modes of annual variation, namely, a solstitial mode and an equinoctial asymmetric mode. Together, the two major modes of annual cycle account for 84% of the annual variance and they represent the global monsoon. The global monsoon precipitation domain can be delineated by a simple monsoon precipitation index (MPI), which is the local annual range of precipitation (MJJAS minus NDJFM in the Northern Hemisphere and NDJFM minus MJJAS in the Southern Hemisphere) normalized by the annual mean precipitation. The monsoon domain can be defined by annual range exceeding 300 mm and the MPI exceeding 50%.The three-parameter precipitation climatology metrics and global monsoon domain proposed in the present paper provides a valuable objective tool for gauging the climate models’ performance on simulation and prediction of the mean climate and annual cycle. The metrics are used to evaluate the precipitation climatology in three global reanalysis products (ERA40, NCEP2, and JRA25) in terms of their pattern correlation coefficients and root mean square errors with reference to observations. The ensemble mean of the three analysis datasets is considerably superior to any of the individual reanalysis data in representing annual mean, annual cycle, and the global monsoon domain. A major common deficiency is found over the Southeast Asia-Philippine Sea and southeast North America-Caribbean Sea where the east–west land–ocean thermal contrast and meridional hemispheric thermal contrast coexist. It is speculated that the weakness is caused by models’ unrealistic representation of Subtropical High and under-represented tropical storm activity, as well as by neglecting atmosphere–ocean interaction in the reanalysis. It is recommended that ensemble mean of reanalysis datasets be used for improving global precipitation climatology and water cycle budget. This paper also explains why the latitudinal asymmetry in the tropical circulation decreases with altitude.  相似文献   

8.
In this study, the authors have investigated the likely future changes in the summer monsoon over the Western Ghats (WG) orographic region of India in response to global warming, using time-slice simulations of an ultra high-resolution global climate model and climate datasets of recent past. The model with approximately 20-km mesh horizontal resolution resolves orographic features on finer spatial scales leading to a quasi-realistic simulation of the spatial distribution of the present-day summer monsoon rainfall over India and trends in monsoon rainfall over the west coast of India. As a result, a higher degree of confidence appears to emerge in many aspects of the 20-km model simulation, and therefore, we can have better confidence in the validity of the model prediction of future changes in the climate over WG mountains. Our analysis suggests that the summer mean rainfall and the vertical velocities over the orographic regions of Western Ghats have significantly weakened during the recent past and the model simulates these features realistically in the present-day climate simulation. Under future climate scenario, by the end of the twenty-first century, the model projects reduced orographic precipitation over the narrow Western Ghats south of 16°N that is found to be associated with drastic reduction in the southwesterly winds and moisture transport into the region, weakening of the summer mean meridional circulation and diminished vertical velocities. We show that this is due to larger upper tropospheric warming relative to the surface and lower levels, which decreases the lapse rate causing an increase in vertical moist static stability (which in turn inhibits vertical ascent) in response to global warming. Increased stability that weakens vertical velocities leads to reduction in large-scale precipitation which is found to be the major contributor to summer mean rainfall over WG orographic region. This is further corroborated by a significant decrease in the frequency of moderate-to-heavy rainfall days over WG which is a typical manifestation of the decrease in large-scale precipitation over this region. Thus, the drastic reduction of vertical ascent and weakening of circulation due to ??upper tropospheric warming effect?? predominates over the ??moisture build-up effect?? in reducing the rainfall over this narrow orographic region. This analysis illustrates that monsoon rainfall over mountainous regions is strongly controlled by processes and parameterized physics which need to be resolved with adequately high resolution for accurate assessment of local and regional-scale climate change.  相似文献   

9.
The role of atmospheric general circulation model (AGCM) horizontal resolution in representing the global energy budget and hydrological cycle is assessed, with the aim of improving the understanding of model uncertainties in simulating the hydrological cycle. We use two AGCMs from the UK Met Office Hadley Centre: HadGEM1-A at resolutions ranging from 270 to 60 km, and HadGEM3-A ranging from 135 to 25 km. The models exhibit a stable hydrological cycle, although too intense compared to reanalyses and observations. This over-intensity is explained by excess surface shortwave radiation, a common error in general circulation models (GCMs). This result is insensitive to resolution. However, as resolution is increased, precipitation decreases over the ocean and increases over the land. This is associated with an increase in atmospheric moisture transport from ocean to land, which changes the partitioning of moisture fluxes that contribute to precipitation over land from less local to more non-local moisture sources. The results start to converge at 60-km resolution, which underlines the excessive reliance of the mean hydrological cycle on physical parametrization (local unresolved processes) versus model dynamics (large-scale resolved processes) in coarser HadGEM1 and HadGEM3 GCMs. This finding may be valid for other GCMs, showing the necessity to analyze other chains of GCMs that may become available in the future with such a range of horizontal resolutions. Our finding supports the hypothesis that heterogeneity in model parametrization is one of the underlying causes of model disagreement in the Coupled Model Intercomparison Project (CMIP) exercises.  相似文献   

10.
A review on aspects of climate simulation assessment   总被引:2,自引:0,他引:2  
This paper reviews some aspects of evaluation of climate simulation, including the ITCZ, the surface air temperature (SAT), and the monsoon. A brief introduction of some recently proposed approaches in weather forecast verification is followed by a discussion on their possible application to evaluation of climate simulation. The authors suggest five strategies to extend the forecast verification methods to climate simulation evaluation regardless significant differences between the forecasts and climate simulations. It is argued that resolution, convection scheme, stratocumulus cloud cover, among other processes in the atmospheric general circulation model (AGCM) and the ocean-atmosphere feedback are the potential causes for the double ITCZ problem in coupled models and AGCM simulations, based on the system- and component-level evaluations as well as the downscaling strategies in some recent research. Evaluations of simulated SAT and monsoons suggest that both coupled models and AGCMs show good performance in representing the SAT evolution and its variability over the past century in terms of correlation and wavelet analysis but poor at reproducing rainfall, and in addition, the AGCM alone is not suitable for monsoon regions due to the lack of air-sea interactions.  相似文献   

11.
The present study demonstrates that (1) the simulation of the South American warm season (December?CFebruary) climate by an atmospheric general circulation model (AGCM) is sensitive to the representation of land surface processes, (2) the sensitivity is not confined to the ??hot spot?? in Amazonia, and (3) upgrading the representation of those processes can produce a significant improvement in AGCM performance. The reasons for sensitivity and higher success are investigated based on comparisons between observational datasets and simulations by the AGCM coupled to either a simple land scheme that specifies soil moisture availability or to the Simplified Simple Biosphere Model (SSiB) that allows for consideration of soil and vegetation biophysical process. The context for the study is the UCLA AGCM. The most notable simulation improvements are along the lee of the Andes in the lower troposphere, where poleward flow transports abundant moisture from the Amazon basin to high latitudes, and in the monsoon region where the intensity and pattern of precipitation and upper level ice water content are more realistic. It is argued that a better depiction of the Chaco Low, which is controlled by local effects of land surface processes, decisively contributes to the superior model performance with low-level flows in central South America. The better representation of the atmospheric column static stability and large-scale moisture convergence in tropical South America contribute to more realistic precipitation over the monsoon region. The overall simulation improvement is, therefore, due to a combination of different regional processes. This finding is supported by idealized AGCM experiments.  相似文献   

12.
分析了国家气候中心两个参加第六次国际耦合模式比较计划(CMIP6)的模式BCC-CSM2-MR和BCC-ESM1对东亚夏季风季节内演变的模拟情况,包括气候态特征以及在ENSO(El Ni?o and Southern Oscillation)循环不同位相下的特征。本文同时对比分析了观测海温海冰驱动大气环流模式试验(AMIP试验)以及耦合模式的历史气候模拟试验(Historical试验)的结果。结果表明,模式能够合理地模拟出东亚夏季风环流和降水的气候态特征。相比大气模式,耦合模式能够明显改善对气候态的模拟,特别是耦合模式能够较好地模拟出副热带高压从6~8月向北以及向东移动的季节内演变特征。对于El Ni?o衰减年和La Ni?a年合成来说,大气模式能够在一定程度上模拟出El Ni?o衰减年(La Ni?a年)副高偏西(东)、对流减弱(增强)的特征,但是对于位置和强度的模拟存在偏差,特别是对于其季节内尺度的演变。耦合模式相比大气模式来说,并没有改善对于ENSO循环影响东亚夏季风季节内演变的模拟,这可能和耦合模式模拟的ENSO本身的偏差有关。因此要想改善对于东亚夏季风季节内演变及其年际差异的模拟,除了考虑海气相互作用之外,还需要改进模式对于ENSO的模拟效果。  相似文献   

13.
A coupled earth system model(ESM) has been developed at the Nanjing University of Information Science and Technology(NUIST) by using version 5.3 of the European Centre Hamburg Model(ECHAM), version 3.4 of the Nucleus for European Modelling of the Ocean(NEMO), and version 4.1 of the Los Alamos sea ice model(CICE). The model is referred to as NUIST ESM1(NESM1). Comprehensive and quantitative metrics are used to assess the model's major modes of climate variability most relevant to subseasonal-to-interannual climate prediction. The model's assessment is placed in a multi-model framework. The model yields a realistic annual mean and annual cycle of equatorial SST, and a reasonably realistic precipitation climatology, but has difficulty in capturing the spring–fall asymmetry and monsoon precipitation domains. The ENSO mode is reproduced well with respect to its spatial structure, power spectrum, phase locking to the annual cycle, and spatial structures of the central Pacific(CP)-ENSO and eastern Pacific(EP)-ENSO; however, the equatorial SST variability,biennial component of ENSO, and the amplitude of CP-ENSO are overestimated. The model captures realistic intraseasonal variability patterns, the vertical-zonal structures of the first two leading predictable modes of Madden–Julian Oscillation(MJO), and its eastward propagation; but the simulated MJO speed is significantly slower than observed. Compared with the T42 version, the high resolution version(T159) demonstrates improved simulation with respect to the climatology, interannual variance, monsoon–ENSO lead–lag correlation, spatial structures of the leading mode of the Asian–Australian monsoon rainfall variability, and the eastward propagation of the MJO.  相似文献   

14.
The effects of horizontal resolution and the treatment of convection on simulation of the diurnal cycle of precipitation during boreal summer are analyzed in several innovative weather and climate model integrations. The simulations include: season-long integrations of the Non-hydrostatic Icosahedral Atmospheric Model (NICAM) with explicit clouds and convection; year-long integrations of the operational Integrated Forecast System (IFS) from the European Centre for Medium-range Weather Forecasts at three resolutions (125, 39 and 16 km); seasonal simulations of the same model at 10 km resolution; and seasonal simulations of the National Center for Atmospheric Research (NCAR) low-resolution climate model with and without an embedded two-dimensional cloud-resolving model in each grid box. NICAM with explicit convection simulates best the phase of the diurnal cycle, as well as many regional features such as rainfall triggered by advancing sea breezes or high topography. However, NICAM greatly overestimates mean rainfall and the magnitude of the diurnal cycle. Introduction of an embedded cloud model within the NCAR model significantly improves global statistics of the seasonal mean and diurnal cycle of rainfall, as well as many regional features. However, errors often remain larger than for the other higher-resolution models. Increasing resolution alone has little impact on the timing of daily rainfall in IFS with parameterized convection, yet the amplitude of the diurnal cycle does improve along with the representation of mean rainfall. Variations during the day in atmospheric prognostic fields appear quite similar among models, suggesting that the distinctive treatments of model physics account for the differences in representing the diurnal cycle of precipitation.  相似文献   

15.
Given observed initial conditions, how well do coupled atmosphere–ocean models predict precipitation climatology with 1-month lead forecast? And how do the models’ biases in climatology in turn affect prediction of seasonal anomalies? We address these questions based on analysis of 1-month lead retrospective predictions for 21 years of 1981–2001 made by 13 state-of-the-art coupled climate models and their multi-model ensemble (MME). The evaluation of the precipitation climatology is based on a newly designed metrics that consists of the annual mean, the solstitial mode and equinoctial asymmetric mode of the annual cycle, and the rainy season characteristics. We find that the 1-month lead seasonal prediction made by the 13-model ensemble has skills that are much higher than those in individual model ensemble predictions and approached to those in the ERA-40 and NCEP-2 reanalysis in terms of both the precipitation climatology and seasonal anomalies. We also demonstrate that the skill for individual coupled models in predicting seasonal precipitation anomalies is positively correlated with its performances on prediction of the annual mean and annual cycle of precipitation. In addition, the seasonal prediction skill for the tropical SST anomalies, which are the major predictability source of monsoon precipitation in the current coupled models, is closely link to the models’ ability in simulating the SST mean state. Correction of the inherent bias in the mean state is critical for improving the long-lead seasonal prediction. Most individual coupled models reproduce realistically the long-term annual mean precipitation and the first annual cycle (solstitial mode), but they have difficulty in capturing the second annual (equinoctial asymmetric) mode faithfully, especially over the Indian Ocean (IO) and Western North Pacific (WNP) where the seasonal cycle in SST has significant biases. The coupled models replicate the monsoon rain domains very well except in the East Asian subtropical monsoon and the tropical WNP summer monsoon regions. The models also capture the gross features of the seasonal march of the rainy season including onset and withdraw of the Asian–Australian monsoon system over four major sub-domains, but striking deficiencies in the coupled model predictions are observed over the South China Sea and WNP region, where considerable biases exist in both the amplitude and phase of the annual cycle and the summer precipitation amount and its interannual variability are underestimated.  相似文献   

16.
未来气候变化对黄河和长江流域极端径流影响的预估研究   总被引:4,自引:0,他引:4  
曹丽娟  董文杰  张勇 《大气科学》2013,37(3):634-644
使用NASA-NCAR全球环流模式FvGCM结果驱动高分辨率区域气候模式RegCM3 (20 km),进行1961~1990年当代气候模拟(控制试验)和2071~2100年IPCC A2排放情景下未来气候情景模拟(A2情景模拟试验)。将RegCM3同高分辨率大尺度汇流模型LRM(分辨率0.25°×0.25°)连接,分析水文极端事件在A2情景下相对于当代气候的变化,预估未来气候变化对我国黄河和长江流域水文极端事件的影响。结果表明:(1)未来黄河流域径流年变率增大,月变率减小,日变率在头道拐站以上流域减小,以下流域增大。未来兰州以上半湿润地区,流域东南部湿润区出现径流量峰值的可能性增大,而流域西北部干旱半干旱区出现径流量百分位极值的可能性减小。未来黄河流域中游地区发生流域洪水的风险在夏季月份减少,其余月份均增大。(2)未来长江干流径流年际变率增大,上中游地区径流日和月变率减小,下游地区略有增大;未来汉江流域径流量的年、月和日变率均增大。未来长江干流发生流域洪水的风险在夏季明显降低,而汉江流域各月发生流域洪水的可能性均增大。  相似文献   

17.
Ozone mixing ratios observed by the Bordeaux microwave radiometer between 1995 and 2002 in an altitude range 25–75 km show diurnal variations in the mesosphere and seasonal variations in terms of annual and semi-annual oscillations (SAO) in the stratosphere and in the mesosphere. The observations with 10–15 km altitude resolution are presented and compared to photochemical and transport model results.Diurnal ozone variations are analyzed by averaging the years 1995–1997 for four representative months and six altitude levels. The photochemical models show a good agreement with the observations for altitudes higher than 50 km. Seasonal ozone variations mainly appear as an annual cycle in the middle and upper stratosphere and a semi-annual cycle in the mesosphere with amplitude and phase depending on altitude. Higher resolution (2 km) HALOE (halogen occultation experiment) ozone observations show a phase reversal of the SAO between 44 and 64 km. In HALOE data, a tendancy for an opposite water vapour cycle can be identified in the altitude range 40–60 km.Generally, the relative variations at all altitudes are well explained by the transport model (up to 54 km) and the photochemical models. Only a newly developed photochemical model (1-D) with improved time-dependent treatment of water vapour profiles and solar flux manages to reproduce fairly well the absolute values.  相似文献   

18.
The influence of increased horizontal resolution on regional climate models simulations of 1961–1990 period was investigated with a focus on precipitation. The main attention was paid to the annual cycle of precipitation described by a special characteristic, precipitation half-time. Two models (RegCM3 and ALADIN-CLIMATE/CZ), both of them in two horizontal resolutions (25 and 10 km), were used. An evaluation of model simulations with 25 km resolution on the European domain is presented as well as a more detailed evaluation of both 25 and 10 km versions on the area of the Czech Republic. Generally, the effects of increased horizontal resolution vary with climate model and evaluated characteristic. For the precipitation amount and the dependence of precipitation amount on altitude, the increase in horizontal resolution decreases the accuracy of results in both models. For the simulation of annual precipitation cycle and the precipitation half-time, RegCM3 results improved with the increased horizontal resolution, whereas ALADIN-CLIMATE/CZ results worsened.  相似文献   

19.
青藏高原季风期降水的日变化   总被引:7,自引:0,他引:7  
利用1998年夏季GAME-TIBET IOT期间的探空、降水和雷达资料分析了季风期降水和CAPE、LCL热力参量的日变化及其之间的关系。降水的日变化很明显,最大的降水和CAPE的最大值出现在同一时间段。6km和8.5km高度内的大气层结在大部分时间是不稳定的。0400-0800时间内6km以下9km以上的稳定层结阻碍了对流系统的发展,降水的日变化与这些热力参数的日变化有关。同时,利用三维云模式模拟了降水的日变化和水汽及温度对降水的影响,云模式再现了降水和回波强度的最大和最小值,晚上低层的高湿度是影响降水的重要因素。  相似文献   

20.
Two weeks of measurements of the boundary-layer height over a small island (Christiansø) in the Baltic Sea are discussed. The meteorological conditions are characterised by positive heat flux over the sea. The boundary-layer height was simulated with two models, a simple applied high-resolution (2 km × 2 km) model, and the operational numerical weather prediction model HIRLAM (grid resolution of 22.5 km × 22.5 km). For southwesterly winds it was foundthat a relatively large island (Bornholm) lying 20-km upwind of the measuring site influences the boundary-layer height. In this situation the high-resolution simple applied model reproduces the characteristics of the boundary-layer height over the measuring site. Richardson-number based methods using data from simulations with the HIRLAM model fail, most likely because the island and the water fetch to the measuring site are about the size of the grid resolution of the HIRLAM model and therefore poorly resolved. For northerly winds, the water fetch to the measuring site is about 100 km. Both models reproduce the characteristics of the height of the marine boundary layer. This suggests that the HIRLAM model adequately resolves a water fetch of 100 km with respect to predictions of the height of the marine boundary layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号