首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
East Asian summer monsoon simulation by a 20-km mesh AGCM   总被引:1,自引:0,他引:1  
East Asian summer monsoon climate simulated by a global 20-km mesh atmospheric general circulation model (AGCM) forced by the global sea surface temperature during the period 1979–1998 is investigated. In comparison with a lower resolution (180-km mesh) model experiment, it is revealed that the 20-km mesh AGCM shows the superiority in simulating orographic rainfall not only its location but also its amount. The Baiu frontal structure is also better simulated in the higher resolution model, which leads to stronger Baiu rainfall. The 20-km model also shows more intense extremes in precipitation. Interannual variability of June–August mean precipitation and seasonal march of the monsoon rain band are also investigated. This paper is a contribution to the AMIP-CMIP Diagnostic Sub-project on General Circulation Model Simulation of the East Asian Climate, coordinated by W.-C. Wang.  相似文献   

2.
This study provides a detailed analysis of the mid-Holocene to present-day precipitation change in the Asian monsoon region. We compare for the first time results of high resolution climate model simulations with a standardised set of mid-Holocene moisture reconstructions. Changes in the simulated summer monsoon characteristics (onset, withdrawal, length and associated rainfall) and the mechanisms causing the Holocene precipitation changes are investigated. According to the model, most parts of the Indian subcontinent received more precipitation (up to 5 mm/day) at mid-Holocene than at present-day. This is related to a stronger Indian summer monsoon accompanied by an intensified vertically integrated moisture flux convergence. The East Asian monsoon region exhibits local inhomogeneities in the simulated annual precipitation signal. The sign of this signal depends on the balance of decreased pre-monsoon and increased monsoon precipitation at mid-Holocene compared to present-day. Hence, rainfall changes in the East Asian monsoon domain are not solely associated with modifications in the summer monsoon circulation but also depend on changes in the mid-latitudinal westerly wind system that dominates the circulation during the pre-monsoon season. The proxy-based climate reconstructions confirm the regional dissimilarities in the annual precipitation signal and agree well with the model results. Our results highlight the importance of including the pre-monsoon season in climate studies of the Asian monsoon system and point out the complex response of this system to the Holocene insolation forcing. The comparison with a coarse climate model simulation reveals that this complex response can only be resolved in high resolution simulations.  相似文献   

3.
This paper evaluates the performance of a coupled general circulation model FGOALS_s1.1 developed by LASG/IAP in simulating the annual modes of tropical precipitation.To understand the impacts of air-sea coupling on the annual modes,the result of an off-line simulation of the atmospheric component of FGOALS_s1.1,i.e.,LASG/IAP atmospheric general circulation model SAMIL,is also analyzed.FGOALS_s1.1 can reasonably reproduce major characteristics of the annual mean precipitation.Nonetheless,the coupled model shows overestimation of precipitation over the equatorial Pacific and tropical South Pacific,and underestimation of precipitation over the northern equatorial Pacific.The monsoon mode simulated by FGOALS_s1.1 shows an equatorial anti-symmetric structure,which is consistent with the observation.The bias of the coupled model in simulating monsoon mode resembles that of SAMIL,especially over the subtropics.The main deficiency of FGOALS_s1.1 is its failure in simulating the spring-fall asymmetric mode.This is attributed to the false phase of sea surface temperature anomaly (SSTA) annual cycleover the equatorial central-castern Pacific and Indian Ocean,which leads to the bias of the Walker circulation over the equatorial Pacific and the anti-Walker circulation over the Indian Ocean in boreal spring and fall.In addition,the domains of the western North Pacific monsoon and Indian monsoon simulated by the coupled model are smaller than the observation.The study suggests that the bias of the fully coupled oceanatmosphere model can only be partly attributed to the bias of the atmospheric component.The performance of FGOALS-s1.1 in simulating the annual cycle of equatorial SST deserves further improvement.  相似文献   

4.
亚洲季风降水的多模式模拟结果分析   总被引:2,自引:2,他引:0  
利用参加政府间气候变化委员会(IPCC)第四次评估报告(AR4)的多个大气模式(包括中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室新发展的全球格点大气模式GAMIL)的AMIP-II(大气模式比较计划-II)积分的集合平均结果(MMEA),研究了当前大气模式对亚洲季风降水的平均模拟能力,同时也评估了GAMIL的模拟水平。对多年平均冬夏季降水的模拟研究发现:MMEA和GAMIL对冬季降水的模拟好于夏季。与以往的结果相比,MMEA对夏季印度洋和西太平洋地区降水的模拟改进不明显;部分模式能够模拟出夏季东亚副热带地区从中国东海到中太平洋的带状梅雨降水,但大部分模式的模拟强度还不够。可以看出GAMIL除了冬季印度洋和夏季菲律宾模拟的降水稍弱外,与MMEA的结果很接近。降水场的误差与环流场的误差对应。此外,作者还研究了降水的年际变化和季风爆发撤退过程的模拟能力。MMEA与观测在印度季风区降水的相关系数不如在东亚热带和东亚副热带季风区的好。各模式冬季的相关系数一般好于夏季,特别是东亚热带季风区冬季的相关系数普遍较高,而印度季风区夏季的相关系数普遍较低。MMEA对标准差的模拟并不总比单个模式的好。各个模式对东亚热带季风区冬季的降水距平同号率和降水距平百分率模拟得最好。季风爆发、撤退时降水推移的模拟也还有待于进一步提高。  相似文献   

5.
气候系统模式FGOALS-s1.1对热带降水年循环模态的模拟   总被引:5,自引:0,他引:5  
张丽霞  周天军  吴波  包庆 《气象学报》2008,66(6):968-981
文中评估了中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG/IAP)新一代耦合气候模式Fgoals_s1.1对热带降水年循环模态的模拟能力。通过与观测表层海温(SST)强迫的大气模式SAMIL试验结果比较,分析了海气耦合过程对年循环模态模拟效果的影响。结果表明Fgoals_s1.1能合理再现热带地区降水年循环模态的基本特征。Fgoals_s1.1模拟出了年平均降水场中的主要降水中心,但模拟的赤道和南太平洋降水偏多,而北太平洋降水则偏少。Fgoals_s1.1的季风模态降水呈现与观测一致的关于赤道反对称的特征,其模拟偏差大部分来自大气分量,尤其是在赤道外。Fgoals_s1.1的主要缺陷在于它对春秋非对称模态模拟能力低于单独大气模式,这主要是由于耦合模式模拟的SST距平的年循环位相与观测相反。SST纬向梯度的位相偏差使得太平洋沃克环流和印度洋的反沃克环流在春季强于秋季,最终导致模拟的春秋非对称模态的偏差。Fgoals_s1.1模拟的季风区范围接近观测,存在的问题在于模拟的西北太平洋季风区、东亚季风区都偏小。本文结果表明,大气模式偏差仅是Fgoals_s1.1在降水年循环模态模拟上的偏差的部分来源,改进模式模拟的SST,特别是赤道地区SST季节循环,是今后Fgoals_s1.1发展过程中急需解决的问题。  相似文献   

6.
The performance of Version 2 of the Flexible Global Ocean-Atmosphere-Land System model (FGOALS-s2) in simulat ing global monsoon precipitation (GMP) was evaluated. Compared with FGOALS-sl, higher skill in simulating the annual modes of climatological tropical precipitation and interannual variations of GMP are seen in FGOALS-s2. The simulated domains of the northwestern Pacific monsoon (NWPM) and North American monsoon are smaller than in FGOALS-s 1. The main deficiency of FGOALS-s2 is that the NWPM has a weaker monsoon mode and stronger negatiw,' pattern in spring-fall asymmetric mode. The smaller NWPM domain in FGOALS-s2 is due to its simulated colder SST over the western Pacific warm pool. The relationship between ENSO and GMP is simulated reasonably by FGOALS-s2. However, the simulated precipitation anomaly over the South African monsoon region-South Indian Ocean during La Nina years is opposite to the observation. This results mainly from weaker warm SST anomaly over the maritime continent during La Nifia years, leading to stronger upper-troposphere (lower-troposphere) divergence (convergence) over the Indian Ocean, and artificial vertical as cent (descent) over the Southwest Indian Ocean (South African monsoon region), inducing local excessive (deficient) rainfall. Comparison between the historical and pre-industrial simulations indicated that global land monsoon precipitation changes from 1901 to the 1970s were caused by internal variation of climate system. External forcing may have contributed to the increasing trend of the Australian monsoon since the 1980s. Finally, it shows that global warming could enhance GMR especially over the northern hemispheric ocean monsoon and southern hemispheric land monsoon.  相似文献   

7.
积云参数化方案对热带降水年循环模态模拟的影响   总被引:6,自引:5,他引:1  
本文利用中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室( LASG)发展的大气环流模式(SAMIL),采用Zhang-McFarlane (ZM)和Tiedtke (TDK)两种积云对流参数化方案,讨论了积云对流参数化方案对热带降水年循环模态模拟的影响.结果表明,两种积云对流参数化方案均能合理再现...  相似文献   

8.
The seasonal variations of the Asian monsoon were explored by applying the atmospheric general circulation model R42L9 that was developed recently at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP/CAS). The 20-yr (1979-1998) simulation was done using the prescribed 20-yr monthly SST and sea-ice data as required by Atmospheric Model Intercomparison Project (AMIP)Ⅱ in the model. The monthly precipitation and monsoon circulations were analyzed and compared with the observations to validate the model‘s performance in simulating the climatological mean and seasonal variations of the Asian monsoon. The results show that the model can capture the main features of the spatial distribution and the temporal evolution of precipitation in the Indian and East Asian monsoon areas. The model also reproduced the basic patterns of monsoon circulation. However, some biases exis tin this model. The simulation of the heating over the Tibetan Plateau in summer was too strong. The overestimated heating caused a stronger East Asian monsoon and a weaker Indian monsoon than the observations. In the circulation fields, the South Asia high was stronger and located over the Tibetan Plateau. The western Pacific subtropical high was extended westward, which is in accordance with the observational results when the heating over the Tibetan Plateau is stronger. Consequently, the simulated rainfall around this area and in northwest China was heavier than in observations, but in the Indian monsoon area and west Pacific the rainfall was somewhat deficient.  相似文献   

9.
BCC大气环流模式对亚澳季风年际变率主导模态的模拟   总被引:8,自引:3,他引:5  
王璐  周天军  吴统文  吴波 《气象学报》2009,67(6):973-982
利用观测海温驱动下的北京气候中心大气环流模式(BCC-AGCM)1979-2000年的模拟数据,从亚澳季风(A-AM)年际变率的角度,对该模式的性能进行了分析.通过季节依赖的EOF分析方法(SEOF)得到观测第1模态,与ENSO从暖位相向冷位相的转变相联系,并伴随东南印度洋和西北太平洋的降水异常随季节变化.该模态具有准2a和4-6a周期的谱峰.分析结果显示,BCC模式可以很好地模拟出第1模态的时间变化特征,及其与ENSO位相的同步关系.但是,模式模拟的降水空间型与观测存在偏差,这主要是由于模式对环流场模拟的偏差造成的,具体表现在西北太平洋(WNP)反气旋和南印度洋(SIO)反气旋的季节锁相模拟偏差.前者与模式模拟的环流场整体偏东有关,后者是由于SIO反气旋的发展和衰亡过程受印度洋局地海气相瓦作用影响,而单独大气模式则无法合理地反映这一过程.另外,模式模拟的第一模态降水空间型在夏季效果较差,原因在于模式模拟的夏季平均降水量存在偏差,尤其是东南印度洋的降水量模拟偏少.进一步分析表明,这可能与对流参数化方案的选择有关.  相似文献   

10.
Simulation of East Asian Summer Monsoon by Using an Improved AGCM   总被引:9,自引:3,他引:9  
The IAP 2-L AGCM is modified by introducing a set of climatological surface albedo data into the model for substituting the model’s original surface albedo parameterization. The comparison between the observations and the simulation results by the modified model shows that the general features of the East Asian summer monsoon can be well reproduced by the modified IAP 2-L AGCM. Especially for the simulation of monsoon precipitation, the modi-fied model can well reproduce not only the monthly mean features of the summer monsoon rainfall over East Asia, but also the stepwise advance and retreat of the East Asian summer monsoon rainbelt. Analysis results demonstrate that the good simulation of the monsoon rainfall is closely related to the reasonable simulation of the large scale gen-eral circulation over East Asian region, such as the western Pacific subtropical high, Asian monsoon low and the low level flows. The good performance of the modified model in the rainfall simulation shows its great potential to serve as a useful tool for the prediction of summer drought / flood events over East Asia.  相似文献   

11.
CMIP5/AMIP GCM simulations of East Asian summer monsoon   总被引:1,自引:0,他引:1  
The East Asian summer monsoon (EASM) is a distinctive component of the Asian climate system and critically influences the economy and society of the region.To understand the ability of AGCMs in capturing the major features of EASM,10 models that participated in Coupled Model Intercomparison Project/Atmospheric Model Intercomparison Project (CMIP5/AMIP),which used observational SST and sea ice to drive AGCMs during the period 1979-2008,were evaluated by comparing with observations and AMIP Ⅱ simulations.The results indicated that the multi-model ensemble (MME) of CMIP5/AMIP captures the main characteristics of precipitation and monsoon circulation,and shows the best skill in EASM simulation,better than the AMIP Ⅱ MME.As for the Meiyu/Changma/Baiyu rainbelt,the intensity of rainfall is underestimated in all the models.The biases are caused by a weak western Pacific subtropical high (WPSH) and accompanying eastward southwesterly winds in group Ⅰ models,and by a too strong and west-extended WPSH as well as westerly winds in group Ⅱ models.Considerable systematic errors exist in the simulated seasonal migration of rainfall,and the notable northward jumps and rainfall persistence remain a challenge for all the models.However,the CMIP5/AMIP MME is skillful in simulating the western North Pacific monsoon index (WNPMI).  相似文献   

12.
High-resolution satellite-derived data and NCEP-NCAR reanalysis data are used to investigate intraseasonal oscillations (ISO) over the tropical Indian Ocean.A composite evolution of the ISO life cycle is constructed,including the initiation,development,and propagation of rainfall anomalies over the tropical Indian Ocean.The characteristics of ISO over the tropical Indian Ocean are profoundly different before and after the onset of the Indian summer monsoon.Positive precipitation anomalies before monsoon onset appear one phase earlier than those after monsoon onset.Before monsoon onset,precipitation anomalies associated with ISO first initiate in the western tropical Indian Ocean and then propagate eastward along the equator.After monsoon onset,convective anomalies propagate northward over the Indian summer monsoon region after an initial eastward propagation over the equatorial Indian Ocean.Surface wind convergence and air-sea interaction play critical roles in initiating each new cycle of ISO convection.  相似文献   

13.
采用1957—2002年850 hPa风场的ERA-40再分析资料,分析得知西北太平洋低层环流存在着明显的年际变化。这种年际变化表征了西北太平洋夏季风的年际变化,并且会影响东亚夏季风的变化。用Hadley海表面气压以及海表温度资料诊断得到,这种夏季西北太平洋反气旋异常(WPAC,northwest Pacific anomalous anticyclone)的年际变化与北印度洋同期海表温度变化存在很好的相关。用偏相关方法消除N ino3.4信号的同期线性影响,这种同期相关更加显著,而西南热带印度洋的同期海温与WPAC的相关并不显著。数值试验结果表明,北印度洋存在正海温异常时,北印度洋降水偏多,同时伴随着西北太平洋反气旋异常。当只有西南热带印度洋有正海温异常时,北印度洋会出现东风异常且降水减少,而西北太平洋有弱的气旋异常。数值模式结果与观测数据的诊断结果相吻合,说明当夏季北印度洋海表温度为正异常时,可能会产生西北太平洋反气旋异常。  相似文献   

14.
Earlier studies show a strong negative relationship between Eurasian snow cover/depth and Indian summer monsoon rainfall (ISMR). In such studies, both the parameters snow and rainfall are seasonally averaged over large areas. Indian summer monsoon has its own characteristics of evolution such as onset, active, break and withdrawal phases which have been studied extensively. However, the evolution of Eurasian snow is yet to be examined. Further, it is interesting to explore the characteristics of evolution of snow over the different regions of Eurasia and their relationship with the evolution characteristics of summer monsoon. In this paper, a detailed examination has been done on the starting and the ending dates of snowfall over different regions of Eurasia and attempts have been made to explore any relationship with onset of ISMR. It is observed that the regions where snowfall started early, it also ended late. Further, in those regions maximum snow depth also occurred late. In some years, more snowfall in East Eurasia is followed by less snowfall in West Eurasia. Also snow depths particularly in the northernmost and southwest regions of East Eurasia are opposite in phase. The results of this study indicate a weak relationship between snow starting dates in Eurasia and summer monsoon onset dates in the Kerala coast. However, the relationship between the northernmost Eurasian snow depth and the summer monsoon precipitation in the Peninsular India is significant.  相似文献   

15.
Simulation of East Asian Summer Monsoon with IAP CGCM   总被引:1,自引:0,他引:1  
SimulationofEastAsianSummerMonsoonwithIAPCGCMChenQiying(陈起英),①YuYongqiang(俞永强)andGuoYufu(郭裕福)InstituteofAtmosphericPhysics,Ch...  相似文献   

16.
An atmospheric general circulation model (AGCM) and an oceanic general circulation model (OGCM) are asynchronously coupled to simulate the climate of the mid-Holocene period. The role of the solar radiation and ocean in the mid-Holocene East Asian monsoon climate is analyzed and some mechanisms are revealed. At the forcing of changed solar radiation induced by the changed orbital parameters and the changed SST simulated by the OGCM, compared with when there is orbital forcing alone, there is more precipitation and the monsoon is stronger in the summer of East Asia, and the winter temperature increases over China. These agree better with the reconstructed data. It is revealed that the change of solar radiation can displace northward the ITCZ and the East Asia subtropical jet, which bring more precipitation over the south of Tibet and North and Northeast China. By analyzing the summer meridional latent heat transport, it is found that the influence of solar radiation change is mainly to increase the convergence of atmosphere toward the land, and the influence of SST change is mainly to transport more moisture to the sea surface atmosphere. Their synergistic effect on East Asian precipitation is much stronger than the sum of their respective effects.  相似文献   

17.
德国马普研究所海气耦合摸式ECHAM4/OPYC3对东亚地区2 m温度年循环的模拟尽管有一些偏差,但还是相当成功的.其模拟的东亚夏季风偏弱,而冬季风偏强,此偏差可能与2 m温度以及西太平洋副热带高压模拟偏差有关.该模式模拟的东亚季风区夏季降水量偏弱,这与上述夏季风环流的模拟结果是一致的.该模式较好地抓住了华北地区经向环流和降水量的年循环特征.利用最新的温室气体和SO2排放方案,即政府间气候变化委员会(IPCC)排放方案特别报告(SRES)的A2和B2方案,通过该模式111年的积分结果讨论了东亚季风气候在21世纪后30年中的变化,其主要结果为:全球变暖导致夏季海陆温差增大和冬季海陆温差减弱,进而使东亚季风环流在夏季加强,冬季减弱.长江流域和华北地区的夏季降水量显著增强,而后者的增强更为显著,使得东亚季风区的夏季多雨区向北延伸;东亚季风区9月份的降水量在两个方案中都显著增加,说明在全球变暖条件下东亚季风区的多雨季节将延迟一个月.  相似文献   

18.
In this paper, a 5-level spectral AGCM is used to examine the sensitivity of simulated East Asian summer monsoon circulation and rainfall to cumulus parameterization schemes. From the simulated results of East Asian monsoon circulations and rainfalls during the summers of 1987 and 1995, it is shown that the Kuo’s convective parameterization scheme is more suitable for the numerical simulation of East Asian summer monsoon rainfall and circulation. This may be due to that the cumulus in the rainfall system is not strong in the East Asian monsoon region. This paper is supported by the National Key Progranmme “96-908”.  相似文献   

19.
A Study of the Teleconnections in the Asian-Pacific Monsoon Region   总被引:2,自引:0,他引:2       下载免费PDF全文
The interactions among the Asian-Pacific monsoon subsystems have significant impacts on the climatic regimes in the monsoon region and even the whole world. Based on the domestic and foreign related research, an analysis is made of four different teleconnection modes found in the Asian-Pacific monsoon region, which reveal clearly the interactions among the Indian summer monsoon (ISM), the East Asian summer monsoon (EASM), and the western North Pacific summer monsoon (WNPSM). The results show that: (1) In the period of the Asian monsoon onset, the date of ISM onset is two weeks earlier than the beginning of the Meiyu over the Yangtze River Basin, and a teleconnection mode is set up from the southwestern India via the Bay of Bengal (BOB) to the Yangtze River Basin and southern Japan, i.e., the "southern" teleconnection of the Asian summer monsoon. (2) In the Asian monsoon culmination period, the precipitation of the Yangtze River Basin is influenced significantly by the WNPSM through their teleconnection relationship, and is negatively related to the WNPSM rainfall, that is, when the WNPSM is weaker than normal, the precipitation of the Yangtze River Basin is more than normal. (3) In contrast to the rainfall over the Yangtze River Basin, the precipitation of northern China (from the 4th pentad of July to the 3rd pentad of August) is positively related to the WNPSM. When the WNPSM is stronger than normal, the position of the western Pacific subtropical high (WPSH) becomes farther northeast than normal, the anomalous northeastward water vapor transport along the southwestern flank of WPSH is converged over northern China, providing adequate moisture for more rainfalls than normal there. (4) The summer rainfall in northern China has also a positive correlation with the ISM. During the peak period of ISM, a teleconnection pattern is formed from Northwest India via the Tibetan Plateau to northern China, i.e., the "northern" teleconnection of the Asian summer monsoon. The  相似文献   

20.
The performance of ECHAM5 atmospheric general circulation model (AGCM) is evaluated to simulate the seasonal mean and intraseasonal variability of Indian summer monsoon (ISM). The model is simulated at two different vertical resolutions, with 19 and 31 levels (L19 and L31, respectively), using observed monthly mean sea surface temperature and compared with the observation. The analyses examine the biases present in the internal dynamics of the model in simulating the mean monsoon and the evolution of the boreal summer intraseasonal oscillation (BSISO) and attempts to unveil the reason behind them. The model reasonably simulates the seasonal mean-state of the atmosphere during ISM. However, some notable discrepancies are found in the simulated summer mean moisture and rainfall distribution. Both the vertical resolutions, overestimate the seasonal mean precipitation over the oceanic regions, but underestimate the precipitation over the Indian landmass. The performance of the model improves with the increment of the vertical resolution. The AGCM reasonably simulates some salient features of BSISO, but fails to show the eastward propagation of the convection across the Maritime Continent in L19 simulation. The propagation across the Maritime Continent and tilted rainband structure improve as one moves from L19 to L31. The model unlikely shows prominent westward propagation that originates over the tropical western Pacific region. L31 also produces some of the observed characteristics of the northward propagating BSISOs. However, the northward propagating convection becomes stationary in phase 5–7. The simulation of shallow diabatic heating structure and the heavy rainfall activity over the Bay of Bengal indicate the abundance of the premature convection-generated precipitation events in the model. It is found that the moist physics is responsible for the poor simulation of the northward propagating convection anomalies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号