首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The Faroe Islands in the North Atlantic Ocean are susceptible to flow-type landslides in coarse-grained highly organic colluvium. Following several hazardous debris avalanche events, research work has been initiated to quantify landslide risk. A central task in this work is to predict landslide runout behavior. From numerical simulation of four debris avalanches, this study provides a first screening of which rheology and appertaining input parameters best predict runout behavior of debris avalanches in the Faroe Islands. Three rheologies (frictional, Voellmy, and Bingham) are selected and used for individual back analysis of the events in the numerical models BING and DAN3D. A best fit rheology is selected from comparing predicted and observed landslide runout behavior. General back analysis to identify the optimal input parameters for the chosen rheology is performed by cross validation, where each debris avalanche is modeled with input parameters from the three other events. Optimal input parameters are found from the model run producing the most accurate runout length and velocity. The Bingham is selected as the best fit rheology, a result differing from similar studies of coarse-grained landslides. A reason for why particularly the frictional rheology proves unsuitable is its tendency to produce too long runout lengths of the low-weight runout material, a result showing important limitations for using the frictional rheology in DAN3D. Optimal Bingham input parameters are τ y ?=?980 Pa and μ b ?=?117 Pa/s. However, future studies performed in 2D models are needed for precise parameterization before results can be used for landslide risk assessment.  相似文献   

2.
Statistical analyses of landslide deposits from similar areas provide information on dynamics and rheology, and are the basis for empirical relationships for the prediction of future events. In Central America landslides represent an important threat in both volcanic and non-volcanic areas. Data, mainly from 348 landslides in Nicaragua, and 19 in other Central American countries have been analyzed to describe landslide characteristics and to search for possible correlations and empirical relationships. The mobility of a landslide, expressed as the ratio between height of fall (H) and run-out distance (L) as a function of the volume and height of fall; and the relationship between the height of fall and run-out distance were studied for rock falls, slides, debris flows and debris avalanches. The data show differences in run-out distance and landslide mobility among different types of landslides and between debris flows in volcanic and non-volcanic areas. The new Central American data add to and seem consistent with data published from other regions. Studies combining field observations and empirical relationships with laboratory studies and numerical simulations will help in the development of more reliable empirical equations for the prediction of landslide run-out, with applications to hazard zonation and design of optimal risk mitigation measures.  相似文献   

3.
Spreading of rock avalanche debris by mechanical fluidization   总被引:8,自引:2,他引:8  
SummarySpreading of Rock Avalanche Debris by Mechanical Fluidization Two hypotheses for the motion of large rock avalanches (sturzstroms) are examined: (a) that sturzstrom deposits result from the spreading of a mass of debris in a fluidised state under the influence of gravity, and (b) that the debris becomes fluidised because of the existence of a high shear rate in the basal region. The first hypothesis is supported by data describing the length of sturzstrom deposits, and the second is shown to be in agreement with simple laboratory tests, with the grain-flow theory of Bagnold and with the characteristic features of sturzstrom deposits.With 7 Figures  相似文献   

4.
Hummocks: how they form and how they evolve in rockslide-debris avalanches   总被引:1,自引:0,他引:1  
Hummocks are topographic features of large landslides and rockslide-debris avalanches common in volcanic settings. We use scaled analog models to study hummock formation and explore their importance in understanding landslide kinematics and dynamics. The models are designed to replicate large-scale volcanic collapses but are relevant also to non-volcanic settings. We characterize hummocks in terms of their evolution, spatial distribution, and internal structure from slide initiation to final arrest. Hummocks initially form by extensional faulting as a landslide begins to move. During motion, individual large blocks develop and spread, creating an initial distribution, with small hummocks at the landslide front and larger ones at the back. As the mass spreads, hummocks can get wider but may decrease in height, break up, or merge to form bigger and long anticlinal hummocks when confined. Hummock size depends on their position in the initial mass, modified by subsequent breakup or coalescence. A hummock has normal faults that flatten into low-angle detachments and merge with a basal shear zone. In areas of transverse movement within a landslide, elongate hummocks develop between strike–slip flower structures. All the model structures are consistent with field observations and suggest a general brittle-slide emplacement for most landslide avalanches. Absence of hummocks and fault-like features in the deposit may imply a more fluidal flow of emplacement or very low cohesion of lithologies. Hummocks can be used as kinematic indicators to indicate landslide evolution and reconstruct initial failures and provide a framework with which to study emplacement dynamics.  相似文献   

5.
沟道型滑坡-碎屑流具有隐蔽性强、危险性高、力学机理复杂的特点,研究其运动距离预测模型具有重要的理论意义和实践意义。本文基于遥感GIS技术,结合野外调查,获取了汶川地震触发的38个沟道型滑坡-碎屑流的基础数据。通过相关性分析确定沟道型滑坡-碎屑流最大水平运动距离L的影响因素从大到小依次是滑坡体积V、最大垂直运动距离H、滑源区高差Hs、沟道段坡度β。采用逐步回归方法建立了滑坡-碎屑流最大水平运动距离L的最优多元回归模型,检验结果表明模型具有较高精度。将最优多元回归模型与国际上应用较多的滑坡运动距离和泥石流运动距离预测模型进行对比,表明考虑滑坡体积、地形落差和沟道段坡度的运动距离预测指标体系,具有最高的拟合优度和较好的物理含义,可为沟谷山区滑坡-碎屑流危险性评价提供参考依据。  相似文献   

6.
A morphometric investigation of the longitudinal distribution of hummocks at the southeastern foot of Iriga volcano in the Philippines showed that hummock size decreases away from the volcano. Aerial photographs and GIS analysis revealed that the size–distance relationship can be expressed as the exponential function A?=?α exp (?β D), where A is the area of a hummock and D is its distance from the source. This relationship is the same as that observed previously for freely spreading debris avalanches in Japan, including two avalanches at Bandai volcano. This size–distance relationship provides information about the physical characteristics of the event: the α value shows a strong correlation with the volume of the collapsed mass of the volcanic edifice, and the β value shows a strong correlation with the coefficient of friction of the debris avalanche. Thus, morphometric analysis of hummocks created by a volcanic avalanche illuminates both the physical properties of the volcanic body and the mobility of the avalanche. For the Iriga debris avalanche, the observed longitudinal hummock distribution is clearly a function of the volume of the collapsed mass and the coefficient of friction of the avalanche. The relationships so defined appear to be a geometric effect related to the areal extent of freely spreading hummocky avalanche deposits, especially their longitudinal dimensions.  相似文献   

7.
Summary. Numerical simulation can provide a useful tool for investigating the dynamics of phenomena like rock avalanches, within realistic geological contexts and in the framework of a better risk assessment and decision making. Difficulties in numerical modelling of a heterogeneous moving mass are mainly linked to the simulation of the complex behaviour assumed by the mass during propagation. The numerical code RASH3D, based on a continuum mechanics approach and on the long wave approximation, is used to back-analyse two cases of rock avalanches: Frank (1903, Canada) and Val Pola (1987, Italy). The two events are characterised by approximately the same volume (about 30 × 106 m3) while the run out area morphologies are widely different. Three alternative “rheologies” (Frictional, Voellmy and Pouliquen) are used. Comparison among obtained results underlines that the validation of a “rheology” requires not only a good agreement between the numerical simulation results and the run out area boundaries but also in term of depth distribution of the mass in the deposit. In case of a Frictional rheology, the obtained calibrated dynamic friction angle values are in a range of 15 ± 1° for both the cases; while assuming a Pouliquen or a Voellmy rheology it emerges a different behaviour of rheological parameters for each of the considered events. Besides the calibration of rheological parameters to better back-analyse each of the considered events, it is investigated how the behaviour due to the assumed rheology is influenced by the geometry of the run out area (e.g. narrow or broad valley). Authors’ addresses: Marina Pirulli, Department of Structural and Geotechnical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy; Anne Mangeney, Equipe de Sismologie, Institut de Physique du Globe de Paris, Université Denis Diderot, 4 Place Jussieu, 75005 Paris, France  相似文献   

8.
Subsurface thermal structure in Tohoku district are characterized by existing data such as geothermal resources maps, drill hole thermal gradients, Curie point depths and hypocenters distribution maps. The collected data are registered in a database system, then, compared in plan view, cross-section and bird's-eye pictures. The comparison indicates that subsurface temperatures extrapolated from drill hole thermal gradients are generally concordant to the Curie point depth, assumed to be 650 °C. Tohoku district is generally divided into 5 type areas; fore arc lowland, fore arc mountain country, Quaternary volcanic terrain, back arc lowland and back arc mountain country. The surface thermal manifestations in Quaternary volcanic terrain are mainly controlled by the magma chambers as heat sources, while, surface thermal features such as hot springs in non-volcanic areas are controlled by degrees of heat flows, and hydrothermal flows in permeable Cenozoic formations and along permeable fault zones.  相似文献   

9.
10.
岩石碎屑流运移堆积过程数值模拟   总被引:2,自引:0,他引:2  
岩石高速远程崩滑是一种特殊的、危害性很大的地质灾害,崩滑后期形成的高速岩石碎屑流具有很高的运移能力,破坏力极强。以岩石碎屑流为研究对象,重点模拟岩石碎屑流形成后,碎屑流的运移堆积过程和最大运移堆积距离。利用二维颗粒离散元数值模拟方法,建立碎屑流二维运动堆积模型,分析了岩石碎屑流初始高度、体积、加速斜面坡度、堆积底面摩擦系数以及堆积底面地表起伏程度对于岩石碎屑流最大运移堆积距离的影响。实验结果显示:岩石碎屑流运移堆积过程体现出了碎屑流物质的离散性和流动性; 碎屑流最大堆积距离随高度、体积、斜面坡度增大而增大; 随堆积底面摩擦系数、堆积底面地表起伏程度增大而减小。  相似文献   

11.
Catastrophic volcanic debris avalanches reshape volcanic edifices with up to half of pre-collapse cone volumes being removed. Deposition from this debris avalanche deposit often fills and inundates the surrounding landscape and may permanently change the distribution of drainage networks. On the weakly-incised Mt. Taranaki ring-plain, volcanic debris avalanche deposits typically form a large, wedge shape (in plan view), over all flat-lying fans. Following volcanic debris avalanches a period of intense re-sedimentation commonly begins on ring-plain areas, particularly in wet or temperate climates. This is exacerbated by large areas of denuded landscape, ongoing instability in the scarp/source region, damming of river/stream systems, and in some cases inherent instability of the volcanic debris avalanche deposits. In addition, on Mt. Taranaki, the collapse of a segment of the cone by volcanic debris avalanche often generates long periods of renewed volcanism, generating large volumes of juvenile tephra onto unstable and unvegetated slopes, or construction of new domes with associated rock falls and block-and-ash flows. The distal ring-plain impact from these post-debris avalanche conditions and processes is primarily accumulation of long run-out debris flow and hyperconcentrated flow deposits with a variety of lithologies and sedimentary character. Common to these post-debris avalanche units is evidence for high-water-content flows that are typically non-cohesive. Hence sedimentary variations in these units are high in lateral and longitudinal exposure in relation to local topography. The post-collapse deposits flank large-scale fans and hence similar lithological and chronological sequences can form on widely disparate sectors of the ring plain. These deposits on Mt. Taranaki provide a record of landscape response and ring-plain evolution in three stages that divide the currently identified Warea Formation: 1) the deposition of broad fans of material adjacent to the debris avalanche unit; 2) channel formation and erosion of Stage 1 deposits, primarily at the contact between debris avalanche deposits and the Stage 1 deposits and the refilling of these channels; and 3) the development of broad tabular sheet flows on top of the debris avalanche, leaving sediments between debris avalanche mounds. After a volcanic debris avalanche, these processes represent an ever changing and evolving hazard-scape with hazard maps needing to be regularly updated to take account of which stage the sedimentary system is in.  相似文献   

12.
高速远程滑坡运动学机理是国际工程地质领域亟待解决的重大前沿性关键科学问题。为探索高速远程滑坡的运动学机理,以青藏高原不同构造背景下的三大高速远程滑坡为研究对象,通过现场工程地质调查与分析,详细探讨了滑坡运动路径上所揭露出的各种表面与剖面沉积学特征,结果显示:(1)沿滑坡运动路径上依次可见大型堆积平台、纵向脊、横向脊、堆积丘等表面沉积学地貌的规律性分布,根据各类地貌的空间分布特征,可将滑坡区自后向前划分为源区、流通区和堆积区;(2)剖面上则可见反粒序堆积结构的展布,自上而下依次可划分为硬壳层、主体层和基底层,在硬壳层和主体层中可见层序保留、拼贴构造等低扰动性沉积学特征分布,在基底层中则可见其与下伏原沟谷堆积层强相互作用形成的底辟构造、小型褶皱等剖面沉积学特征分布。基于高速远程滑坡运动路径上各类表面和剖面沉积学地貌的空间展布特征,初步提出青藏高原关键地带高速远程滑坡的运动与停积就位机制,即滑体自源区失稳后主体表现为一种快速的低扰动性的整体性剪切运动过程,其流通区以快速拉张运动为主,堆积区则以快速推挤运动为主;当滑体下伏层中含水量较高时,伴随着滑体底部摩阻力的迅速降低,滑体表现出明显的侧限扩离运动。  相似文献   

13.
Rock slope response to strong earthquake shaking   总被引:1,自引:1,他引:0  
The 2010–2011 Canterbury earthquakes triggered many mass movements in the Port Hills including rockfalls, debris avalanches, slides and slumps, and associated cliff-top cracking. The most abundant mass movements with the highest risk to people and buildings were rockfalls and debris avalanches sourced from up to 100 m high cliffs inclined at angles >65°. Cliffs lower than 10 m in height generally remained stable during the strong shaking, with only isolated release of a few individual boulders. We used site-specific data to investigate the factors that controlled the response of the cliffs to the main earthquakes of the Canterbury sequence, adopting two-dimensional finite element seismic site response and stability modeling that was calibrated using the field observations and measurements. Observations from the assessed cliffs in response to the earthquakes show the taller cliffs experienced larger amounts of permanent cliff-top displacement and produced larger volumes of debris than the smaller cliffs. Results indicated a mean KMAX amplification ratio for all sites under study of 1.6 (range of 1.1–3.8). Field data and numerical modeling results, however, show that amplification of shaking does not necessarily increase linearly with increasing cliff height. Instead, our results show that accelerations are amplified mainly due to the impedance contrasts between the geological materials, corresponding to where strong differences in rock mass shear wave velocity exist. The resulting acceleration contrasts and rock mass strength control cliff stability. However, the amount of permanent slope displacement and volume of debris leaving the cliffs varied between the sites, due to site-specific geometry and rock mass strength.  相似文献   

14.
Rock avalanches are complex phenomena that occur with a low frequency but which have a high destructive potential. As a consequence, the people who are responsible for the management of a territory are more and more interested in predicting the possible evolutions of well-known potential events. Tackling the above problems from a quantitative point of view, the RASH3D code, based on continuum mechanics concepts, has been here used to predict the evolution of a potential rock avalanche in the Western Italian Alps. A calibration-based approach, in which rheological parameters are constrained by systematic adjustment during trial-and-error back-analysis of past events similar to the landslide under investigation, is proposed to set rheological parameter values to be used for prediction purposes. The back-analysis of a 2?106 m3 rock avalanche located in the Divedro Valley, close to the area of the potential event, has then been analysed using both a frictional and a Voellmy rheology. The characteristics of the slope and the dynamics of the event have made the frictional rheology more suitable to come to the correct simulation of the historical case. The back-analysis results have contributed not only in the selection of the rheological parameter values but also in the choice of the type of rheological law to use in the carried out forward-analyses.  相似文献   

15.
A Discontinuous Approach to the Numerical Modelling of Rock Avalanches   总被引:4,自引:1,他引:3  
Summary. The runout of dry rock avalanches produced by planar rockslides affecting a limestone formation with clayey interbeds is analysed by means of distinct element modelling. Potential and past rock avalanche events are described with reference to the geotechnical and structural conditions of the slope, typical of several Alpine valleys. Runout prediction analyses of potential rock avalanches performed with the PFC2D code are based on independent measurement of strength, energy dissipation and stiffness parameters of the rock mass and are validated by means of the back analysis of a historical rockslide occurred in the investigated area. Physical aspects of the avalanching process evidenced by modelling are also discussed. Author’s address: Paolo Tommasi, CNR – Institute for Geo-Engineering and Environmental Geology, c/o Facoltá di Ingegneria, Via Eudossiana 18, 00184 Rome, Italy  相似文献   

16.
Three debris-flow simulation model software have been applied to the back analysis of a typical alpine debris flow that caused significant deposition on an urbanized alluvial fan. Parameters used in the models were at first retrieved from the literature and then adjusted to fit field evidence. In the case where different codes adopted the same parameters, the same input values were used, and comparable outputs were obtained. Results of the constitutive laws used (Bingham rheology, Voellmy fluid rheology and a quadratic rheology formulation which adds collisional and turbulent stresses to the Bingham law) indicate that no single rheological model appears to be valid for all debris flows. The three applied models appear to be capable of reasonable reproduction of debris-flow events, although with different levels of detail. The study shows how different software can be used to predict the debris-flow motion for various purposes from a first screening, to predict the runout distance and deposition of the solid material and to the different behaviour of the mixtures of flows with variation of maximum solid concentration.  相似文献   

17.
火山岩坡残积土地区暴雨滑坡泥石流的形成机理   总被引:8,自引:0,他引:8  
暴雨条件诱发的浅层坡残积土质斜坡破坏的机理受控于土体在低有效围压条件下的应力应变特性。1993年11月4~5日,香港大屿山地区特大局部性暴雨导致在120km2范围内产生自然滑坡泥石流800余处,且绝大多数发生于火山岩风化坡残积土地区。本文对火山岩风化坡残积土开展了室内偏压固结不排水剪和偏压固结常剪应力排水剪试验,揭示了该类土的应力应变特性;在此基础上,分析了暴雨滑坡泥石流的形成机理和过程。  相似文献   

18.
The 2008 Wenchuan earthquake triggered more than 100 rock avalanches with volumes greater than 10 million cubic metres. The rock avalanche with the longest runout amongst these destructive landslides occurred in the Wenjia valley, Mianzhu, Sichuan, China. The landslide involved the failure of about 27.5 million cubic metres of sandstone from the source area. The displaced material travelled about 4,170 m with an elevation descent of about 1,360 m, equivalent to a fahrböschung of 16.9° and covered an area of 1.5 million square metres, with the final deposited volume of approximately 49 million cubic metres. The catastrophic event destroyed the village of Yanjing, killed 48 people and buried some houses at the mouth of the Wenjia valley. On the basis of a detailed field investigation, we introduce basic characteristics of the rock avalanche and find that the rock avalanche resulted in two run-ups and a superelevation along the runout path, and downslope enlargement due to the entrainment of path materials. A numerical model (DAN3D) is used to simulate the post-failure behaviour of the rock avalanche. By means of trial and error, a combination of the frictional model and Voellmy model is found to provide the best performance in simulating this rock avalanche. The simulation results reveal that the rock avalanche had a duration of about 240 s and an average velocity of 17.4 m/s.  相似文献   

19.
We analyze mass-flow tsunami generation for selected areas within the Aleutian arc of Alaska using results from numerical simulation of hypothetical but plausible mass-flow sources such as submarine landslides and volcanic debris avalanches. The Aleutian arc consists of a chain of volcanic mountains, volcanic islands, and submarine canyons, surrounded by a low-relief continental shelf above about 1000–2000 m water depth. Parts of the arc are fragmented into a series of fault-bounded blocks, tens to hundreds of kilometers in length, and separated from one another by distinctive fault-controlled canyons that are roughly normal to the arc axis. The canyons are natural regions for the accumulation and conveyance of sediment derived from glacial and volcanic processes. The volcanic islands in the region include a number of historically active volcanoes and some possess geological evidence for large-scale sector collapse into the sea. Large scale mass-flow deposits have not been mapped on the seafloor south of the Aleutian Islands, in part because most of the area has never been examined at the resolution required to identify such features, and in part because of the complex nature of erosional and depositional processes. Extensive submarine landslide deposits and debris flows are known on the north side of the arc and are common in similar settings elsewhere and thus they likely exist on the trench slope south of the Aleutian Islands. Because the Aleutian arc is surrounded by deep, open ocean, mass flows of unconsolidated debris that originate either as submarine landslides or as volcanic debris avalanches entering the sea may be potential tsunami sources.To test this hypothesis we present a series of numerical simulations of submarine mass-flow initiated tsunamis from eight different source areas. We consider four submarine mass flows originating in submarine canyons and four flows that evolve from submarine landslides on the trench slope. The flows have lengths that range from 40 to 80 km, maximum thicknesses of 400–800 m, and maximum widths of 10–40 km. We also evaluate tsunami generation by volcanic debris avalanches associated with flank collapse, at four locations (Makushin, Cleveland, Seguam and Yunaska SW volcanoes), which represent large to moderate sized events in this region. We calculate tsunami sources using the numerical model TOPICS and simulate wave propagation across the Pacific using a spherical Boussinesq model, which is a modified version of the public domain code FUNWAVE. Our numerical simulations indicate that geologically plausible mass flows originating in the North Pacific near the Aleutian Islands can indeed generate large local tsunamis as well as large transoceanic tsunamis. These waves may be several meters in elevation at distal locations, such as Japan, Hawaii, and along the North and South American coastlines where they would constitute significant hazards.  相似文献   

20.
南天山榆树沟高压麻粒岩地体锆石U—Pb定年及其地质意义   总被引:39,自引:1,他引:38  
王润三  李惠民 《地球化学》1998,27(6):517-522
南天山榆树沟高压麻粒岩地体的主体为一套蛇绿岩。从该地体顶部单元的岩石中分离出的锆石绝大部分为浑圆形或椭球形,少量为两端略圆化的四方柱状晶体;镜下粒度分析结果显示分选良好的典型沉积特征;其ZrO2/HfO2比值在45-57之间;结合岩石的岩石学和地球化学特征,推测斜长石榴苏辉岩的原岩可能主要由来自洋岛的基性火山激浪沉积碎屑和洋底风化产生的粘土组成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号