首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An atmospheric general circulation model is used in a series of three experiments to simulate the intraseasonaloscillation in the tropical atmosphere.Analyses of the model daily data show that various physical variables,from sever-al different regions,exhibit fluctuations with a spectral peak between 30 and 60 days.This represents a 30—60 dayoscillation in the tropical atmosphere and possesses several features which are consistent with observations.These in-clude a horizontal structure dominated by zonal wavenumber 1 and a vertical structure which is predominantlybaroclinic.The effect of warm SST (sea surface temperature) anomalies on the 30—60 day oscillation in the tropical atmos-phere is also simulated by prescribing global SST as observed in 1983.This has the effect of weakening the oscillationwhile at the same time the vertical structure becomes less baroclinic.The importance of cumulus convection to the propagational characteristics of this oscillation is demonstrated by acomparison of results based on different parameterizations for convection.In one case,where the maximum convectionover the Pacific is simulated to be too far east,the simulated 30—60 day oscillation shows evidence of westward propa-gation.In the second case,where the convection maximum is located near the observed position in the western Pacific,there is more clearly evidence of eastward propagation.Both results suggest that the location of maximum convection in the Pacific can have an important influence on thestrength,structure and propagation of the 30—60 day oscillation.  相似文献   

2.
Using observational data and model simulations,the author find that the North Indian Ocean(NIO)sea surface temperature(SST)anomalies can trigger an eastward atmospheric Kelvin wave propagating into the equatorial western Pacific,inducing an anomalous anticyclone over the subtropical Northwest Pacific(NWP)and resulting in prominent summer climate anomalies in the East Asia-Northwest Pacific(EANWP)region.However,the response of tropospheric temperatures and atmospheric Kelvin waves to the South Indian Ocean(SIO)SST anomalies is weak;as a result,the impact of the SIO SST anomalies on the EANWP summer climate is weak.The contrasting impacts of NIO and SIO SST anomalies on the EANWP summer climate is possibly due to the different mean state of SSTs in the two regions.In summer,the climatological SSTs in the NIO are higher than in the SIO,leading to a stronger response of atmospheric convection to the NIO SST anomalies than to the SIO SST anomalies.Thus,compared with the SIO SST anomalies,the NIO SST anomalies can lead to stronger tropospheric air temperature anomalies and atmospheric Kelvin waves to affect the EANWP summer climate.  相似文献   

3.
林爱兰  LI Tim  王璐  李春晖 《大气科学》2021,45(3):633-650
采用观测分析和数值试验等方法,分析夏季南亚高压与热带季节内振荡(ISO)之间的关系,并对两者之间的相互作用进行量化诊断,探讨其物理过程。主要结果表明:南亚高压ISO与热带ISO活动关系密切,当热带ISO处于印度洋位相(第1、2、3位相),则南亚高压东脊点位置偏西,当ISO处于太平洋位相(第5、6、7位相),则南亚高压东脊点位置偏东。与热带ISO关系最密切的是南亚高压东部附近区域,即东亚—西太平洋地区(15°~25°N,110°~140°E),该关键区也是南亚高压ISO最显著区域。在热带ISO的调制下,关键区对流层大气垂直结构产生斜压性异常变化,导致高层南亚高压东脊点的东伸(西退)对应中低层西太平洋副热带高压西脊点的东退(西伸)。在南亚高压与热带ISO之间关系中,主要是热带ISO对南亚高压的影响,南亚高压东部关键区ISO强度40%来源于热带ISO的贡献,而南亚高压对热带ISO平均强度的影响很弱。热带ISO影响南亚高压的物理过程如下,热带ISO从印度洋向东传播至西太平洋时,强对流产生分支,部分由于东亚—西太平洋的有利夏季风背景转为向北传播,ISO向北传播过程中对流强度进一度加强,这就相当于存在一个赤道非对称热源。在热源的作用下,大气产生异常响应,在热源的西北侧,即东亚—西太平洋地区,对流层低层为气旋性环流异常、位势高度负异常,对流层高层为反气旋性环流异常、位势高度正异常,从而导致南亚高压东脊点偏东。而当热带ISO处于印度洋位相时,大气异常响应与上述相反,南亚高压东部位势高度降低,南亚高压东脊点西撤。  相似文献   

4.
Simulations of tropical intraseasonal oscillation(TISO) in SAMIL,the Spectral Atmospheric Model from the Institute of Atmospheric Physics(IAP) State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics(LASG) coupled and uncoupled general circulation models were comprehensively evaluated in this study.Compared to the uncoupled model,the atmosphere-ocean coupled model improved the TISO simulation in the following aspects:(1) the spectral intensity for the 30-80-day peak eastward periods was more realistic;(2) the eastward propagation signals over western Pacific were stronger;and(3) the variance distribution and stronger signals of Kelvin waves and mixed Rossby gravity waves were more realistic.Better performance in the coupled run was assumed to be associated with a better mean state and a more realistic relationship between precipitation and SST.In both the coupled and uncoupled runs,the unrealistic simulation of the eastward propagation over the equatorial Indian Ocean might have been associated with the biases of the precipitation mean state over the Indian Ocean,and the unrealistic split of maximum TISO precipitation variance over the Pacific might have corresponded to the exaggeration of the double Intertropical Convergence Zone(ITCZ) structure in precipitation mean state.However,whether a better mean state leads to better TISO activity remains questionable.Notably,the northward propagation over the Indian Ocean during summer was not improved in the mean lead-lag correlation analysis,but case studies have shown some strong cases to yield remarkably realistic northward propagation in coupled runs.  相似文献   

5.
本文利用30~60天带通滤波资料, 考察了不同季节印度洋—西太平洋区域对流活动季节内尺度变率的主要模态, 发现在不同季节赤道东印度洋(5°S~10°N, 70°E~100°E)和西北太平洋(5°N~20°N, 110°E~160°E)对流活动均存在反相变化的关系, 将之称为季节内尺度的印度洋—西太平洋对流涛动(Indo-West Pacific Convection Oscillation), 简称IPCO。对IPCO两极子区域对流活动进行超前滞后相关分析, 发现IPCO事件形成—发展—消亡的生命周期是由对流活动季节内振荡及其传播造成的。对流扰动首先在赤道中西印度洋形成, 随后逐渐向东发展变强, 在其继续变强的过程中将分两支传播:一支由赤道印度洋向北传播, 至印度半岛南部后逐渐减弱消失;另一支沿赤道继续东传, 在海洋大陆受到抑制, 快速越过海洋大陆到达赤道西太平洋后又开始发展变强, 随后北传至西北太平洋区域逐渐减弱, 最终至我国长江流域中下游到日本区域消失。将这一过程划分为8个位相, 详细分析了不同位相对应的环流场和降水场特征, 最后给出了IPCO事件演化示意图。  相似文献   

6.
Using the NCEP/NCAR reanalysis and HadISST sea surface temperature (SST) data, the joint effects of the tropical Indian Ocean and Pacific on variations of area of the summertime western Pacific subtropical high (WPSH) for period 1980–2016 are investigated. It is demonstrated that the central tropical Indian Ocean (CTI) and central equatorial Pacific (CEP) are two key oceanic regions that affect the summertime WPSH. During autumn and winter, warm SST anomalies (SSTAs) in CEP force the Walker circulation to change anomalously, resulting in divergence anomalies over the western Pacific and Maritime Continent (MC). Due to the Gill-type response, the abnormal anticyclonic circulation is generated over the western Pacific and South China Sea (SCS). In the subsequent spring, the warm SSTAs in CEP weaken, while the SST over CTI demonstrates a lagged response to Pacific SSTA. The warm CTISSTA and CEP-SSTA cooperate with the eastward propagation of cold Kelvin waves in the western Pacific, leading to the eastward shift of the abnormal divergence center that originally locates at the western Pacific and MC. The anticyclone forced by this divergence subsequently moves eastward, leading to the intensification of the negative vorticity there. Meanwhile, warm SSTA in CTI triggers eastward propagating Kelvin waves, which lead to easterly anomalies over the equatorial Indian Ocean and Indonesia, being favorable for maintenance and intensification of the anticyclone over the SCS and western Pacific. The monsoonal meridional–vertical circulation strengthens, which is favorable for the intensification of the WPSH. Using SSTA over the two key oceanic regions as predictors, a multiple regression model is successfully constructed for prediction of WPSH area. These results are useful for our better understanding the variation mechanisms of WPSH and better predicting summer climate in East Asia.  相似文献   

7.
The performances of four Chinese AGCMs participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) in the simulation of the boreal summer intraseasonal oscillation (BSISO) are assessed. The authors focus on the major characteristics of BSISO: the intensity, significant period, and propagation. The results show that the four AGCMs can reproduce boreal summer intraseasonal signals of precipitation; however their limitations are also evident. Compared with the Climate Prediction Center Merged Analysis of Precipitation (CMAP) data, the models underestimate the strength of the intraseasonal oscillation (ISO) over the eastern equatorial Indian Ocean (IO) during the boreal summer (May to October), but overestimate the intraseasonal variability over the western Pacific (WP). In the model results, the westward propagation dominates, whereas the eastward propagation dominates in the CMAP data. The northward propagation in these models is tilted southwest-northeast, which is also different from the CMAP result. Thus, there is not a northeast-southwest tilted rain belt revolution off the equator during the BSISO's eastward journey in the models. The biases of the BSISO are consistent with the summer mean state, especially the vertical shear. Analysis also shows that there is a positive feedback between the intraseasonal precipitation and the summer mean precipitation. The positive feedback processes may amplify the models' biases in the BSISO simulation.  相似文献   

8.
薛峰  段欣妤  苏同华 《大气科学》2018,42(6):1407-1420
本文对比分析了1998年和2016年这两个强El Ni?o衰减年东亚夏季风的季节内变化。结果表明,在6~7月期间,由于热带印度洋海温偏高、对流偏强,造成西太平洋暖池对流偏弱,西太平洋副热带高压(副高)偏西偏强,长江流域降水偏多,华南偏少,东亚夏季风异常具有典型的El Ni?o衰减年特征。但两年的8月份有很大差异,虽然1998年8月与6~7月相似,但2016年8月份则完全不同。受乌拉尔地区异常反气旋的影响,源自西伯利亚东部的北风异常穿越东亚并直抵暖池地区,造成副高分裂并减弱东退,同时激发暖池对流发展,而对流的发展则进一步促使副高减弱。因此,2016年8月东亚夏季风异常与1998年8月相反,中国北方夏季降水异常也呈现很大差异。另外,1998年热带大西洋偏暖,并通过热带环流变化影响到东亚夏季风异常,其强迫作用与热带印度洋类似。而2016年大西洋海温异常较弱,对东亚夏季风影响也较弱。因此,El Ni?o对东亚夏季风的影响不仅与其强度有关,还与El Ni?o衰减之后造成的印度洋和大西洋海温异常有关。本文的分析结果表明,即使在强El Ni?o衰减年夏季,由于El Ni?o之间的个性差异以及其他因子的影响,东亚夏季风季节内变化仍然能呈现出显著差异,特别是在8月份。因此,在预测东亚夏季风异常时,宜将6~7月和8月分别考虑。此外,为进一步提高东亚夏季风预测水平,除传统的季度预测外,还需要进一步加强季节内尺度的预测。  相似文献   

9.
The Madden-Julian oscillation (MJO) dominates tropical variability on timescales of 30–70 days. During the boreal winter/spring, it is manifested as an eastward propagating disturbance, with a strong convective signature over the eastern hemisphere. The space–time structure of the MJO is analyzed using simulations with the ECHAM4 atmospheric general circulation model run with observed monthly mean sea-surface temperatures (SSTs), and coupled to three different ocean models. The coherence of the eastward propagation of MJO convection is sensitive to the ocean model to which ECHAM4 is coupled. For ECHAM4/OPYC and ECHO-G, models for which ~100 years of daily data is available, Monte Carlo sampling indicates that their metrics of eastward propagation are different at the 1% significance level. The flux-adjusted coupled simulations, ECHAM4/OPYC and ECHO-G, maintain a more realistic mean-state, and have a more realistic MJO simulation than the nonadjusted scale interaction experiment (SINTEX) coupled runs. The SINTEX model exhibits a cold bias in Indian Ocean and tropical West Pacific Ocean sea-surface temperature of ~0.5°C. This cold bias affects the distribution of time-mean convection over the tropical eastern hemisphere. Furthermore, the eastward propagation of MJO convection in this model is not as coherent as in the two models that used flux adjustment or when compared to an integration of ECHAM4 with prescribed observed SST. This result suggests that simulating a realistic basic state is at least as important as air–sea interaction for organizing the MJO. While all of the coupled models simulate the warm (cold) SST anomalies that precede (succeed) the MJO convection, the interaction of the components of the net surface heat flux that lead to these anomalies are different over the Indian Ocean. The ECHAM4/OPYC model in which the atmospheric model is run at a horizontal resolution of T42, has eastward propagating zonal wind anomalies and latent heat flux anomalies. However, the integrations with ECHO-G and SINTEX, which used T30 atmospheres, produce westward propagation of the latent heat flux anomalies, contrary to reanalysis. It is suggested that the differing ability of the models to represent the near-surface westerlies over the Indian Ocean is related to the different horizontal resolutions of the atmospheric model employed.  相似文献   

10.
Intraseasonal variability in the eastern Pacific warm pool in summer is studied, using a regional ocean?Catmosphere model, a linear baroclinic model (LBM), and satellite observations. The atmospheric component of the model is forced by lateral boundary conditions from reanalysis data. The aim is to quantify the importance to atmospheric deep convection of local air?Csea coupling. In particular, the effect of sea surface temperature (SST) anomalies on surface heat fluxes is examined. Intraseasonal (20?C90?day) east Pacific warm-pool zonal wind and outgoing longwave radiation (OLR) variability in the regional coupled model are correlated at 0.8 and 0.6 with observations, respectively, significant at the 99% confidence level. The strength of the intraseasonal variability in the coupled model, as measured by the variance of outgoing longwave radiation, is close in magnitude to that observed, but with a maximum located about 10° further west. East Pacific warm pool intraseasonal convection and winds agree in phase with those from observations, suggesting that remote forcing at the boundaries associated with the Madden?CJulian oscillation determines the phase of intraseasonal convection in the east Pacific warm pool. When the ocean model component is replaced by weekly reanalysis SST in an atmosphere-only experiment, there is a slight improvement in the location of the highest OLR variance. Further sensitivity experiments with the regional atmosphere-only model in which intraseasonal SST variability is removed indicate that convective variability has only a weak dependence on the SST variability, but a stronger dependence on the climatological mean SST distribution. A scaling analysis confirms that wind speed anomalies give a much larger contribution to the intraseasonal evaporation signal than SST anomalies, in both model and observations. A LBM is used to show that local feedbacks would serve to amplify intraseasonal convection and the large-scale circulation. Further, Hovm?ller diagrams reveal that whereas a significant dynamic intraseasonal signal enters the model domain from the west, the strong deep convection mostly arises within the domain. Taken together, the regional and linear model results suggest that in this region remote forcing and local convection?Ccirculation feedbacks are both important to the intraseasonal variability, but ocean?Catmosphere coupling has only a small effect. Possible mechanisms of remote forcing are discussed.  相似文献   

11.
An equatorial β-plane model which includes realistic non-uniform land-sea contrast and the underlying surface temperature distribution is used to simulate the 30-60 day oscillation (LFO) processes in tropical atmosphere, with emphasis on its longitude-dependent evolution and convective seesaw between Indian and the western Pacific oceans.The model simulated the twice-amplification of the disturbances over Indian and the western Pacific oceans while they are travelling eastward. It reproduced the dipole structure caused by the out-of-phase oscillation of the active centres in these two areas and the periodical transition between the phases of LFO. It is suggested that the convective seesaw is the result of interaction of the internal dynamics of tropical atmosphere with the zonally non-uniform thermal forcing from underlying surface. The convective activities are suppressed over Indonesia mari-time continents whilst they are favoured over the Indian Ocean and western Pacific warm waters, so there formed two active oscillation centres. The feedback of convection with large-scale flow slows down the propagation of disturb-ances when they are intensifying over these two areas, therefore they manifest a kind of quasi-stationary component to favor the ‘dipole’ structure. Whereas the disturbances weaken and speed up over the eastern Pacific cold water re-gion due to the interaction of sensible heating and evaporation with perturbational wind. Therefore the two major centers just show out-of-phase oscillation during onecycle around the latitudinal beltBy introducing the SST anomalies in El Ni?o and La Ni?a years into the surface temperature, we also show that they have significant influence on LFO processes. In an anomalously warm year, the LFO disturbances dissipate more slowly over the central-eastern Pacific region and can travel farther eastward; whilst in an anomalously cold year, the opposite is true.  相似文献   

12.
Using the humidity profiles from the Atmospheric Infrared Sounder (AIRS) dataset, rainfall from the Tropical Rainfall Measuring Mission (TRMM) Global Precipitation Index (GPI), and surface winds from QuickSCAT (QSCAT) as well as SST from the Advanced Microwave Scanning Radiometer for NASA's Earth Observing System (AMSR-E), we analyzed the structure of summer intraseasonal oscillation (ISO) over the western North Pacific region in 2003--2004. We find that the signal of 20--90-day oscillations in the western North Pacific originates from the equatorial Indian Ocean, and propagates eastward to Philippine Sea and then moves northwestward to South China. The AIRS humidity data reveal that the boundary-layer moisture leads the mid-troposphere moisture during the ISO propagation. The positive SST anomaly may play an important role to moistening the boundary-layer, which preconditions the ISO propagation.Therefore, the intraseasonal SST anomaly could positively feed back to the atmosphere through moistening the boundary-layer,destabilizing the troposphere, and contributing to the northwestward propagation of the ISO in western North Pacific. On the other hand, the salient feature that the boundary-layer moisture anomaly leads mid-troposphere moisture does not exist in ECMWF/TOGA analysis.  相似文献   

13.
利用非线性局部Lyapunov指数和条件非线性局部Lyapunov指数定量估计了季节内印度洋-西太平洋对流涛动(IPCO)和实时多变量Madden-Julian指数(RMM指数)可预报期限,量化了季节内IPCO对S2S尺度大气可预报性的贡献,深入研究了季节内IPCO演变下S2S尺度可预报期限空间分布的变化规律。结果表明:(1)与RMM指数相比,季节内IPCO指数可预报性更强,可预报期限达到31天左右,比RMM指数高出2周以上;(2)印度洋-西太平洋区域S2S尺度大气可预报性最强,可预报期限达到30天以上,其中季节内IPCO是该地区的主要可预报性来源之一,其贡献达到6天,占总可预报期限的25%以上;(3)随着季节内IPCO的演变,印度洋-西太平洋地区S2S尺度大气可预报性有空间结构变化,表现为可预报期限异常的传播和振荡。S2S尺度大气可预报期限正负异常沿季节内IPCO传播路径,一支以赤道中西印度洋为起点北传至印度半岛,一支向东传播,经过海洋性大陆到赤道西太平洋后向北传播,到达日本南部。同时,可预报性异常的传播在在东印度洋和西太平洋表现出反向变化的特征,形成东西两极振荡,当季节内IPCO向正位相发展时,东印度洋具有更强的可预报性,西太平洋具有更弱的可预报性,反之亦然。季节内IPCO的发展(衰退)可使东印度洋(西太平洋)S2S尺度大气可预报性更强,表明模式预报技巧对此具有更大的提升空间。  相似文献   

14.
热带对流和环流季内振荡强度与海表温度关系对比研究   总被引:2,自引:1,他引:1  
利用外逸长波辐射(OLR)、风场和海表温度(SST)资料, 研究了热带大气季节内振荡(ISO)强度的季节变化特征, 发现热带印度洋和热带西太平洋区域是OLR和风场季内振荡最主要的共同活跃区。对比分析了OLR和风场季内振荡强度与海表温度异常之间的年际异常关系, 发现OLR季内振荡强度异常与海表温度异常之间存在显著局地正相关关系, 即在热带中东太平洋区域、热带西北太平洋区域和热带西南太平洋区域, 当海表温度正(负)异常时, OLR季内振荡增强(减弱),特别在冬春季节这一关系更清楚。除个别区域外, 风场季内振荡强度异常与海表温度异常不存在类似OLR的局地关系。OLR和风场季内振荡强度异常与海表温度异常之间局地和非局地关系的差异, 体现了两种要素特性的本质差异。但两种要素季内振荡强度在El Niño事件发展过程中的变化基本一致, 即在气候场中季内振荡活跃的区域, 事件发生之前季内振荡会增强, 并逐渐向东传播, 事件发生之后这些区域振荡减弱。  相似文献   

15.
Based on multiple datasets, correlation and composite analyses, and case studies, this paper investigated possible influences of the Indian Ocean dipole (IOD) mode on the eastward propagation of intraseasonal oscillation in the tropical atmosphere. The results showed that (1) the 30-60 day outgoing longwave radiation anomalies in the southeastern Indian Ocean and the 30-60 day 850-hPa zonal wind anomalies over the equatorial central Indian Ocean were significantly correlated with the IOD index; (2) during positive IOD years, the anomalously cold water in the southeastern Indian Ocean and the 850-hPa anomalous easterlies over the equatorial central Indian Ocean might act as barriers to the continuously eastward propagation of the intraseasonal convection, which interrupts the Madden-Julian oscillation (MJO) propagation in the eastern equatorial Indian Ocean and western Pacific; and (3) during negative IOD years, the anomalously warm water in the southeastern Indian Ocean and the low-level westerly anomalies over the equatorial central Indian Ocean favor the eastward movement of MJO.  相似文献   

16.
During June–July 2020, the strongest recorded mei-yu rainfall occurred in the middle and lower reaches of the Yangtze River. The rainfall processes exhibited an obvious quasi-biweekly(biweekly in brief) variability, and there are altogether five cycles. It is found that the biweekly rainfall cycle mainly arises from the collaborative effects of biweekly variabilities from both the tropics and extratropics. As for the tropics, the biweekly meridional march and retreat of the western Pacific subtr...  相似文献   

17.
大气季节内振荡的耦合模式数值模拟   总被引:22,自引:5,他引:17  
李薇  俞永强 《大气科学》2001,25(1):118-132
分析GOALS/LASG海气耦合模式10年积分200hPa纬向风场的逐日输出结果,引用1980~1989年期间逐日的NCEP/NCAR再分析资料作为实测对照,结果显示该耦合模式抓住了热带大气低频振荡(IO)的基本时空分布特征,模拟IO的强度较多数大气模式强而接近真实,但空间一致性仍不清晰,典型周期不够显著。NCEP资料与耦合模式都反映模拟IO的季节变化与其年际变化有关,模拟较强IO的年份表现IO的季节变化特征也较真实。模拟IO的年际变化与热带东太平洋的SST呈明显的负相关变化。SST暖异常的年份,IO活动较弱。IO变化滞后于SST异常60天左右的相关性最显著。对比单独积分GOALS/LASG的大气模式的结果,发现二者的主要差别在于耦合模式再现IO的季节性特征更真实,反映了海气耦合对IO变化的调制作用。利用海气耦合模式,理解IO对流活动与上层海洋的相互作用过程,是真实描述IO必要的手段。  相似文献   

18.
Yamaura  Tsuyoshi  Kajikawa  Yoshiyuki 《Climate Dynamics》2017,48(9-10):3003-3014

A decadal change in activity of the boreal summer intraseasonal oscillation (BSISO) was identified at a broad scale. The change was more prominent during August–October in the boreal summer. The BSISO activity during 1999–2008 (P2) was significantly greater than that during 1984–1998 (P1). Compared to P1, convection in the BSISO was enhanced and the phase speed of northward-propagating convection was reduced in P2. Under background conditions, warm sea surface temperature (SST) anomalies in P2 were apparent over the tropical Indian Ocean and the western tropical Pacific. The former supplied favorable conditions for the active convection of the BSISO, whereas the latter led to a strengthened Walker circulation through enhanced convection. This induced descending anomalies over the tropical Indian Ocean. Thermal convection tends to be suppressed by descending anomalies, whereas once an active BSISO signal enters the Indian Ocean, convection is enhanced through convective instability by positive SST anomalies. After P2, the BSISO activity was weakened during 2009–2014 (P3). Compared to P2, convective activity in the BSISO tended to be inactive over the southern tropical Indian Ocean in P3. The phase speed of the northward-propagating convection was accelerated. Under background conditions during P3, warmer SST anomalies over the maritime continent enhance convection, which strengthened the local Hadley circulation between the western tropical Pacific and the southern tropical Indian Ocean. Hence, the convection in the BSISO over the southern tropical Indian Ocean was suppressed. The decadal change in BSISO activity correlates with the variability in seasonal mean SST over the tropical Asian monsoon region, which suggests that it is possible to predict the decadal change.

  相似文献   

19.
The performance of a regional air-sea coupled model, comprising the Regional Integrated Environment Model System (RIEMS) and the Princeton Ocean Model (POM), in simulating the seasonal and intraseasonal variations of East Asian summer monsoon (EASM) rainfall was investigated. Through comparisons of the model results among the coupled model, the uncoupled RIEMS, and observations, the impact of air-sea coupling on simulating the EASM was also evaluated. Results showed that the regional air-sea coupled climate model performed better in simulating the spatial pattern of the precipitation climatology and produced more realistic variations of the EASM rainfall in terms of its amplitude and principal EOF modes. The coupled model also showed greater skill than the uncoupled RIEMS in reproducing the principal features of climatological intraseasonal oscillation (CISO) of EASM rainfall, including its dominant period, intensity, and northward propagation. Further analysis indicated that the improvements in the simulation of the EASM rainfall climatology and its seasonal variation in the coupled model were due to better simulation of the western North Pacific Subtropical High, while the improvements of CISO simulation were owing to the realistic phase relationship between the intraseasonal convection and the underlying SST resulting from the air-sea coupling.  相似文献   

20.
利用外逸长波辐射 (outgoing longwave radiation, OLR) 资料分析了热带对流季内振荡 (ISO) 强度的季节变化及年际异常特征, 重点研究其与海表温度的关系。结果表明:最强的OLR季内振荡主要位于高海表温度 (SST) 区, 即热带印度洋和热带西太平洋区域, 终年存在, 冬、春季最强, 振荡中心偏于夏半球。OLR季内振荡强度年际异常显著区域是热带中东太平洋区域、西北太平洋区域和西南太平洋区域, 它与SST年际异常存在局地正相关关系, 伴随环流的辐合辐散, 并与ENSO事件关系密切。另外, El Ni?o事件发生之前, 热带印度洋和热带西太平区域OLR季内振荡增强, 其中心随事件的发展逐渐东移, 事件发生后这两个区域ISO减弱, 这与OLR季内振荡强度年际异常显著的区域具有内在连贯性。海表温度是决定OLR季内振荡强度季节变化、年际异常的一个关键因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号