首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
In this paper, a nonlinear optimization method is used to explore the finite-time instability of the atmospheric circulation with a three-level quasigeostrophic model under the framework of the conditional nonlinear optimal perturbation (CNOP). As a natural generalization of linear singular vector (SV), CNOP is defined as an initial perturbation that makes the cost function the maximum at a prescribed forecast time under certain physical constraint conditions. Special attentions are paid to the different structures and energy evolutions of the optimal perturbations.  相似文献   

2.
The authors apply the technique of conditional nonlinear optimal perturbations (CNOPs) as a means of providing initial perturbations for ensemble forecasting by using a barotropic quasi-geostrophic (QG) model in a perfect-model scenario. Ensemble forecasts for the medium range (14 days) are made from the initial states perturbed by CNOPs and singular vectors (SVs). 13 different cases have been chosen when analysis error is a kind of fast growing error. Our experiments show that the introduction of CNOP provides better forecast skill than the SV method. Moreover, the spread-skill relationship reveals that the ensemble samples in which the first SV is replaced by CNOP appear superior to those obtained by SVs from day 6 to day 14. Rank diagrams are adopted to compare the new method with the SV approach. The results illustrate that the introduction of CNOP has higher reliability for medium-range ensemble forecasts.  相似文献   

3.
穆穆  段晚锁  徐辉  王波 《大气科学进展》2006,23(6):992-1002
Considering the limitation of the linear theory of singular vector (SV), the authors and their collaborators proposed conditional nonlinear optimal perturbation (CNOP) and then applied it in the predictability study and the sensitivity analysis of weather and climate system. To celebrate the 20th anniversary of Chinese National Committee for World Climate Research Programme (WCRP), this paper is devoted to reviewing the main results of these studies. First, CNOP represents the initial perturbation that has largest nonlinear evolution at prediction time, which is different from linear singular vector (LSV) for the large magnitude of initial perturbation or/and the long optimization time interval. Second, CNOP, rather than linear singular vector (LSV), represents the initial anomaly that evolves into ENSO events most probably. It is also the CNOP that induces the most prominent seasonal variation of error growth for ENSO predictability; furthermore, CNOP was applied to investigate the decadal variability of ENSO asymmetry. It is demonstrated that the changing nonlinearity causes the change of ENSO asymmetry. Third, in the studies of the sensitivity and stability of ocean’s thermohaline circulation (THC), the nonlinear asymmetric response of THC to finite amplitude of initial perturbations was revealed by CNOP. Through this approach the passive mechanism of decadal variation of THC was demonstrated; Also the authors studies the instability and sensitivity analysis of grassland ecosystem by using CNOP and show the mechanism of the transitions between the grassland and desert states. Finally, a detailed discussion on the results obtained by CNOP suggests the applicability of CNOP in predictability studies and sensitivity analysis.  相似文献   

4.
奇异向量(singular vectors,SVs)和条件非线性最优扰动(conditional nonlinear optimal perturbation,CNOP)已广泛应用于研究大气—海洋系统的不稳定性以及与其相关的可预报性、集合预报和目标观测问题研究。本文首先回顾了SVs和CNOP的发展历史,并简单描述了它们的基本原理;然后针对二维正压准地转模式,使用不同的范数组合,分析了第一线性奇异向量(first singular vector,FSV)和CNOP之间的异同。结果表明,当优化时间较短时,度量SVs和CNOP大小的范数不同也将导致FSV和CNOP相差很大,而当度量SVs和CNOP大小的范数相同时,FSV和CNOP之间的差别则主要是由非线性物理过程作用的结果。因此,针对不同的物理问题,应该选取合适的度量范数研究FSV和CNOP以及其所引起的大气或海洋动力学的异同,从而揭示非线性物理过程的影响机理。  相似文献   

5.
A projected skill is adopted by use of the differential evolution (DE) algorithm to calculate a conditional nonlinear optimal perturbation (CNOP). The CNOP is the maximal value of a constrained optimization problem with a constraint condition, such as a ball constraint. The success of the DE algorithm lies in its ability to handle a non-differentiable and nonlinear cost function. In this study, the DE algorithm and the traditional optimization algorithms used to obtain the CNOPs are compared by analyzing a theoretical grassland ecosystem model and a dynamic global vegetation model. This study shows that the CNOPs generated by the DE algorithm are similar to those by the sequential quadratic programming (SQP) algorithm and the spectral projected gradients (SPG2) algorithm. If the cost function is non-differentiable, the CNOPs could also be caught with the DE algorithm. The numerical results suggest the DE algorithm can be employed to calculate the CNOP, especially when the cost function is non-differentiable.  相似文献   

6.
The singular vector (SV) initial perturbation method can capture the fastest-growing initial perturbation in a tangent linear model (TLM). Based on the global tangent linear and adjoint model of GRAPES-GEPS (Global/Regional Assimilation and Prediction System—Global Ensemble Prediction System), some experiments were carried out to analyze the structure of the moist SVs from the perspectives of the energy norm, energy spectrum, and vertical structure. The conclusions are as follows: The evolution of the SVs is synchronous with that of the atmospheric circulation, which is flow-dependent. The moist and dry SVs are located in unstable regions at mid-to-high latitudes, but the moist SVs are wider, can contain more small- and medium-scale information, and have more energy than the dry SVs. From the energy spectrum analysis, the energy growth caused by the moist SVs is reflected in the relatively small-scale weather system. In addition, moist SVs can generate perturbations associated with large-scale condensation and precipitation, which is not true for dry SVs. For the ensemble forecasts, the average anomaly correlation coefficient of large-scale circulation is better for the forecast based on moist SVs in the Northern Hemisphere, and the low-level variables forecasted by the moist SVs are also improved, especially in the first 72 h. In addition, the moist SVs respond better to short-term precipitation according to statistical precipitation scores based on 10 cases. The inclusion of the large-scale condensation process in the calculation of SVs can improve the short-term weather prediction effectively.  相似文献   

7.
A two-layer quasi-geostrophic model is used to study the stability and sensitivity of motions on smallscale vortices in Jupiter’s atmosphere. Conditional nonlinear optimal perturbations (CNOPs) and linear singular vectors (LSVs) are both obtained numerically and compared in this paper. The results show that CNOPs can capture the nonlinear characteristics of motions in small-scale vortices in Jupiter’s atmosphere and show great difference from LSVs under the condition that the initial constraint condition is large or the optimization time is not very short or both. Besides, in some basic states, local CNOPs are found. The pattern of LSV is more similar to local CNOP than global CNOP in some cases. The elementary application of the method of CNOP to the Jovian atmosphere helps us to explore the stability of variousscale motions of Jupiter’s atmosphere and to compare the stability of motions in Jupiter’s atmosphere and Earth’s atmosphere further.  相似文献   

8.
Some intelligent algorithms (IAs) proposed by us, including swarm IAs and single individual IAs, have been applied to the Zebiak-Cane (ZC) model to solve conditional nonlinear optimal perturbation (CNOP) for studying El Ni?o – Southern Oscillation (ENSO) predictability. Compared to the adjoint-based method (the ADJ-method), which is referred to as a benchmark, these IAs can achieve approximate CNOP results in terms of magnitudes and patterns. Using IAs to solve CNOP can avoid the use of an adjoint model and widen the application of CNOP in numerical climate and weather modeling. Of the proposed swarm IAs, PCA-based particle swarm optimization (PPSO) obtains CNOPs with the best patterns and the best stability. Of the proposed single individual IAs, continuous tabu search algorithm with sine maps and staged strategy (CTS-SS) has the highest efficiency. In this paper, we compare the validity, stability and efficiency of parallel PPSO and CTS-SS using these two IAs to solve CNOP in the ZC model for studying ENSO predictability. The experimental results show that CTS-SS outperforms parallel PPSO except with respect to stability. At the same time, we are also concerned with whether these two IAs can effectively solve CNOP when applied to more complicated models. Taking the sensitive areas identification of tropical cyclone adaptive observations as an example and using the fifth-generation mesoscale model (MM5), we design some experiments. The experimental results demonstrate that each of these two IAs can effectively solve CNOP and that parallel PPSO has a higher efficiency than CTS-SS. We also provide some suggestions on how to choose a suitable IA to solve CNOP for different models.  相似文献   

9.
The linkage between the Arctic and midlatitudes has received much attention recently due to the rapidly changing climate.Many investigations have been conducted to reveal the relationship between the Arctic and Eurasian extreme events from the perspective of climatological statistics.As a prediction source for extreme events in Eurasia,Arctic conditions are crucial for extreme event predictions.Therefore,it is urgent to explore the Arctic influence on the predictability of Eurasian extreme events due to the large uncertainties in Arctic conditions.Considering the sensitivity and nonlinearity of the atmospheric circulations in midlatitude to Arctic conditions,it is necessary to investigate the Arctic influences on Eurasian extreme weather events in case studies at weather time scales.Previous studies indicate that only perturbations in specific patterns have fast growth.Thus,the conditional nonlinear optimal perturbation approach is recommended for exploring the uncertainties in Arctic initial and boundary conditions and their synergistic effect on Eurasian extreme events.Moreover,the mechanism for extreme event formation may differ in different cases.Therefore,more extreme cases should be investigated to reach robust conclusions.  相似文献   

10.
张星  穆穆  王强  张坤 《山东气象》2018,38(1):1-9
对近年来利用条件非线性最优扰动(Conditional Nonlinear Optimal Perturbation,CNOP)方法开展的黑潮目标观测研究进行了总结,主要包括日本南部黑潮路径变异的目标观测研究、黑潮延伸体模态转变的目标观测研究和源区黑潮流量变化的目标观测研究。通过计算这些事件的CNOP型扰动,发现这些事件的CNOP型扰动具有局地特征,可以作为实施目标观测的敏感区。理想回报试验结果表明,如果在由CNOP方法识别的敏感区内实施目标观测,则会大幅度提高上述事件的预报技巧。  相似文献   

11.
条件非线性最优扰动方法在适应性观测研究中的初步应用   总被引:12,自引:3,他引:12  
穆穆  王洪利  周菲凡 《大气科学》2007,31(6):1102-1112
针对适应性观测中敏感性区域的确定问题,考虑初始误差对预报结果的影响, 比较了条件非线性最优扰动(CNOP)与第一线性奇异向量(FSV)在两个降水个例中的空间结构的差异,考察了它们总能量范数随时间发展演变的异同。结合敏感性试验的分析,揭示了预报结果对CNOP类型的初始误差的敏感性要大于对FSV类型的初始误差的敏感性,因而减少初值中CNOP类型误差的振幅比减少FSV类型的收益要大。这一结果表明可以把CNOP方法应用于适应性观测来识别大气的敏感区。关于将CNOP方法有效地应用于适应性观测所面临的挑战及需要采取的对策等也进行了讨论。  相似文献   

12.
The midlatitude westerlies are one of the major components of the global atmospheric circulation. They play an important role in midlatitude weather and climate, and are particularly significant in interpreting aeolian sediments. In this study, we analyzed the behavior and the possible mechanism involved in the change of the westerlies, mainly in terms of the jet stream position, in the mid-Pliocene warm period(3.3 to 3.0 million years ago) using simulations of 15 climate models from the Pliocene Model Intercomparison Project(Plio MIP). Compared to the reference period, the mid-Pliocene midlatitude westerlies generally shifted poleward(approximately 3.6 of latitude in the Northern Hemisphere and 1.9 of latitude in the Southern Hemisphere at 850 h Pa level) with a dipole pattern. The dipole pattern of the tropospheric zonal wind anomalies was closely related to the change of the tropospheric meridional temperature gradient as a result of thermal structure adjustment.The poleward shift of the midlatitude westerly jet corresponded to the poleward shift of the mean meridional circulation.The sea surface temperatures and sea ice may have affected the simulated temperature structure and zonal winds, causing the spread of the westerly anomalies in the mid-Pliocene between the atmosphere-only and coupled atmosphere–ocean general circulation model simulations.  相似文献   

13.
The conditional nonlinear optimal perturbation (CNOP), which is a nonlinear generalization of the linear singular vector (LSV), is applied in important problems of atmospheric and oceanic sciences, including ENSO predictability, targeted observations, and ensemble forecast. In this study, we investigate the computational cost of obtaining the CNOP by several methods. Differences and similarities, in terms of the computational error and cost in obtaining the CNOP, are compared among the sequential quadratic programming (SQP) algorithm, the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm, and the spectral projected gradients (SPG2) algorithm. A theoretical grassland ecosystem model and the classical Lorenz model are used as examples. Numerical results demonstrate that the computational error is acceptable with all three algorithms. The computational cost to obtain the CNOP is reduced by using the SQP algorithm. The experimental results also reveal that the L-BFGS algorithm is the most effective algorithm among the three optimization algorithms for obtaining the CNOP. The numerical results suggest a new approach and algorithm for obtaining the CNOP for a large-scale optimization problem.  相似文献   

14.
利用NCEP/NCAR再分析资料和CPC逐日北极涛动(AO)指数资料,结合近30年欧亚地区地面气温年际异常变化的可能机理,分析了AO异常波动对2012年欧亚地区严寒天气过程的影响。结果表明,AO发生负异常波动对2012年1—2月欧亚地区异常寒冷天气起到至关重要的作用。AO在12月为正异常波动,次年1—2月则呈现负异常波动,其中1月中下旬至2月中旬的负异常波动过程比较显著。在AO负异常影响下,极涡面积增大,冷空气活动加强,中纬度纬向环流减弱而经向环流增强,造成冷、暖空气交换加剧,极地冷空气南下入侵到中纬度地区,从而导致欧亚大陆异常寒冷天气;同时,由北大西洋及地中海北上的暖湿气流,在遭遇冷空气阻碍后给西欧和南欧一些地区带来了大面积的雨雪天气。  相似文献   

15.
In this paper we explore the impact of atmospheric nonlinearities on the optimal growth of initial condition error of El Niño and the Southern Oscillation (ENSO) prediction using singular vector (SV) analysis. This is performed by comparing and analyzing SVs of two hybrid coupled models (HCMs), one composed of an intermediate complexity dynamical ocean model coupled with a linear statistical atmospheric model, and the other one with the same ocean model coupled with a nonlinear statistical atmosphere. Tangent linear and adjoint models for both HCMs are developed. SVs are computed under the initial conditions of seasonal background and actual ENSO cycle simulated by the ocean model forced with the real wind data of 1980–1999. The optimization periods of 3, 6 and 9 months are individually considered. The results show that the first SVs in both HCMs are very similar to each other, characterized by a central east-west dipole pattern spanning over the entire tropical Pacific. The spatial patterns of the leading SV in both HCMs are not sensitive to optimization periods and initial time. However, the first singular value, indicating the optimal growth rate of prediction error, displays considerable differences between the two HCMs, indicating a significant impact of atmospheric nonlinearities on the optimal growth of ENSO prediction error. These differences are greater with increasing optimization time, suggesting that the impact of atmospheric nonlinearities on the optimal growth of prediction error becomes larger for a longer period of prediction.  相似文献   

16.
Baroclinic instability of a zonal flow with latitudinal structure is examined using a nonlinear quasi-geostrophic, two-level β-plane model. An initially small perturbation with the structure of the linearly most unstable mode is allowed to grow to finite amplitude through nonlinear interaction. Because of latitudinal asymmetries of the basic zonal flow, a spectrum of meridional modes is generated in the perturbation. The time evolution of zonal wind and perturbation meridional structures, and their Fourier meridional mode spectra are examined. The radius of deformation is an important meridional scale in both the zonal flow and perturbation. This is especially true during the barotropic decay phase of the baroclinic wave. Time series of energy conversion terms show there is no energy accumulation.  相似文献   

17.
Due to uncertainties in initial conditions and parameters,the stability and uncertainty of grassland ecosystem simulations using ecosystem models are issues of concern.Our objective is to determine the types and patterns of initial and parameter perturbations that yield the greatest instability and uncertainty in simulated grassland ecosystems using theoretical models.We used a nonlinear optimization approach,i.e.,a conditional nonlinear optimal perturbation related to initial and parameter perturbations (CNOP) approach,in our work.Numerical results indicated that the CNOP showed a special and nonlinear optimal pattern when the initial state variables and multiple parameters were considered simultaneously.A visibly different complex optimal pattern characterizing the CNOPs was obtained by choosing different combinations of initial state variables and multiple parameters in different physical processes.We propose that the grassland modeled ecosystem caused by the CNOP-type perturbation is unstable and exhibits two aspects:abrupt change and the time needed for the abrupt change from a grassland equilibrium state to a desert equilibrium state when the initial state variables and multiple parameters are considered simultaneously.We compared these findings with results affected by the CNOPs obtained by considering only uncertainties in initial state variables and in a single parameter.The numerical results imply that the nonlinear optimal pattern of initial perturbations and parameter perturbations,especially for more parameters or when special parameters are involved,plays a key role in determining stabilities and uncertainties associated with a simulated or predicted grassland ecosystem.  相似文献   

18.
GRAPES全球奇异向量方法改进及试验分析   总被引:4,自引:0,他引:4  
李晓莉  刘永柱 《气象学报》2019,77(3):552-562
基于总能量模的奇异向量扰动常用于构造集合预报的初始条件。以建立GRAPES(Global and Regional Assimilation PrEdiction System)全球集合预报系统为目的,基于前期研发的GRAPES全球模式奇异向量方法,在GRAPES全球切线性模式和伴随模式2.0版的框架下,开展了引入线性化边界层方案来改善奇异向量结构,并提高奇异向量计算效率的研究。通过连续试验,从奇异向量的扰动能量结构、扰动能量谱及扰动空间分布等方面,综合分析改进GRAPES全球奇异向量的结构及演变特征。试验结果表明,改进后的GRAPES奇异向量方法有效抑制了之前扰动能量在近地面层不合理的快速增长,同时,奇异向量最优扰动的结构更客观地体现了中高纬度区域大气初始条件中的斜压不稳定扰动及其演变,如在初始时刻奇异向量扰动能量主要位于对流层中层,并呈现出随高度向西倾斜的大气斜压特征;经过线性化演变,扰动能量向较大水平尺度转移,并在垂直结构上表现出向对流层高层上传及向对流层低层下传的特征等。针对GRAPES奇异向量迭代求解中伴随模式计算耗时为主的情况,改进伴随模式中广义共轭余差方案的调用方式,并采用大内存存储法来提高其计算效率,进而将奇异向量总计算时间缩短了25%。总之,改进后的GRAPES奇异向量方法,可应用于构建面向业务应用的GRAPES全球集合预报系统。   相似文献   

19.
ENSO机理及其预测研究   总被引:19,自引:0,他引:19  
李崇银  穆穆  周广庆 《大气科学》2008,32(4):761-781
资料分析研究表明ENSO(El Ni?o和La Ni?a)实际上是热带太平洋次表层海温距平的循环,而次表层海温距平的循环是赤道西太平洋异常纬向风所驱动的,赤道西太平洋的异常纬向风又主要由异常东亚冬季风所激发。因此可以将ENSO的机理视为主要是由东亚季风异常造成的赤道西太平洋异常纬向风所驱动的热带太平洋次表层海温距平的循环。同时分析还表明,热带西太平洋大气季节内振荡(ISO)的明显年际变化,作为一种外部强迫,对ENSO循环起着十分重要的作用;El Ni?o的发生同大气ISO的明显系统性东传有关。资料分析也表明,El Ni?o持续时间的长短与大气环流异常有密切关系。 用非线性最优化方法研究El Ni?o-南方涛动(ENSO)事件的可预报性问题,揭示了最容易发展成ENSO事件的初始距平模态,即条件非线性最优扰动(CNOP)型初始距平;找出能够导致显著春季可预报性障碍(SPB),且对ENSO预报结果有最大影响的一类初始误差——CNOP型初始误差,进而探讨耦合过程的非线性在SPB研究中的重要作用,提出了关于ENSO事件发生SPB的一种可能机制;用CNOP方法揭示了ENSO强度的不对称现象,探讨ENSO不对称性的年代际变化问题,提出ENSO不对称性年代际变化的一种机制;建立了关于ENSO可预报性的最大可预报时间下界、最大预报误差上界和最大允许初始误差下界的三类可预报性问题,分别从三个方面揭示ENSO事件的春季可预报性障碍现象,比较有效地量化了模式ENSO事件的可预报性。 利用中国科学院大气物理研究所地球流体力学数值模拟国家重点实验室的ENSO预测系统,研究了海洋资料同化在ENSO预测中的应用,该系统可以同时对温、盐剖面资料和卫星高度计资料进行同化。并且在模式中采用次表层上卷海温的非局地参数化方法,可有效地改进ENSO模拟水平。采用集合卡曼滤波(Ensemble Kalman Filter,EnKF)同化方法以及在集合资料同化中“平衡的”多变量模式误差扰动方法为集合预报提供更加精确和协调的初始场,ENSO预报技巧得到提高。  相似文献   

20.
Recent progress in the study of nonlinear atmospheric dynamics and related predictability of weather and climate in China (2007-2011) are briefly introduced in this article. Major achievements in the study of nonlinear atmospheric dynamics have been classified into two types:(1) progress based on the analysis of solutions of simplified control equations, such as the dynamics of NAO, the optimal precursors for blocking onset, and the behavior of nonlinear waves, and (2) progress based on data analyses, such as the nonlinear analyses of fluctuations and recording-breaking temperature events, the long-range correlation of extreme events, and new methods of detecting abrupt dynamical change. Major achievements in the study of predictability include the following:(1) the application of nonlinear local Lyapunov exponents (NLLE) to weather and climate predictability; (2) the application of condition nonlinear optimal perturbation (CNOP) to the studies of El Nin o-Southern Oscillation (ENSO) predictions, ensemble forecasting, targeted observation, and sensitivity analysis of the ecosystem; and (3) new strategies proposed for predictability studies. The results of these studies have provided greater understanding of the dynamics and nonlinear mechanisms of atmospheric motion, and they represent new ideas for developing numerical models and improving the forecast skill of weather and climate events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号