首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper,a nonlinear optimization method is used to explore the finite-time instability of the atmospheric circulation with a three-level quasigeostrophic model under the framework of the conditional nonlinear optimal perturbation (CNOP).As a natural generalization of linear singular vector (SV),CNOP is defined as an initial perturbation that makes the cost function the maximum at a prescribed forecast time under certain physical constraint conditions.Special attentions are paid to the different structures and energy evolutions of the optimal perturbations.The results show that the most instable region of the global atmospheric circulation lies in the midlatitude Eurasian continent.More specially,SV and CNOP in the total energy norm with an optimization time of 2 days both present localness:they are mainly located in the midlatitude Asian continent and its east coast.With extension of the optimization time,SVs are more upstream and less localized in the zonal direction,and CNOPs differ essentially from SVs with broader zonal and meridional coverages; as a result,CNOPs acquire larger kinetic and available potential energy amplifications than SVs in the nonlinear model at the corresponding optimization time.For the climatological wintertime flow,it is seen that the baroclinic terms remain small over the entire time evolution,and the energy production comes essentially from the eddy kinetic energy,which is induced by the horizontal shear of the basic flow.In addition,the effects of SVs and CNOPs on the Eurasian atmospheric circulation are explored.The results show that the weather systems over the Eurasian continent in the perturbed fields by CNOPs are stronger than those by SVs at the optimization time.This reveals that the CNOP method is better in evaluating the instability of the atmospheric circulation while the SV method underestimates the possibility of extreme weather events.  相似文献   

2.
This paper preliminarily investigates the application of the orthogonal conditional nonlinear optimal perturbations(CNOPs)–based ensemble forecast technique in MM5(Fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model). The results show that the ensemble forecast members generated by the orthogonal CNOPs present large spreads but tend to be located on the two sides of real tropical cyclone(TC) tracks and have good agreements between ensemble spreads and ensemble-mean forecast errors for TC tracks. Subsequently, these members reflect more reasonable forecast uncertainties and enhance the orthogonal CNOPs–based ensemble-mean forecasts to obtain higher skill for TC tracks than the orthogonal SVs(singular vectors)–, BVs(bred vectors)– and RPs(random perturbations)–based ones. The results indicate that orthogonal CNOPs of smaller magnitudes should be adopted to construct the initial ensemble perturbations for short lead–time forecasts, but those of larger magnitudes should be used for longer lead–time forecasts due to the effects of nonlinearities. The performance of the orthogonal CNOPs–based ensemble-mean forecasts is case-dependent,which encourages evaluating statistically the forecast skill with more TC cases. Finally, the results show that the ensemble forecasts with only initial perturbations in this work do not increase the forecast skill of TC intensity, which may be related with both the coarse model horizontal resolution and the model error.  相似文献   

3.
In this paper, several sets of observing system simulation experiments (OSSEs) were designed for three typhoon cases to determine whether or not the additional observation data in the sensitive regions identified by conditional nonlinear optimal perturbations (CNOPs) could improve the short-range forecast of typhoons. The results show that the CNOPs capture the sensitive regions for typhoon forecasts, which implies that conducting additional observation in these specific regions and eliminating initial errors could reduce forecast errors. It is inferred from the results that dropping sondes in the CNOP sensitive regions could lead to improvements in typhoon forecasts.  相似文献   

4.
条件非线性最优扰动方法在适应性观测研究中的初步应用   总被引:12,自引:3,他引:12  
穆穆  王洪利  周菲凡 《大气科学》2007,31(6):1102-1112
针对适应性观测中敏感性区域的确定问题,考虑初始误差对预报结果的影响, 比较了条件非线性最优扰动(CNOP)与第一线性奇异向量(FSV)在两个降水个例中的空间结构的差异,考察了它们总能量范数随时间发展演变的异同。结合敏感性试验的分析,揭示了预报结果对CNOP类型的初始误差的敏感性要大于对FSV类型的初始误差的敏感性,因而减少初值中CNOP类型误差的振幅比减少FSV类型的收益要大。这一结果表明可以把CNOP方法应用于适应性观测来识别大气的敏感区。关于将CNOP方法有效地应用于适应性观测所面临的挑战及需要采取的对策等也进行了讨论。  相似文献   

5.
汪叶  段晚锁 《大气科学》2019,43(4):915-929
初始扰动振幅的大小和集合样本数对于集合预报取得更高预报技巧具有重要意义。本文将正交条件非线性最优扰动方法(orthogonal conditional nonlinear optimal perturbations,简称CNOPs)应用于概念模型Lorenz-96模式探讨了初始扰动振幅和集合样本数对集合预报技巧的影响,从而为使用更复杂模式进行集合预报提供指导。结果表明,由于CNOPs扮演了非线性系统中的最优初始扰动,从而使得当初始扰动振幅小于初始分析误差的大小时,CNOPs集合预报获得更高的预报技巧,并且CNOPs集合预报的最高预报技巧总是高于奇异向量法(singular vectors,简称SVs)集合预报的最高预报技巧。结果还表明,CNOPs集合预报倾向于具有一个合适的样本数时,达到最高技巧。更好的集合离散度——预报误差关系和更为平坦的Talagrand图(Talagrand diagram)进一步证明了CNOPs集合预报系统的可靠性,从而夯实了上述结果的合理性。因此,针对CNOPs集合预报,本文认为采用一个适当小于初始分析误差的初始扰动振幅和一个合适的集合样本数,有利于CNOPs集合预报达到最高预报技巧。  相似文献   

6.
A two-layer quasi-geostrophic model is used to study the stability and sensitivity of motions on smallscale vortices in Jupiter’s atmosphere. Conditional nonlinear optimal perturbations (CNOPs) and linear singular vectors (LSVs) are both obtained numerically and compared in this paper. The results show that CNOPs can capture the nonlinear characteristics of motions in small-scale vortices in Jupiter’s atmosphere and show great difference from LSVs under the condition that the initial constraint condition is large or the optimization time is not very short or both. Besides, in some basic states, local CNOPs are found. The pattern of LSV is more similar to local CNOP than global CNOP in some cases. The elementary application of the method of CNOP to the Jovian atmosphere helps us to explore the stability of variousscale motions of Jupiter’s atmosphere and to compare the stability of motions in Jupiter’s atmosphere and Earth’s atmosphere further.  相似文献   

7.
The initial errors constitute one of the main limiting factors in the ability to predict the El Nio–Southern Oscillation(ENSO) in ocean–atmosphere coupled models. The conditional nonlinear optimal perturbation(CNOP) approach was employed to study the largest initial error growth in the El Nio predictions of an intermediate coupled model(ICM). The optimal initial errors(as represented by CNOPs) in sea surface temperature anomalies(SSTAs) and sea level anomalies(SLAs) were obtained with seasonal variation. The CNOP-induced perturbations, which tend to evolve into the La Nia mode, were found to have the same dynamics as ENSO itself. This indicates that, if CNOP-type errors are present in the initial conditions used to make a prediction of El Nio, the El Nio event tends to be under-predicted. In particular, compared with other seasonal CNOPs, the CNOPs in winter can induce the largest error growth, which gives rise to an ENSO amplitude that is hardly ever predicted accurately. Additionally, it was found that the CNOP-induced perturbations exhibit a strong spring predictability barrier(SPB) phenomenon for ENSO prediction. These results offer a way to enhance ICM prediction skill and, particularly,weaken the SPB phenomenon by filtering the CNOP-type errors in the initial state. The characteristic distributions of the CNOPs derived from the ICM also provide useful information for targeted observations through data assimilation. Given the fact that the derived CNOPs are season-dependent, it is suggested that seasonally varying targeted observations should be implemented to accurately predict ENSO events.  相似文献   

8.
The singular vector (SV) initial perturbation method can capture the fastest-growing initial perturbation in a tangent linear model (TLM). Based on the global tangent linear and adjoint model of GRAPES-GEPS (Global/Regional Assimilation and Prediction System—Global Ensemble Prediction System), some experiments were carried out to analyze the structure of the moist SVs from the perspectives of the energy norm, energy spectrum, and vertical structure. The conclusions are as follows: The evolution of the SVs is synchronous with that of the atmospheric circulation, which is flow-dependent. The moist and dry SVs are located in unstable regions at mid-to-high latitudes, but the moist SVs are wider, can contain more small- and medium-scale information, and have more energy than the dry SVs. From the energy spectrum analysis, the energy growth caused by the moist SVs is reflected in the relatively small-scale weather system. In addition, moist SVs can generate perturbations associated with large-scale condensation and precipitation, which is not true for dry SVs. For the ensemble forecasts, the average anomaly correlation coefficient of large-scale circulation is better for the forecast based on moist SVs in the Northern Hemisphere, and the low-level variables forecasted by the moist SVs are also improved, especially in the first 72 h. In addition, the moist SVs respond better to short-term precipitation according to statistical precipitation scores based on 10 cases. The inclusion of the large-scale condensation process in the calculation of SVs can improve the short-term weather prediction effectively.  相似文献   

9.
Previous studies have shown that Regional Climate Models (RCM) internal variability (IV) fluctuates in time depending on synoptic events. This study focuses on the physical understanding of episodes with rapid growth of IV. An ensemble of 21 simulations, differing only in their initial conditions, was run over North America using version 5 of the Canadian RCM (CRCM). The IV is quantified in terms of energy of CRCM perturbations with respect to a reference simulation. The working hypothesis is that IV is arising through rapidly growing perturbations developed in dynamically unstable regions. If indeed IV is triggered by the growth of unstable perturbations, a large proportion of the CRCM perturbations must project onto the most unstable singular vectors (SVs). A set of ten SVs was computed to identify the orthogonal set of perturbations that provide the maximum growth with respect to the dry total-energy norm during the course of the CRCM ensemble of simulations. CRCM perturbations were then projected onto the subspace of SVs. The analysis of one episode of rapid growth of IV is presented in detail. It is shown that a large part of the IV growth is explained by initially small-amplitude unstable perturbations represented by the ten leading SVs, the SV subspace accounting for over 70% of the CRCM IV growth in 36?h. The projection on the leading SV at final time is greater than the projection on the remaining SVs and there is a high similarity between the CRCM perturbations and the leading SV after 24–36?h tangent-linear model integration. The vertical structure of perturbations revealed that the baroclinic conversion is the dominant process in IV growth for this particular episode.  相似文献   

10.
采用线性化物理过程方案的GRAPES全球模式奇异向量在进行非线性模式积分时会有部分奇异向量出现崩溃问题,这说明奇异向量结构可能存在扰动变量之间不协调之处,需要对奇异向量扰动的计算方法优化,进而改进基于奇异向量的集合预报初值扰动,提高GRAPES全球集合预报效果。基于原有的GRAEPS全球奇异向量计算方法,在求解奇异向量时,对气压扰动的处理进行改进,将初始时刻的气压扰动分量通过位温扰动根据静力平衡关系导出获得,其他保持一致,发展了静力平衡奇异向量改进方法。基于有两个台风过程的个例(2019年8月8日12时(世界时)),分别采用原奇异向量方法和静力平衡奇异向量改进方法进行热带气旋目标区奇异向量的计算求解,并进行相应奇异向量的非线性模式积分,对比分析奇异向量非线性积分的稳定性。进而,对比分析奇异向量求解方法改进前、后热带气旋奇异向量的结构特征和初值扰动特征,开展了集合预报试验,评估改进后的奇异向量求解方法对GRAPES全球集合预报系统预报性能的影响。试验结果表明,静力平衡奇异向量改进方法通过产生协调的气压扰动和位温扰动场,解决了奇异向量非线性积分崩溃的问题,消除了原来不利于积分稳定性的气压扰动过于局地化的小尺度结构。静力平衡奇异向量改进方法对奇异向量中位温扰动分量和纬向风扰动分量结构影响较小,使得气压扰动分量的大值区位于台风附近,更好地描述热带气旋初值不确定性,与位温扰动分量的分布更加协调。采用静力平衡奇异向量改进方法,可以提高GRAPES全球集合预报在北半球和南半球等压面要素集合预报技巧和中国地区24 h累计降水概率预报技巧,增大台风路径集合离散度。   相似文献   

11.
Initial perturbation scheme is one of the important problems for ensemble prediction. In this paper, ensemble initial perturbation scheme for Global/Regional Assimilation and PrEdiction System (GRAPES) global ensemble prediction is developed in terms of the ensemble transform Kalman filter (ETKF) method.A new GRAPES global ensemble prediction system (GEPS) is also constructed. The spherical simplex 14-member ensemble prediction experiments, using the simulated observation network and error characteristics of simulated observations and innovation-based in ation, are carried out for about two months. The structure characters and perturbation amplitudes of the ETKF initial perturbations and the perturbation growth characters are analyzed, and their qualities and abilities for the ensemble initial perturbations are given. The preliminary experimental results indicate that the ETKF-based GRAPES ensemble initial perturbations could identify main normal structures of analysis error variance and reflect the perturbation amplitudes.The initial perturbations and the spread are reasonable. The initial perturbation variance, which is approximately equal to the forecast error variance, is found to respond to changes in the observational spatial variations with simulated observational network density. The perturbations generated through the simplex method are also shown to exhibit a very high degree of consistency between initial analysis and short-range forecast perturbations. The appropriate growth and spread of ensemble perturbations can be maintained up to 96-h lead time. The statistical results for 52-day ensemble forecasts show that the forecast scores ofensemble average for the Northern Hemisphere are higher than that of the control forecast. Provided that using more ensemble members, a real-time observational network and a more appropriate inflation factor,better effects of the ETKF-based initial scheme should be shown.  相似文献   

12.
In ensemble forecast,by summing up ensemble members,filtering the uncertainty,and retaining the common component,the ensemble mean with a better result can be achieved.However,the filtering works only when the initial perturbation develops nonlinearly.If the initial perturbation propagates in a linear space,the positive and negative members will counteract,leading to little difference between ensemble mean and control forecast and finally insignificant ensemble result.In 1 2-day ensemble forecast,based on singular vector (SV) calculations,to avoid this insignificance,the counteracting members originated from the same SV are advised not to put into the ensemble system together;the only candidate should be the one with the better forecast.Based on the ingredient analysis of initial perturbation development,a method to select ensemble members is presented in this paper,which can fulfill the above requirement.The regional model MM5V1 of NCAR/PSU (National Center for Atmosphere Research/Pennsylvania State University) and its corresponding tangent adjoint model are used.The ensemble spread and forecast errors are calculated with dry energy norm.Two mesoscale lows on the Meiyu front along the Yangtze River are examined.According to the analysis of the perturbation ingredient,among couples of counteracting members from different SVs,those members performing better always have smaller or greater spread compared with other members.Following this thinking,an optimized ensemble and an inferior ensemble are identified.The ensemble mean of the optimized ensemble is more accurate than that of the inferior ensemble,and the former also performs better than the traditional ensemble with positive and negative members simultaneously.As for growth of the initial perturbation,those initial perturbations originated from the summed SVs grow more quickly than those from the single SV,and they enlarge the range of spread of the ensemble effectively,thus leading to better performance of ensemble members.  相似文献   

13.
为描述GRAPES全球模式初始条件的不确定性,基于适合集合预报应用的GRAPES全球奇异向量技术,依据大气初始误差符合正态分布的特征,采用高斯取样奇异向量来构造全球集合预报初始扰动,在此基础上建立了GRAPES全球集合预报系统(GRAPES-GEPS)。利用GRAPES全球同化分析场,对采用初始扰动的GRAPES-GEPS连续试验预报结果进行检验和分析。结果表明:GRAPES-GEPS中高度场、风场及温度场预报的集合离散度能有效快速增加,集合平均均方根误差与集合离散度的关系合理;相对控制预报的均方根误差,集合平均的预报优势在预报中期非常显著。为进一步体现GRAPES-GEPS中模式物理过程的不确定性,发展了模式物理过程倾向随机扰动技术(SPPT)。试验结果表明:SPPT方案的应用有效提高了GRAPES-GEPS在南、北半球和热带地区等压面要素预报的集合离散度,同时一定程度减小了集合平均误差,进而改进了集合平均误差与集合离散度的关系,其中SPPT方案在热带地区的改进最为显著。本文发展的基于奇异向量的初始扰动方法和模式扰动SPPT方案在中国气象局2018年12月业务化运行的GRAPES-GEPS中得到了应用。  相似文献   

14.
The sensitive regions of conditional nonlinear optimal perturbations (CNOPs) and the first singular vector (FSV) for a northwest Pacific typhoon case are reported in this paper. A large number of probes have been designed in the above regions and the ensemble transform Kalman filter (ETKF) techniques are utilized to examine which approach can locate more appropriate regions for typhoon adaptive observations. The results show that, in general, the majority of the probes in the sensitive regions of CNOPs can reduce more forecast error variance than the probes in the sensitive regions of FSV. This implies that adaptive observations in the sensitive regions of CNOPs are more effective than in the sensitive regions of FSV. Furthermore, the reduction of the forecast error variance obtained by the best probe identified by CNOPs is twice the reduction of the forecast error variance obtained by FSV. This implies that dropping sondes, which is the best probe identified by CNOPs, can improve the forecast more than the best probe identified by FSV. These results indicate that the sensitive regions identified by CNOPs are more appropriate for adaptive observations than those identified by FSV.  相似文献   

15.
奇异向量(singular vectors,SVs)和条件非线性最优扰动(conditional nonlinear optimal perturbation,CNOP)已广泛应用于研究大气—海洋系统的不稳定性以及与其相关的可预报性、集合预报和目标观测问题研究。本文首先回顾了SVs和CNOP的发展历史,并简单描述了它们的基本原理;然后针对二维正压准地转模式,使用不同的范数组合,分析了第一线性奇异向量(first singular vector,FSV)和CNOP之间的异同。结果表明,当优化时间较短时,度量SVs和CNOP大小的范数不同也将导致FSV和CNOP相差很大,而当度量SVs和CNOP大小的范数相同时,FSV和CNOP之间的差别则主要是由非线性物理过程作用的结果。因此,针对不同的物理问题,应该选取合适的度量范数研究FSV和CNOP以及其所引起的大气或海洋动力学的异同,从而揭示非线性物理过程的影响机理。  相似文献   

16.
以发展基于奇异向量技术为初值扰动的GRAPES全球集合预报系统为目的,在GRAPES模式及其干动力框架下的切线性、伴随模式基础上开展了以总能量模为权重算子的奇异向量计算技术研究,建立奇异向量的计算求解模块,并通过奇异向量检验方法和切线性近似方法验证了奇异向量求解的正确性.通过对中高纬度的GRAPES奇异向量水平结构的线性演变分析,证实了在最优时间间隔内GRAPES奇异向量能够快速增长,并能描述中高纬度大气的斜压不稳定特征.分析在初始时刻和最优化时间间隔时刻的GRAPES奇异向量总能量及其分量(动能和势能)的垂直分布特征,发现在中高纬度区域,GRAPES奇异向量能够描述对流层不同层次的斜压不稳定增长特征.  相似文献   

17.
王静  刘娟娟  王斌  陈静  刘永柱 《大气科学》2021,45(4):874-888
湿奇异向量(Moist Singular Vectors,简称MSVs)是包含了湿物理切线性过程计算得到的奇异向量。研究MSVs对最优化时间间隔(optimization time interval,简称OTI)及模式水平分辨率的敏感性对提高集合预报效果至关重要。本文基于中国气象局数值预报中心自主研发的全球/区域同化和预报系统(Global/Regional Assimilation and Prediction System,简称GRAPES)——全球集合预报系统(Global ensemble prediction system,简称GEPS)业务版本研究了4组不同时空尺度(不同OTI和水平分辨率)下的MSVs,从能量模、能量谱、空间剖面等方面分析热带外MSVs特征,并从等压面变量评分、降水评分、降水概率预报等方面评估不同初值的集合预报效果。结果表明:提高MSVs水平分辨率可使其扰动具有较大的增长率,缩短OTI后MSVs能量向上传播的趋势更明显,并可以在中尺度范围产生较大SVs扰动。不同OTI下初始MSVs相似性较低,结构差异较大。从集合预报的结果来看,OTI为24 h试验的集合扰动能量增长较大,集合离散度在预报的0~96 h有明显提升,特别是2 m温度,且近地面要素的outlier评分也有明显改进。进一步分析发现,提高水平分辨率和缩短OTI的MSVs能够提高降水概率预报,而降水评分显示,同一水平分辨率下,OTI越短评分越好,但是提高MSVs的水平分辨率并不一定会提升小雨到中雨量级的降水评分。  相似文献   

18.
穆穆  段晚锁  徐辉  王波 《大气科学进展》2006,23(6):992-1002
Considering the limitation of the linear theory of singular vector (SV), the authors and their collaborators proposed conditional nonlinear optimal perturbation (CNOP) and then applied it in the predictability study and the sensitivity analysis of weather and climate system. To celebrate the 20th anniversary of Chinese National Committee for World Climate Research Programme (WCRP), this paper is devoted to reviewing the main results of these studies. First, CNOP represents the initial perturbation that has largest nonlinear evolution at prediction time, which is different from linear singular vector (LSV) for the large magnitude of initial perturbation or/and the long optimization time interval. Second, CNOP, rather than linear singular vector (LSV), represents the initial anomaly that evolves into ENSO events most probably. It is also the CNOP that induces the most prominent seasonal variation of error growth for ENSO predictability; furthermore, CNOP was applied to investigate the decadal variability of ENSO asymmetry. It is demonstrated that the changing nonlinearity causes the change of ENSO asymmetry. Third, in the studies of the sensitivity and stability of ocean’s thermohaline circulation (THC), the nonlinear asymmetric response of THC to finite amplitude of initial perturbations was revealed by CNOP. Through this approach the passive mechanism of decadal variation of THC was demonstrated; Also the authors studies the instability and sensitivity analysis of grassland ecosystem by using CNOP and show the mechanism of the transitions between the grassland and desert states. Finally, a detailed discussion on the results obtained by CNOP suggests the applicability of CNOP in predictability studies and sensitivity analysis.  相似文献   

19.
基于副热带奇异向量的初值扰动方法已应用于GRAPES (Global and Regional Assimilation PrEdiction System)全球集合预报系统,但存在热带气旋预报路径离散度不足的问题。通过分析发现,热带气旋附近区域初值扰动结构不合理导致预报集合不能较好地估计热带气旋预报的不确定性,是路径集合离散度不足的可能原因之一。通过建立热带气旋奇异向量求解方案,将热带气旋奇异向量和副热带奇异向量共同线性组合生成初值扰动,以弥补热带气旋区域初值扰动结构不合理这一缺陷,进而改进热带气旋集合预报效果。利用GRAPES全球奇异向量计算方案,以台风中心10个经纬度区域为目标区构建热带气旋奇异向量求解方案,针对台风“榕树”个例进行集合预报试验,并开展批量试验,利用中国中央气象台最优台风路径和中国国家气象信息中心的降水观测资料进行检验,对比分析热带气旋奇异向量结构特征和初值扰动特征,评估热带气旋奇异向量对热带气旋路径集合预报和中国区域24 h累计降水概率预报技巧的影响。结果表明,热带气旋奇异向量具有局地化特征,使用热带气旋奇异向量之后,热带气旋路径离散度增加,路径集合平均预报误差和离散度的关系得到改善,路径集合平均预报误差有所减小,集合成员更好地描述了热带气旋路径的预报不确定性;中国台风降水的小雨、中雨、大雨、暴雨各量级24 h累计降水概率预报技巧均有一定提高。总之,当在初值扰动的生成中考虑热带气旋奇异向量后,可改进热带气旋初值扰动结果,并有助于改善热带气旋路径集合预报效果。   相似文献   

20.
In this paper, a nonlinear optimization method is used to explore the finite-time instability of the atmospheric circulation with a three-level quasigeostrophic model under the framework of the conditional nonlinear optimal perturbation (CNOP). As a natural generalization of linear singular vector (SV), CNOP is defined as an initial perturbation that makes the cost function the maximum at a prescribed forecast time under certain physical constraint conditions. Special attentions are paid to the different structures and energy evolutions of the optimal perturbations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号