首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wave energy resources assessment is a very important process before the exploitation and utilization of the wave energy. At present, the existing wave energy assessment is focused on theoretical wave energy conditions for interesting areas. While the evaluation for exploitable wave energy conditions is scarcely ever performed.Generally speaking, the wave energy are non-exploitable under a high sea state and a lower sea state which must be ignored when assessing wave energy. Aiming at this situation, a case study of the East China Sea and the South China Sea is performed. First, a division basis between the theoretical wave energy and the exploitable wave energy is studied. Next, based on recent 20 a ERA-Interim wave field data, some indexes including the spatial and temporal distribution of wave power density, a wave energy exploitable ratio, a wave energy level, a wave energy stability, a total wave energy density, the seasonal variation of the total wave energy and a high sea condition frequency are calculated. And then the theoretical wave energy and the exploitable wave energy are compared each other; the distributions of the exploitable wave energy are assessed and a regional division for exploitable wave energy resources is carried out; the influence of the high sea state is evaluated. The results show that considering collapsing force of the high sea state and the utilization efficiency for wave energy, it is determined that the energy by wave with a significant wave height being not less 1 m or not greater than 4 m is the exploitable wave energy. Compared with the theoretical wave energy, the average wave power density, energy level, total wave energy density and total wave energy of the exploitable wave energy decrease obviously and the stability enhances somewhat. Pronounced differences between the theoretical wave energy and the exploitable wave energy are present. In the East China Sea and the South China Sea, the areas of an abundant and stable exploitable wave energy are primarily located in the north-central part of the South China Sea, the Luzon Strait,east of Taiwan, China and north of Ryukyu Islands; annual average exploitable wave power density values in these areas are approximately 10–15 k W/m; the exploitable coefficient of variation(COV) and seasonal variation(SV)values in these areas are less than 1.2 and 1, respectively. Some coastal areas of the Beibu Gulf, the Changjiang Estuary, the Hangzhou Bay and the Zhujiang Estuary are the poor areas of the wave energy. The areas of the high wave energy exploitable ratio is primarily in nearshore waters. The influence of the high sea state for the wave energy in nearshore waters is less than that in offshore waters. In the areas of the abundant wave energy, the influence of the high sea state for the wave energy is prominent and the utilization of wave energy is relatively difficult. The developed evaluation method may give some references for an exploitable wave energy assessment and is valuable for practical applications.  相似文献   

2.
Mehmet zger  Zekai en 《Ocean Engineering》2008,35(17-18):1700-1706
The statistical behavior of wave energy at a site strongly depends on the wave characteristics. Wave energy converters fail to produce energy when there are no sufficiently available wave heights. Hence, evaluation of return periods and risk values of the minimum wave height becomes important for wave energy studies. A time index representing the minimum wave height is proposed here for ocean wave applications. Persistence plays a significant role in the calculation of return period and risk. Although ignoring the serial independence makes calculations easy, it leads to overestimations of the real status. In this paper, return periods and risk values are compared with each other by taking into consideration independent and dependent situations. Application of the study is achieved for the stations located in the Pacific Ocean and Gulf of Mexico.  相似文献   

3.
基于开源程序REEF3D,通过建立高精度二维数值波浪水槽,系统研究了聚焦波浪在浅堤上传播变形的规律,着重分析了聚焦波浪通过浅堤的水动力过程及能量变化规律,讨论了不同波浪要素对聚焦波浪传播特性的影响。除此之外,还考虑了双浅堤布置对聚焦波浪传播变形的影响。研究结果表明:极端波浪通过浅堤时,堤顶水深越小,波浪主频能量衰减越显著。在给定堤顶水深条件下,聚焦点与浅堤的相对位置对聚焦波浪能量的衰减影响较小。在双浅堤布置条件下,随着浅堤间距的增加,上下游浅堤的相互影响逐渐减弱,高频段的波浪能量也随之减小。  相似文献   

4.
杨武  白志刚  余海涛  马暄  臧颖  陈成  戴磊 《海洋工程》2016,34(5):101-108
海洋波浪能可再生能源的开发是未来发展的趋势,开发设计更为高效的波能转换利用装置是开发利用波浪能的关键。根据脉搏脉动机理,设计发明了一种柔性胶囊发电装置,利用柔性结构的强收缩性,让其随着波峰波谷收缩扩张,进而形成脉动来传输水体,使相连尾端竖管内水位随着脉动骤升骤降来压缩排出和快速吸入空气。进行了一系列探索性实验,着重研究柔性材料厚度、波高、周期、气室孔径对该试验装置的波能转换率的影响,数据表明,柔性硅胶管有很好的聚波作用,气室的设计和建造对波能转换效率有较大的影响。  相似文献   

5.
福建沿海海域波浪能资源分析与评价   总被引:2,自引:0,他引:2  
张军  许金电  郭小钢 《台湾海峡》2012,31(1):130-135
采用波浪模拟的方法,较准确计算得出福建沿海海域波浪能资源分布状况,并给出相应的分析和综合评价.主要结论如下:(1)福建沿海海域波浪能平均密度为2.6~7.3 kW/m,波浪能资源储量为2 210.45 MW,在我国沿海海域仅次于台湾和广东,是波浪能开发利用可以优先考虑的海区之一.(2)福建沿海海域波浪能资源储量的70%分布于平潭岛以北海域,其值达1 512.49 MW.其中,尤以北礵地区值最大,为378.80 MW.(3)以年平均波高为指标,福建沿海海域中东山区段为三类区,其他区段均为一类区和二类区,具有良好的开发前景.(4)福建沿海海域波浪能具有波功率密度低、资源分布广泛且不均匀、波功率密度随季节变化、能量具有多向性等分布特点.(5)基于福建波浪能的开发与利用现状,建议应优先着眼于解决边远海岛等特殊场所的用电问题.  相似文献   

6.
波浪能是一种清洁、可再生的新型能源,波浪能发电装置在海上作业时会受到变化的风、浪、流载荷作用,需要系泊系统保证其稳性和安全性。以适用于中国南海500 m水深的振荡双浮体式波浪能发电装置为研究对象,运用频域计算与时域计算结合的方法对双浮体及其系泊系统的运动响应和动力载荷进行计算,获取极端海况与工作海况下浮体运动和系泊缆索张力的时历数据。参照BV船级社NR-493规定的海上浮式结构物系泊安全系数规范,对3种系泊方案进行安全校核和对比分析。选定其中一种系泊方案,通过改变系泊系统以及能量转换器(PTO)的参数,探究参数变化对双体波浪能装置运动响应以及系泊系统特性的影响,为类似应用于深水的双体波浪能装置系泊系统的设计提供参考。  相似文献   

7.
山东省周边海域波浪能资源评估   总被引:2,自引:0,他引:2  
采用第三代海浪模式SWAN对2001-2010年期间山东省周边海域的波浪状况进行了数值模拟。波浪能数值模拟值与台站观测值的比对结果表明模拟值可靠、实用。分析发现山东省周边海域平均波能流密度以2 000W/m以下为主,低于中国南部海域及欧美沿岸波能流密度。选取12个典型代表点,从波能流密度大小、变化特征、稳定性等角度分析了不同代表点的波浪能情况,发现山东周边波能流密度受气候变化影响近10年来呈上升趋势。综合不同区域波浪能大小及需求情况,建议选取山东半岛东部海域、蓬莱外围岛屿近渤海中部海域和渤海中部海域作为波浪能开发利用的首选区域。其中成山头东部海域波能流密度在冬季高达5 000 W/m,在该季节大部分区域可归为一类资源丰富区。基于此,建议开发利用中小规模的波浪能供电设备或供电设施。  相似文献   

8.
Ning et al. (2015) developed a 2D fully nonlinear potential model to investigate the interaction between focused waves and uniform currents. The effects of uniform current on focusing wave crest, focal time and focal position were given. As its extension, harmonic energy transfer for focused waves in uniform current is studied using the proposed model by Ning et al. (2015) and Fast Fourier Transformation (FFT) technique in this study. It shows that the strong opposing currents, inducing partial wave blocking and reducing the extreme wave crest, make the nonlinear energy transfer non-reversible in the focusing and defocusing processes. The numerical results also provide an explanation to address the shifts of focal points in consideration of the combination effects of wave nonlinearity and current.  相似文献   

9.
桩式离岸堤保滩促淤工程消浪效果试验研究   总被引:9,自引:0,他引:9  
在上海奉贤南北港保滩促淤工程中,采用了一种新型结构型式-桩式离岸堤,并通过物理模式试验进行了桩式离岸堤消浪效果研究。针对离岸堤通常建于近岸水区破波带的特点,重点研究水深,堤高以及堤身结构对波浪衰减的影响,同时对桩式离岸堤堤后水域的波浪底流速 分析探讨。研究结果表明,桩式离岸堤不仅具有良好的消浪效果。而且可在较大范围内改变波态,即由引起水体剧烈紊动的破波转变为浅水推进波,从而有效地改善海滩上的动力条件,促进海滩免受侵蚀,是一种具有广泛应用前景和新型保滩促淤结构。  相似文献   

10.
基于多星融合高度计数据的中国海波浪能资源评估   总被引:4,自引:2,他引:2  
Wave energy resources are abundant in both offshore and nearshore areas of the China's seas. A reliable assessment of the wave energy resources must be performed before they can be exploited. First, for a water depth in offshore waters of China, a parameterized wave power density model that considers the effects of the water depth is introduced to improve the calculating accuracy of the wave power density. Second, wave heights and wind speeds on the surface of the China's seas are retrieved from an AVISO multi-satellite altimeter data set for the period from 2009 to 2013. Three mean wave period inversion models are developed and used to calculate the wave energy period. Third, a practical application value for developing the wave energy is analyzed based on buoy data. Finally, the wave power density is then calculated using the wave field data. Using the distribution of wave power density, the energy level frequency, the time variability indexes, the total wave energy and the distribution of total wave energy density according to a wave state, the offshore wave energy in the China's seas is assessed. The results show that the areas of abundant and stable wave energy are primarily located in the north-central part of the South China Sea, the Luzon Strait, southeast of Taiwan in the China's seas; the wave power density values in these areas are approximately 14.0–18.5 k W/m. The wave energy in the China's seas presents obvious seasonal variations and optimal seasons for a wave energy utilization are in winter and autumn. Except for very coastal waters, in other sea areas in the China's seas, the energy is primarily from the wave state with 0.5 m≤H s≤4 m, 4 s≤T e≤10 s where H s is a significant wave height and T e is an energy period; within this wave state, the wave energy accounts for 80% above of the total wave energy. This characteristic is advantageous to designing wave energy convertors(WECs). The practical application value of the wave energy is higher which can be as an effective supplement for an energy consumption in some areas. The above results are consistent with the wave model which indicates fully that this new microwave remote sensing method altimeter is effective and feasible for the wave energy assessment.  相似文献   

11.
当前我国近海海域属稀缺资源,波浪能试验场建设须通过合理布局各测试泊位,在保证试验场各泊位可同时正常开展测试工作的前提下,尽量减小用海面积。拉近试验泊位距离,是减小用海面积的直接手段,但在此过程中,必须保证在试验场场址海域水动力环境下,泊位接入测试波浪能装置后,其之间的水动力影响在可接受的范围内。以大万山波浪能试验场泊位设计为例,介绍一种有效的泊位间水动力影响分析方法。方法采用自主开发的二维Boussinesq波浪模型,开展水动力影响分析工作,同时引入相对波高比概念,对泊位接入装置后影响距离和影响面积进行了定量的分析。文中研究得出的分析方法,可用于判定泊位布局设计的合理性。  相似文献   

12.
In the present study,a numerical wave tank is developed to simulate the nonlinear wave-current interactions based on High Order Spectral(HOS) method.The influences of current on wave focusing are investigated by use of numerical model.The current is assumed to be constant in space.Focused waves with different amplitudes and frequency spectra are simulated with and without current.The focused wave characteristics,such as surface elevation,the maximum crest and frequency spectrum,with different current are compared.The results show that the opposing current increases the maximum crest and the energy transform during wave focusing process,and vice versa for the following current.  相似文献   

13.
A 10-year(2003–2012) hindcast was conducted to study the wave field in the Zhe-Min coastal area(Key Area OE-W2) located off Zhejiang and Fujian provinces of China. Forced by the wind field from a weather research and forecasting model(WRF), high-resolution wave modelling using the SWAN was carried out in the study area. The simulated wave fields show a good agreement with observations. Using the simulation results, we conducted statistical analysis of wave power density in terms of spatial distr...  相似文献   

14.
杨照  吕阳  马良 《海洋科学》2023,47(8):33-48
以Web of Science数据库中收录的主题为波浪能文献数据为研究对象,利用文献计量与知识图谱可视化分析方法,梳理波浪能领域研究趋势、科研力量布局,分析主要涉及学科方向和学科交叉情况,构建领域监测指标和前沿热点剖面,挖掘领域演进脉络与高被引关键文献,分析全球波浪能研究领域研究动态、前瞻热点及未来趋势,为波浪能发展提供参考。研究发现:波浪能领域科研论文体量及被引量整体呈逐步上升趋势,经历初步发展、繁荣发展和深化发展的阶段,涌现一批核心文献与著者,团体化纵深协作趋势尚待强化,亟需多学科深度融合。英国、葡萄牙等欧洲国家发展领先,研究机构方面普利茅斯大学、里斯本大学优势明显。该领域热点主要集中在波浪能转换装置、波浪能资源评估、振荡水柱波能转换、波浪能多能互补及环境相互作用。与风能等新能源多能互补和组合式联合发电、与其他海上结构耦合开发成为重要发展方向。  相似文献   

15.
Experimental studies were conducted on a trapezoidal pendulum wave energy converter in regular waves. To obtain the incident wave height, the analytical method (AM) was used to separate the incident and reflected waves propagating in a wave flume by analysing wave records measured at two locations. The response amplitude operator (RAO), primary conversion efficiency and the total conversion efficiency of the wave energy converter were studied; furthermore, the power take-off damping coefficients corresponding to the load resistances in the experiment were also obtained. The findings demonstrate that the natural period for a pendulum wave energy converter is relatively large. A lower load resistance gives rise to a larger damping coefficient. The model shows relatively higher wave energy conversion efficiency in the range of 1.0?1.2 s for the incident wave period. The maximum primary conversion efficiency achieved was 55.5%, and the maximum overall conversion efficiency was 39.4%.  相似文献   

16.
王运洪 《海洋与湖沼》1994,25(6):660-664
采用理论推导与实验资料验证相结合的方法对近岸浅水波衰减计算进行研究。研究表明,波浪与浅水区运动传播衰减是各种能耗共同作用的结果,为此总结了分子粘性能耗、湍流能耗、底部渗透能耗、底部摩擦能耗、软泥海底弹性能耗等,由建立波能流平衡方程出发进行理论推导,得出各种能耗影响下波浪衰减的计算公式,并将该理论公式与作者1980年波浪水槽试验资料比较,两者基本吻合,可适用于线性及非线性各种波能耗情况的计算。  相似文献   

17.
点吸收式波浪能发电装置是一种最简单的振荡体式波浪能发电装置, 但其安装成本高、生存能力较差。本文针对点吸收式波浪能发电装置的姿态稳定性问题, 开展了其在波浪作用下的运动姿态和发电功率之间的关系研究。首先介绍了点吸收波浪能发电装置的工作原理; 然后,根据我国南海海域的自然资源条件, 划定波况范围, 利用相似理论在实验室中模拟波浪参数,选定工况, 建立模型, 设计测量系统, 开展物理模型试验; 最后, 利用试验结果分析了发电装置的最佳发电周期、波高对装置发电功率的影响, 装置姿态对发电功率的影响等。本文为点吸收式波浪能发电装置设计及测试提供了参考。  相似文献   

18.
Wave energy resource assessment and trends around Indonesian's ocean has been carried out by means of analyzing satellite observations. Wave energy flux or wave power can be approximated using parameterized sea states derived from satellite data. Unfortunately, only some surface parameters can be measured from remote sensing satellites, for example for ocean surface waves: significant wave height. Others, like peak wave period and energy period are not available, but can instead be estimated using empirical models. The results have been assessed by meteorological season. The assessment shows clearly where and when the wave power resource is promising around Indonesian's ocean. The most striking result was found from June to August, in which about 30–40 kW/m(the 90 th percentile: 40–60 kW/m, the 99th percentile: 50–70 kW/m) wave power energy on average has been found around south of the Java Island. The significant trends of wave energy at the 95% level have also been studied and it is found that the trends only occurred for the extreme cases, which is the 99th percentile(i.e.,highest 1%). Wave power energy could increase up to 150 W/m per year. The significant wave heights and wave power have been compared with the results obtained from global wave model hindcast carried out by wave model WAVEWATCH III. The comparisons indicated excellent agreements.  相似文献   

19.
海底表层沉积物具有多相、多颗粒、多形态的组成结构,导致其声学特性复杂多样。通过分析压缩波速度和切变波速度特性的研究现状,指出有待于解决的科学问题和关键技术问题。在分析国内外有关海底沉积层声速特性研究基础上,提出采取系统、可控的实验测量手段解决当前测量存在的4点问题。综合分析了压缩波速度和切变波速度存在的统计回归关系和理论分析关系,探讨了当前地声反演、采样样品声学测量、原位声学测量3种方法存在的测量尺度、测量频率、测量状态等的差异,探讨建立不同测量方法和测量技术对测量结果进行统一性解释的方法,从而获得不同类型、不同区域的海底表层沉积物真实的声速特性。最后,从实验室声学测量、物理力学参数测量、流固耦合特性分析、原位测量及海底监测、采样测量与原位测量的误差分析及校正、海底大纵深声学测量6个方面提出技术需求,为提高声学探测海洋和海底的精度服务,推动海洋声学探测和海洋工程发展。  相似文献   

20.
A study of sea surface wave propagation and its energy deformation was carried out using field observations and numerical experiments over a region spanning the midshelf of the South Atlantic Bight (SAB) to the Altamaha River Estuary, GA. Wave heights on the shelf region correlate with the wind observations and directional observations show that most of the wave energy is incident from the easterly direction. Comparing midshelf and inner shelf wave heights during a time when there was no wind and hence no wave development led to an estimation of wave energy dissipation due to bottom friction with corresponding wave dissipation factor of 0.07 for the gently sloping continental shelf of the SAB. After interacting with the shoaling region of the Altamaha River, the wave energy within the estuary becomes periodic in time showing wave energy during flood to high water phase of the tide and very little wave energy during ebb to low water. This periodic modulation inside the estuary is a direct result of enhanced depth and current-induced wave breaking that occurs at the ebb shoaling region surrounding the Altamaha River mouth at longitude 81.23°W. Modelling results with STWAVE showed that depth-induced wave breaking is more important during the low water phase of the tide than current-induced wave breaking during the ebb phase of the tide. During the flood to high water phase of the tide, wave energy propagates into the estuary. Measurements of the significant wave height within the estuary showed a maximum wave height difference of 0.4 m between the slack high water (SHW) and slack low water (SLW). In this shallow environment these wave–current interactions lead to an apparent bottom roughness that is increased from typical hydraulic roughness values, leading to an enhanced bottom friction coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号