首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Lower crustal xenoliths entrained in a Paleozoic ultramafic lamprophyre breccia pipe on Elovy island, Kola peninsula, Russia, represent some of the oldest lower crustal material yet investigated from Europe. The xenoliths vary from feldspar-poor, garnetrich rocks which resemble eclogites, to feldspar-rich garnet granulites. Quartz-rich felsic granulites, as well as pyroxenites and amphibole-rich rocks are also present.

The mafic granulites/eclogites represent a suite of gabbros and norites that is related by olivine fractionation. The igneous protoliths may have formed in a manner analogous to lower crustal rocks from most other European xenolith localities, i.e. by basaltic underplating, but magmatic cumulates are not in evidence.

The Kola lower crust was subjected to one or more metasomatic events which introduced up to 45% phlogopite and/or amphibole into both eclogites/granulites and pyroxenites. The resulting rocks have strong enrichments in Rb, Ba, and K, indicating that the lower crust is not uniformly depleted in LIL and heat-producing elements. Siliceous (65% SiO2) and mafic (< 50% SiO2) lithologies coexist in migmatitic xenoliths, which provide evidence for partial melting processes and restite formation in mafic metaigneous lower crust. The relationship, if any, between partial melting and metasomatism is unclear.  相似文献   


2.
Mafic and intermediate granulite xenoliths, collected from Cenozoic alkali basalts, provide samples of the lower crust in western Saudi Arabia. The xenoliths are metaigneous two-pyroxene and garnet granulites. Mineral and whole rock compositions are inconsistent with origin from Red Sea rift-related basalts, and are compatible with origin from island arc calc-alkaline and low-potassium tholeiitic basalts. Most of the samples are either cumulates from mafic magmas or are restites remaining after partial melting of intermediate rocks and extraction of a felsic liquid. Initial87Sr/86Sr ratios are less than 0.7032, except for two samples at 0.7049. The Sm-Nd data yield TDM model ages of 0.64 to 1.02 Ga, similar to typical Arabian-Nubian Shield upper continental crust. The isotopic data indicate that the granulites formed from mantle-derived magmas with little or no contamination by older continent crust. Calculated temperatures and pressures of last reequilibration of the xenoliths show that they are derived from the lower crust. Calculated depths of origin and calculated seismic velocities for the xenoliths are in excellent agreement with the crustal structure model of Gettings et al. (1986) based on geophysical data from western Saudi Arabia. Estimation of mean lower crustal composition, using the granulite xenoliths and the Gettings et al. (1986) crustal model, suggests a remarkably homogeneous mafic lower crust, and an andesite or basaltic andesite bulk composition for Pan-African juvenile continental crust.  相似文献   

3.
Deep-seated xenoliths entrained in the Hannuoba basalts of the northern Sino-Korean Craton include mafic and felsic granulites, mantle wall-rock from spinel– and garnet–spinel peridotite facies, and basaltic crystallisation products from the spinel-pyroxenite and garnet-pyroxenite stability fields. The mineral compositions of the xenoliths have been used to estimate temperatures and, where possible, pressures of equilibration, and to construct a geothermal framework to interpret the upper mantle and lower crustal rock-type sequences for the region. The xenolith-derived paleogeotherm is constrained in the depth interval of 45–65 km and like others from areas of young basalt magmatism, is elevated and strongly convex toward the temperature axis. Two-pyroxene granulites give the lowest temperatures and garnet pyroxenites the highest, while the spinel lherzolites fall between these two groups. The present-day Moho beneath the Hannuoba area is defined at 42 km by seismic data, and coincides with the deepest occurrence of granulite. Above this boundary, there is a lower crust–upper mantle transition zone about 10-km thick, in which spinel lherzolites and mafic granulites (with variable plagioclase contents) are intermixed. It is inferred that this underplating has resulted in a lowering of the original pre-Cenozoic Moho (then coinciding with the crust–mantle boundary, CMB) from about 30 km to its present-day position and was due to intrusions of basaltic magmas that displaced peridotite mantle wall-rock and equilibrated to mafic granulites. Trace element patterns of the diopsides (analysed by laser ablation-ICPMS) from the Cr-diopside series spinel lherzolites and associated layered xenoliths (spinel lherzolites and pyroxenites) indicate a fertile uppermost mantle with moderate depletion by low degrees of partial melting and little evidence of metasomatic activity. The similarity in major and trace element compositions of the minerals in both rock types suggests that the layered ultramafic xenoliths formed by mantle deformation processes (metamorphic segregation), rather than by melt veining or metasomatism.  相似文献   

4.
Rarely occurring clinopyroxene-plagioclase bearing, felsic granulite and skarn xenoliths were studied from the mantle and crustal xenolith-bearing alkaline basaltic and pyroclastic localities of the Bakony–Balaton Highland Volcanic Field (W-Hungary). Geobarometry and geothermometry of the xenoliths made it possible to categorise them in three groups according to their depth of formation. The first group formed in the lower crust together with mafic and metasedimentary granulites. The second group represents magmatic intrusions of the middle crust, and the third one comprises contact metamorphic rocks of relatively shallow origin. The calculated pressure difference from the core and rim compositions of plagioclase and clinopyroxene as well as garnet breakdown reactions in some xenoliths show evidence for pressure decrease due to crustal thinning both in lower crustal and middle crustal xenoliths during formation of the Pannonian Basin. Fluid inclusion studies reveal the dominance of the CO2-rich fluids in the whole crustal section in contrast with fluids found in mafic garnet-bearing xenoliths. Crustal stratigraphy was constructed for the periods prior to the extension and after the extension on the basis of geobarometry and geophysical data. On the basis of mineral stabilities and geothermo-barometry, we estimated that the pre-extensional thickness of the lower and upper crust may have been 27–34 and 26–28?km, respectively. Comparison of pre-extensional and present-day thickness of the lower and upper crust indicate that thinning affected both the lower and the upper portion of the crust but on a different scale. The calculated thinning factors are between 2.25 and 3.4 for the lower crust and 1.3–1.56 for the upper crust.  相似文献   

5.
Samples of the deep crust and upper mantle in the Northern Andes occur as abundant xenoliths in the Granatífera Tuff, a late Cenozoic vent in the Mercaderes area of SW Colombia. The lower crustal assemblage includes granulites, hornblendites, pyribolites, pyroxenites and gneisses; mafic rocks predominate, but felsic material is also common. PT conditions for the pyribolite assemblages (i.e. Hbl+Fs/Scp+Grt+Cpx+Qtz±Bt), which are the best constrained, are 720–850 °C and 10–14 kbar, consistent with a deep-to-lower crustal origin. A notable feature of this xenolith suite is that it is dominated by hornblende. However, mineral reactions within the suite show that there is a transition from amphibolite to granulite facies, and there is a probable restite–melt relationship represented within the suite. However, the latter appears to be dominated by hornblende and garnet.The mafic rocks mostly lack the high Cr and Ni that would be expected of cumulates. Neither do they possess the positive Sr and Eu anomalies that would be consistent with resite or cumulate models for the lower crust. They bear greatest similarity to oceanic basalts (s.l.). The Rb contents of the xenoliths, whether mafic or silicic, are very low, and the more silicic members of the suite tend to have small positive Sr and Eu anomalies, which are transitional to adakitic compositions. The Sr isotopic compositions of the xenoliths lie between 0.704 and 0.705; however, the Nd isotopic compositions are much more variable, indicating considerable long-term heterogeneity. Few of the xenoliths can be compositionally recognised as metasedimentary; however, a sedimentary component is evident in the Pb isotopic compositions. Within these constraints, our favoured model is a deep crust formed by basaltic components (subduction–accretion?), and minor sediment, which is subject to an increase in thermal gradient to produce the granulites, any melting being dominated by hornblende-out reactions involving garnet. However, there is no evidence of any pervasive crustal melting, leading to the conclusion that the voluminous Andean magmatism arises from the mantle wedge.  相似文献   

6.
‘Lower crustal’ suite xenoliths in basaltic and kimberlitic magmas are dominated by mafic granulites and may also include eclogites and garnet pyroxenites. Pressures of up to 25 kbar obtained from such xenoliths are well in excess of an upper value of c. 12 kbar for exposed granulite terranes. Palaeogeotherms constructed from xenoliths for the lower crust beneath the Phanerozoic fold belts of eastern Australia (SEA) and beneath the eastern margin of the Australian craton (EMAC) indicate two distinct thermal regimes. The two geotherms have similar form, with the EMAC curve displaced c. 150°C to lower temperatures. Reaction microstructures show the partial re-equilibration of primary igneous assemblages to granulite and eclogite assemblages and are interpreted to reflect the cooling from magmatic temperatures. Variations in mineral compositions and zoning are used to constrain further the history of several EMAC xenoliths to near-isobaric trajectories. Detailed graphical models are constructed to predict compositional changes for isobaric P–T paths (at 7, 14 & 21 kbar) to transform an SEA-type geotherm to a cratonic geotherm. The models show that for the assemblage grt + cpx ± ky + plag + qtz, the changes associated with falling temperature in Xgr, Xjd (increase) and Xan (decrease) will be greater at higher pressures. These results indicate that discernible zoning is more likely to be preserved in the higher pressure xenoliths. The zoning recorded in clinopyroxene from mafic granulite xenoliths over the pressure range c. 12–22 kbar suggests isobaric cooling of a large crustal thickness (30–35 km). An isobaric cooling path is consistent with magma accretion models for the transition of a crust–mantle boundary from an SEA-type geotherm to a cratonic geotherm. The coexistence of granulite and eclogite over the depth range 35–75 km beneath the EMAC indicates that the granulite to eclogite transition in the lower crust is controlled by P–T conditions, bulk chemistry and kinetic factors. At shallower crustal levels, typified by exposed granulite terranes, isobaric cooling may not result in the transition to eclogite.  相似文献   

7.
Despite the violent eruption of the Siberian Traps at ~ 250 Ma, the Siberian craton has an extremely low heat flow (18–25 mW/m2) and a very thick lithosphere (300–350 km), which makes it an ideal place to study the influence of mantle plumes on the long-term stability of cratons. Compared with seismic velocities of rocks, the lower crust of the Siberian craton is composed mainly of mafic granulites and could be rather heterogeneous in composition. The very high Vp (> 7.2 km/s) in the lowermost crust can be fit by a mixture of garnet granulites, two-pyroxene granulites, and garnet gabbro due to magma underplating. The high-velocity anomaly in the upper mantle (Vp = 8.3-8.6 km/s) can be interpreted by a mixture of eclogites and garnet peridotites. Combined with the study of lower crustal and mantle xenoliths, we recognized multistage magma underplating at the crust-mantle boundary beneath the Siberian craton, including the Neoarchean growth and Paleoproterozoic assembly of the Siberian craton beneath the Markha terrane, the Proterozoic collision along the Sayan-Taimyr suture zone, and the Triassic Siberian Trap event beneath the central Tunguska basin. The Moho becomes a metamorphism boundary of mafic rocks between granulite facies and eclogite facies rather than a chemical boundary that separates the mafic lower crust from the ultramafic upper mantle. Therefore, multistage magma underplating since the Neoarchean will result in a seismic Moho shallower than the petrologic Moho. Such magmatism-induced compositional change and dehydration will increase viscosity of the lithospheric mantle, and finally trigger lithospheric thickening after mantle plume activity. Hence, mantle plumes are not the key factor for craton destruction.  相似文献   

8.
Several types of xenoliths occur in a Permian basanite sill in Fidra, eastern central Scotland. One group consists of spinel lherzolites, which have geochemical and isotopic characteristics similar to those of lithospheric upper mantle from elsewhere in western Europe, with both LREE-depleted and LREE-enriched compositions. A separate group comprises pyroxenites and wehrlites, some of which contain plagioclase; these have compositions and textures that indicate that they are cumulates from mafic magmas. In terms of Sr and Nd isotope compositions, the pyroxenites closely resemble the host basanite and most likely formed by high-pressure fractionation of Permo-Carboniferous alkaline magmas at lower crustal depths. They also have mantle-like δ18O values. A third group is composed of granulite xenoliths that vary between plagioclase-rich and clinopyroxene-rich compositions, some of which probably form a continuum with the pyroxenites and wehrlites. They are all LREE-enriched and most have positive Eu anomalies; thus, they are also mostly cumulates from mafic magmas. Many of the granulites also have Sr and Nd radiogenic isotope ratios similar to those of the host basanite, indicating that they have formed from a similar magma. However, several of the granulites show more enriched isotopic compositions, including higher δ18O values, trending towards an older crustal component. Thus, the pyroxenites and granulites are largely cogenetic and are mainly the product of a mafic underplating event that occurred during the widespread magmatism in central Scotland during Permo-Carboniferous times.  相似文献   

9.
Evidence for post‐Archaean crustal growth via magma underplating is largely based on U–Pb dating of zircons from granulite‐facies xenoliths. However, whether the young zircons from such xenoliths are genetically related to magma underplating or to anatexis remains controversial. The lower‐crustal xenoliths carried by igneous rocks in the Chifeng and Ningcheng (North China Craton) have low SiO2 and high MgO, indicating that parental melts of their protoliths were of unambiguous mantle origin. The xenoliths contain abundant magmatic zircons with late‐Palaeozoic ages, and have more radiogenic zircon Hf‐isotope compositions and hence younger model ages than ancient crustal magmas and the “reworking array” of the basement rocks. Our data suggest that the granulites represent episodic magmatic underplating to the lower crust of this craton in Phanerozoic time. Considering the observation that regional lowermost crust (~5 km) is mafic and characterized by Phanerozoic zircons, this work reports an example of post‐Archaean crustal growth via magma underplating.  相似文献   

10.
Lower Crustal Xenoliths, Chinese Peak Lava Flow, Central Sierra Nevada   总被引:1,自引:0,他引:1  
An assemblage of pyroxenite, peridotite, and mafic granulitexenoliths contained in the toe of a 10 Ma trachybasalt flowremnant overlying Late Cretaceous granitoids indicates the presenceof a mafic-ultramafic complex beneath the Sierra Nevada batholith.Olivine-free pyroxenites that include orthopyroxenites, websterites,and clinopyroxenites are dominant. Primary igneous texturesare displayed by some pyroxenites, but commonly are masked byrecrystallization. Fe-rich harzburgites and lherzolites arerare. A few of the ultramafic xenoliths contain ovoid opaquepatches that are apparently pseudomorphs after garnet and havepyralspite garnet compositions. A pressure corresponding toa lower crustal depth of approximately 40 km has been determinedfrom two of these xenoliths using a garnet-orthopyroxene geobarometer.Abundant mafic granulites can be subdivided into those containing12 per cent or less A12O3 and chemically gradational with pyroxenitesand others containing more than 15 per cent A12O3 and showingconsiderable scatter on oxide variation diagrams. The high-aluminagranulite xenoliths have relatively low 87Rb/86Sr but high 87Sr/86Sr,whereas low-alumina and ultramafic xenoliths have a wide rangeof 87Rb/86Sr, but lower 87Sr/86Sr; the isotopic data indicatean age for the complex roughly the same as that of overlyinggranitoid plutons. However, the granitoids have initial 87Sr/86Srratios intermediate between the high-alumina and ultramaficxenoliths, suggesting that they may have resulted from mixingof basaltic magma, represented by the ultramafics, and crustalmaterials, with subsequent crystal fractionation. The trachybasaltmay represent a partial melt of the ultramafic rocks.Rocks analogousto the Chinese Peak xenoliths are exposed in the Giles complexof central Australia, a series of several deformed layered maficand ultramafic intrusions, emplaced in a granulite facies terrain.Contemporaneous development of mafic-ultramafic complexes andthe Sierra Nevada batholith may explain the present day thick({small tilde} 50 km) crust in this region  相似文献   

11.
Zircon from lower crustal xenoliths erupted in the Navajo volcanic field was analyzed for U–Pb and Lu–Hf isotopic compositions to characterize the lower crust beneath the Colorado Plateau and to determine whether it was affected by ∼1.4 Ga granitic magmatism and metamorphism that profoundly affected the exposed middle crust of southwestern Laurentia. Igneous zircon in felsic xenoliths crystallized at 1.73 and 1.65 Ga, and igneous zircon in mafic xenoliths crystallized at 1.43 Ga. Most igneous zircon has unradiogenic initial Hf isotopic compositions (ɛHf=+4.1–+7.8) and 1.7–1.6 Ga depleted mantle model ages, consistent with 1.7–1.6 Ga felsic protoliths being derived from “juvenile” Proterozoic crust and 1.4 Ga mafic protoliths having interacted with older crust. Metamorphic zircon grew in four pulses between 1.42 and 1.36 Ga, at least one of which was at granulite facies. Significant variability within and between xenoliths in metamorphic zircon initial Hf isotopic compositions (ɛHf=−0.7 to +13.6) indicates growth from different aged sources with diverse time-integrated Lu/Hf ratios. These results show a strong link between 1.4 Ga mafic magmatism and granulite facies metamorphism in the lower crust and granitic magmatism and metamorphism in the exposed middle crust.  相似文献   

12.
Jurassic basanite necks occurring at the junction of two major fault zones in Scania contain ultramafic (peridotites, pyroxenites) and mafic xenoliths, which together indicate a diversity of upper mantle and lower crustal assemblages beneath this region. The peridotites can be subdivided into lherzolites, dunites and harzburgites. Most lherzolites are porphyroclastic, containing orthopyroxene and olivine porphyroclasts. They consist of Mg-rich silicates (Mg# = Mg/(Mg + Fetot) × 100; 88–94) and vermicular spinel. Calculated equilibration temperatures are lower in porphyroclastic lherzolites (975–1,007°C) than in equigranular lherzolite (1,079°C), indicating an origin from different parts of the upper mantle. According to the spinel composition the lherzolites represent residues of 8–13% fractional melting. They are similar in texture, mineralogy and major element composition to mantle xenoliths from Cenozoic Central European volcanic fields. Dunitic and harzburgitic peridotites are equigranular and only slightly deformed. Silicate minerals have lower to similar Mg# (83–92) as lherzolites and lack primary spinel. Resorbed patches in dunite and harzburgite xenoliths might be the remnants of metasomatic processes that changed the upper mantle composition. Pyroxenites are coarse, undeformed and have silicate minerals with partly lower Mg# than peridotites (70–91). Pyroxenitic oxides are pleonaste spinels. According to two-pyroxene thermometry pyroxenites show a large range of equilibration temperatures (919–1,280°C). In contrast, mafic xenoliths, which are mostly layered gabbronorites with pyroxene- and plagioclase-rich layers, have a narrow range of equilibration temperatures (828–890°C). These temperature ranges, together with geochemical evidence, indicate that pyroxenites and gabbroic xenoliths represent mafic intrusions within the Fennoscandian crust.  相似文献   

13.
Pyroxenitic layers are a minor constituent of ultramafic mantle massifs, but are considered important for basalt generation and mantle refertilization. Mafic spinel websterite and garnet-spinel clinopyroxenite layers within Jurassic ocean floor peridotites from the Totalp ultramafic massif (eastern Swiss Alps) were analyzed for their highly siderophile element (HSE) and Os isotope composition.Aluminum-poor pyroxenites (websterites) display chondritic to suprachondritic initial γOs (160 Ma) of −2 to +27. Osmium, Ir and Ru abundances are depleted in websterites relative to the associated peridotites and to mantle lherzolites worldwide, but relative abundances (Os/Ir, Ru/Ir) are similar. Conversely, Pt/Ir, Pd/Ir and Re/Ir are elevated.Aluminum-rich pyroxenites (clinopyroxenites) are characterized by highly radiogenic 187Os/188Os with initial γOs (160 Ma) between +20 and +1700. Their HSE composition is similar to that of basalts, as they are more depleted in Os, Ir and Ru compared to Totalp websterites, along with even higher Pt/Ir, Pd/Ir and Re/Ir. The data are most consistent with multiple episodes of reaction of mafic pyroxenite precursor melts with surrounding peridotites, with the highest degree of interaction recorded in the websterites, which typically occur in direct contact to peridotites. Clinopyroxenites, in contrast, represent melt-dominated systems, which retained the precursor melt characteristics to a large extent. The melts may have been derived from a sublithospheric mantle source with high Pd/Ir, Pt/Ir and Re/Os, coupled with highly radiogenic 187Os/188Os compositions. Modeling indicates that partial melting of subducted, old oceanic crust in the asthenosphere could be a possible source for such melts.Pentlandite and godlevskite are identified in both types of pyroxenites as the predominant sulfide minerals and HSE carriers. Heterogeneous HSE abundances within these sulfide grains likely reflect subsolidus processes. In contrast, large grain-to-grain variations, and correlated variations of HSE ratios, indicate chemical disequilibrium under high-temperature conditions. This likely reflects multiple events of melt-rock interaction and sulfide precipitation. Notably, sulfides from the same thick section for the pyroxenites may display both residual-peridotite and melt-like HSE signatures. Because Totalp pyroxenites are enriched in Pt and Re, and depleted in Os, they will develop excess radiogenic 187Os and 186Os, compared to ambient mantle. These enrichments, however, do not possess the requisite Pt-Re-Os composition to account for the coupled suprachondritic 186Os-187Os signatures observed in some Hawaiian picrites, Gorgona komatiites, or the Siberian plume.  相似文献   

14.
Clinopyroxenes from layered pyroxenites and from pyroxenite pods in felsic gneisses of the Lewisian granulite complex, NW Scotland, have distinctive chemistries suggestive of different origins. Clinopyroxenes in the layered pyroxenites crystallised from mafic melts in a magma chamber located in the middle to shallow crust, whereas clinopyroxenes in pods in the felsic gneisses crystallised from the tonalitic protolith to the felsic gneisses. In detail clinopyroxenes in the layered pyroxenites are variably enriched in the light REE. Inversion modelling shows that this is not a primary feature inherited from their parent magmas. Rather selective light rare earth element enrichment took place through reaction with a felsic melt generated by the localised partial melting of the hornblende pyroxenites during granulite facies metamorphism. Published isotopic evidence suggests that the light REE mobilisation took place at ca 2.7 Ga, about 200 Ma after the time of crust formation. This observation provides an explanation for the scattered pattern of whole-rock isochron ages from the Lewsian granulites.  相似文献   

15.
The occurrence of both Archean granulite terrains and granulite xenoliths in Cenozoic basalts from the Sino-Korean Craton (SKC) provides an ideal opportunity to define composition and evolution of continental lower crust of eastern China. The granulite xenoliths in Quaternary basanites from Nushan (southeastern SKC) show a basic-intermediate composition that is distinctly different from mafic granulites from Hannuoba (western SKC). They instead resemble the Archean granulite terrains in terms of mineral and whole rock compositions. Trace element modeling suggests that the “protoliths” of the Nushan granulites were likely subjected to fractional crystallization and assimilation of old crustal components. Zircon SHRIMP U-Pb dating shows at least two episodes in the formation of the lower crust at Nushan. The protoliths of the Nushan granulites were most likely formed at ca. 2.5 Ga and metamorphosed at 1.9 Ga. This late Archean crustal growth was followed by Mesozoic (∼140 Ma) basaltic underplating, which was probably coeval with the widespread thermo-tectonic lithospheric reactivation in eastern China. The Nushan granulites are therefore interpreted as dominantly derived from the late Archean crystalline basement and subordinately from the mafic layer that was accreted to the basement during late Mesozoic lithospheric thinning. The consistencies between the depth to seismic Moho and the depth to crust-mantle boundary, and between the calculated Vp (mostly < 7.0 km/s) for granulite xenoliths and the observed velocity structure strongly suggest no obvious high-velocity lowermost crust beneath Nushan and the granulite xenoliths as the dominant components in the lower crust at this locality. The modeled composition of the Nushan lower crust has SiO2 of ca. 52%, which is more basic than that at Hannuoba (SiO2 ≈ 58%, Liu et al., 2001). Such a compositional difference, in conjunction with contrasting age and seismic velocity structure of the lower crust at the two localities, highlights two fundamentally distinct tectonic domains in the SKC. The data presented in this study also yield implication for the origin of the compositional difference between granulite xenoliths and terrains.  相似文献   

16.
Xenolith suites from Permian host rocks in Orkney and the extreme NE of the Scottish mainland (Duncansby Ness) are described and compared to those from elsewhere in the Northern Highlands Terrane. Those from the Tingwall dyke, Orkney, comprise roughly equal proportions of ultramafic rocks (wehrlites, clinopyroxenites, websterites, hornblendites) and mafic to felsic rocks (gabbroic, noritic and dioritic granulites, with subordinate tonalites and trondhjemites). Those from Duncansby (45 km to the south) are dominantly olivine-poor ultramafic rocks (clinopyroxenites, pargasite pyroxenites, biotite-pyroxenites), together with granulites grading from gabbroic through to tonalites and trondhjemites. Most of the granulites are meta-igneous, comprising plagioclase and one- or two-pyroxene species with equilibration temperatures of 810-710 °C, and are regarded as samples of the lower crust. Absence of garnet and olivine, together with the association of relatively sodic plagioclase and aluminous pyroxenes, is consistent with derivation from depths corresponding to 5-10 kbar. Positive Eu anomalies in the granulites imply that most originated as plagioclase-rich cumulates from basaltic magmas. Scarce peraluminous quartzo-feldspathic xenoliths, such as a garnet-sillimanite-bearing sample from Duncansby, are regarded as metasedimentary in origin. Pyroxenes (and biotites) in the ultramafic xenoliths tend to have higher mg numbers than those of the granulites, reflecting higher temperatures of formation. Whereas the pyroxene-rich ultramafic rocks may be partly interleaved with the granulites in the lower crust, it is concluded that they also constitute a zone of substantial thickness at or around Moho level, separating the granulites from underlying peridotites, and that they originated as cumulates cognate to the granulites. They have, however, been variably metasomatised with formation of amphibole. This zone may constitute a density trap at which melt fractions, rich in K, Fe, Ti and OH and ascending from the asthenosphere, interact with the ultramafic cumulates, modifying them texturally and modally to produce a complex veined assemblage of clinopyroxene- and pargasite-rich rocks. The metasomatism involved an increase in LREE, HFSE and LILE contents. Some modal and cryptic metasomatism may also have affected the granulites, accounting for the presence of amphibole and relatively high LREE/HREE values (La/Lu 38-206). Since closely comparable xenolith assemblages also occur in Mull at the southwestern extremity of the Northern Highland Terrane, such metasomatised olivine- and orthopyroxene-deficient ultramafic rocks may characterise the shallowest part of the mantle beneath the entire terrane. The strongly bimodal character of the xenolith populations (either ultramafic or mafic grading to felsic) is taken to reflect the sharpness of the petrological Moho in this region.  相似文献   

17.
A rare composite xenolith and abundant cumulative pyroxenites obtained from the Mesozoic Fangcheng basalts on the eastern North China Craton record a complex history of melt percolation and circulation in the subcontinental lithospheric mantle. The composite xenolith has a dunite core and an olivine clinopyroxenite rim. The dunite is of cumulative origin and has a granular recrystallized texture and extremely low Mg# [100 Mg/(Mg + Fe) = 81–82] contents in olivines. The olivine clinopyroxenite contains larger clinopyroxene and/or orthopyroxene with a few fine-grained olivine and tiny phlogopite, feldspar, and/or carbonate minerals interstitial to clinopyroxene. The clinopyroxene has low Mg# (83–85). Compositional similarity between dunitic olivine and pyroxenitic one indicates a sequential crystallization of dunite and pyroxenite from a precursor melt. Pyroxenite xenoliths include olivine websterites and clinopyroxenites, both are of cumulative origin. Estimation of the melt from major oxides in olivines and REE concentrations in clinopyroxenes in these composite and pyroxenite xenoliths suggests a derivation from subducted crustal materials, consistent with the highly enriched EMII-like Sr and Nd isotopic ratios observed in the pyroxenites. Occurrence of phlogopite, feldspar and carbonate minerals in some xenoliths requires the melt rich in alkalis (K, Na), silica and volatiles (water and CO2) at the latest stage as well, similar to highly silicic and potassic melts. Thus, the occurrence of these composite and pyroxenite xenoliths provides an evidence for voluminous injection of recycled crustal melts into the lithosphere beneath the southeastern North China Craton at the Late Mesozoic, a reason for the rapid lithospheric enrichment in both elemental and isotopic compositions.  相似文献   

18.
Garnet granulite facies xenoliths hosted in Devonian lamprophyresfrom the Kola Peninsula are interpreted to represent the high-grademetamorphic equivalents of continental flood tholeiites, emplacedinto the Baltic Shield Archaean lower crust in early Proterozoictime. Geochronological data and similarities in major and traceelement geochemistry suggest that the xenoliths formed duringthe same plume-related magmatic event that created a widespreadPalaeoproterozoic large igneous province (LIP) at 2·4–2·5Ga. They are, thus, the first samples of the lower crust ofa Palaeoproterozoic LIP to be studied in petrological detail.The suite includes mafic granulites (gar + cpx + rutile ±plag ± opx ± phlog ± amph), felsic granulites(plag + gar + cpx + rutile ± qtz ± Kspar ±phlog ± amph) and pyroxenites (± phlog ±amph), but mafic garnet granulites predominate. Although somesamples are restites, there is no evidence for a predominanceof magmatic cumulates, as is common for Phanerozoic lower-crustalxenolith suites. Metasediments are also absent. Phlogopite and/oramphibole occur in xenoliths of all types and are interpretedto be metasomatic in origin. The K-rich metasomatic event occurredat  相似文献   

19.
Whole rock major and trace element abundances in aluminous garnet–spinel websterite, sapphirine-bearing Mg–Al granulite and hibonite-bearing Ca–Al granulite xenoliths from the Chyulu Hills volcanic field, Kenya, suggest that the samples represent a meta-igneous suite linked by fractionation. The incompatible major element contents increase from the websterites to the Mg–Al granulites and further to the Ca–Al granulites. High bulk rock Mg#s and very low concentrations of most incompatible trace elements indicate that the rocks are cumulates rather than crystallized melts. Elevated Ni abundances, impoverishment in Cr and HFSE and high contents of normative plagioclase and olivine in the granulites indicate that their protoliths were similar to troctolite. The textures and metamorphic reaction paths recorded in the granulites suggest igneous emplacement in the crust and cooling from igneous to ambient crustal temperatures accompanied or followed by compression. For the websterite xenoliths, there is an apparent contradiction between the results of PT calculations that suggest high P and T of crystallization of early generation pyroxenes and elevated PT conditions during final equilibration (1.4–2.2 GPa/740–980°C) on the one hand and the positive Eu anomaly that suggests shallow-level plagioclase accumulation on the other hand. This contradiction can be reconciled by a model of compression of a plagioclase-bearing (gabbroic) protolith to mantle depths where it recrystallized to an ultramafic assemblage, which requires foundering of dense lower crustal material into the mantle.  相似文献   

20.
A petrological model for the upper mantle and lower crust under the northern part of the Arabian Plate (Syria) has been derived on the basis of petrology of upper mantle and lower crustal xenoliths occurring in the Neogene to Quaternary alkali basalts of the Shamah volcanic fields. The xenolith suite has been classified by texture mineralogy and chemistry into the following groups: (1) Type I metasomatised and dry Cr diopside xenoliths with protogranular to porphyroclastic textures; (2) Type II Al augite spinal and garnet pyroxenite and websterite which have igneous and/or porphyroclastic textures and abundant phlogopite and/or amphibole; (3) Cr-poor megacrysts; and (4) mafic lower crustal xenoliths. Estimates of Type I xenolith temperatures are 990–1070°C with pressure between 13 and 19 kbar. Type II xenoliths yield temperatures of 930–1150°C and pressures in the range 12—13 kbar. The lower crustal xenolith mineral assemblages and geothermometry based on coexisting minerals suggest equilibration conditions between 6 and 8 kbar and 820–905°C. Mantle plumes, which may be the source of the volatile flux, have implications for melt generation in the Arabian basalt provinces. It is estimated that the lithosphere beneath the Arabian Plate is less than 80 km thick. Xenolith data and geophysical studies indicate that the Moho is located at a depth of 40–37 km and that the crust-mantle transition zone has a thickness of 8–5 km and occurs at a depth of 27–30 km. The boundary between an upper granitic crust and a lower mafic crust occurs at a depth of 19 km. Type I dry xenoliths show a low overall concentration of REE (La/Yb =1–2 and Sm = 0.7–1.1 times chondrite), whereas Type I hydrous xenoliths are LREE enriched (La/Yb=6–9 and Sm=1.1–1.3 times chondrite). Type II xenoliths show high overall LREE enrichment. Petrological and geochemical data for the lower crustal xenoliths indicate that these xenoliths represent basaltic cumulates crystallised at lower crustal pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号