首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
中国陆架第四纪地质学研究的最新进展   总被引:3,自引:0,他引:3  
自本世纪50年代以来,中国的陆架地质学的研究已经取得了长足的进步。尤其是90年代以来对于晚第四纪的陆架环境的研究,出现以“陆架沙漠化”为首的一系列最新理论和重大发现。综述和总结了这一领域的最新成就:①末次冰期盛时中国陆架区的环境演变特点;②末次冰期盛时出露的陆架平原上的沙漠化现象、成因及证据;③陆架区海底埋藏黄土的发现与沿岸出露黄土的对比分析及意义。  相似文献   

2.
晚更新世末期黄、渤海陆架沙漠化环境的形成   总被引:17,自引:1,他引:17  
未次盛冰期气候寒冷,温度降低,冰川发育,海面下降,黄、渤海陆架全部出露,东海陆架的大部分也裸露成陆,并成为亚洲大陆的一部分。降低了的气温使蒙古高压得到进一步增强,经常给亚洲大陆带来冷而干的气流,吹蚀亚洲内陆,也吹蚀出露了的陆架。根据多年来在陆架地区获得的浅地层剖面仪测量记录,陆架发生沙漠化的证据有:统一海相地层的解体、大面积的混杂堆积、漫长的风蚀基面、休止角型沉积结构以及埋藏沙丘群的发现等。  相似文献   

3.
冈瓦纳大陆古生代冰盖分布研究   总被引:2,自引:0,他引:2       下载免费PDF全文
基于冈瓦纳大陆主要板块冰川沉积地层的对比,并结合古地磁方法对冈瓦纳大陆古生代主要冰期的冰盖分布范围进行再造,认为冈瓦纳大陆在古生代主要经历了3次较大的冰期,分别是:(1)晚奥陶世—早志留世冰期、(2)晚泥盆世—早石炭世冰期、(3)晚石炭世晚期—二叠纪冰期。晚奥陶世—早志留世冰期冰盖主要分布在西冈瓦纳大陆;晚泥盆世—早石炭世冰期冰盖主要分布在南美板块;晚石炭世晚期—二叠纪冰期冰盖在冈瓦纳大陆主要组成板块上均有分布,且冰盖存在时间最长,分布范围最广。3次主要冰期冰盖的中心点位置均靠近南极点,但并不完全重合,可认为气温是影响冈瓦纳大陆上冰盖分布的主要因素,但不是唯一的因素,冰盖的分布范围还受到盆地动力学、地形、冰川属性以及其他具体因素的影响。同时结合在保山地块的野外工作以及前人的研究成果,认为冈瓦纳大陆的3次冰期中,仅晚石炭世晚期—二叠纪冰期对中国的陆块产生了影响,且主要影响了中国的西南陆块群(包括保山地块、腾冲地块、拉萨地块、羌塘地块等)。  相似文献   

4.
晚更新世末期东海北部古冬季风盛衰变更的地质记录   总被引:9,自引:1,他引:8  
末次冰期最盛时期,干、冷气候盛行,渤海、黄海的大部分地区出现沙漠化,形成众多的沙丘。随着干冷气候的减弱,长江三角洲一带出现硬粘土沉积。冰消期的到来,古季风活动的进一步衰退和海面的不断升高,来自陆架区的东北风不再是干冷的气流,而是湿度逐渐增大的冷湿气流,出现了有利于沼泽发育的环境,以致全新世海侵前夕往往形成薄层泥炭沉积。晚更新世末期以来古冬季风发生、发展和衰退过程与沙漠、硬粘土和泥炭层形成过程相对应。   相似文献   

5.
黄河源区第四纪地质研究的新进展   总被引:8,自引:1,他引:8  
通过对黄河源区的钻孔、自然露头的研究, 建立了黄河源区的第四纪地层层序。第四纪地层可划分为下更新统、中更新统、上更新统和全新统。下更新统为河湖相沉积; 中更新统主要有湖积物、冰碛物和冰水沉积物; 上更新统主要有湖积物、冰碛物、冰水沉积物、洪积物和河流沉积物; 全新统主要由河流沉积物、洪积物和湖积物构成。黄河源区的冰期可划分为3期, 即末次冰期、倒数第二次冰期、倒数第三次冰期, 末次冰期又可分为2个冰阶。黄河源区的湖泊演化可划分为早更新世、中更新世和晚更新世—全新世3个阶段: 早更新世的湖泊范围小; 中更新世的湖泊范围明显扩大, 在位置上也较早更新世的湖泊南移; 晚更新世的湖泊经历了两次的扩张—收缩变化, 到了全新世, 除现今还发育的几个湖泊外, 大多数地区的湖水已退出, 基本上转变为河流环境。在晚更新世末期到全新世初期, 封闭黄河源区的多石峡被切开, 湖水外泄, 现今的黄河形成了, 同时发生了袭夺长江水系的水流。  相似文献   

6.
本文中笔者总结了多年来国内外中国东部陆架晚更新世地层结构研究的主要认识,系统阐述了层序地层与沉积环境演化。中国东部陆架沉积物输运量高、沉积作用受海平面变化影响强烈,是分析晚更新世沉积演化史的理想场所。末次盛冰期(22kaBP)之前,海面的持续下降形成以浅海、三角洲及海陆交互沉积为主的强制海退体系域。进入盛冰期后,一个新的旋回开始,在海退体系域之上,相继形成了包括低位体系域、海侵体系域及高位体系域在内新的4级层序:22~15kaBP盛冰期时期,海面降至最低,形成低位体系域,包括陆架深切河湖沉积及风成沉积,以及陆架边缘三角洲和潮流砂体等;盛冰期结束的15~7kaBP时期,全球海平面快速上升,形成含河道充填、湖泊、盐沼、潮坪、潮流砂体及浅海沉积的退积型海侵体系域;约7kaBP以后,海面与现今海面位置基本相当,形成高位体系域,主要为三角洲和潮流砂等近岸陆架的沉积。  相似文献   

7.
南黄海NT1孔沉积物稀土元素组成与物源判别   总被引:12,自引:1,他引:11  
为研究黄河、长江以及韩国河流输运的大陆物质对南黄海沉积的贡献,对南黄海中部泥质区NT1孔沉积物做了稀土元素分析和物源判别。研究发现,南黄海NT1孔沉积物物源主要为长江源和黄河源,NT1孔上部0—7.70m沉积物以长江源为主,中部7.70.16.60m和40.00~50.70m沉积物以黄河源为主,其间夹近24m厚的沉积物则以长江源为主,底部50.70~69.76m沉积物以长江源为主。结果表明,长江从晚更新世早期到现代对南黄海中部泥质区沉积起着主要作用,而黄河则在晚更新世晚期的早玉木冰期时已开始对南黄海陆架沉积作用有明显影响。  相似文献   

8.
青藏高原第四纪大陆冰盖,是国内外地学工作者长期有争议和十分感兴趣的重大地质问题之一.实际考察结果表明,青藏高原大陆冰盖遗迹主要分布于中、晚更新世以来山岳冰川作用范围以外的广阔地区,分布十分广泛和普遍.并且以内流区、非活动构造区和受河流切割微弱的地区,保留最多、  相似文献   

9.
晚冰期Younger Drayas环境灾变   总被引:3,自引:0,他引:3  
新仙女木事件(Younger Dryas Event)是过去15000年里全球最为严重的环境灾变事件。它使得冰期气候急剧回返,陆地自然环境严重恶化,并且遣成更新世末期的生物界大绝灭。该事件在深海沉积、大陆冰盖和湖泊沉积物剖面都有多种十分显著的记录。对其成因和机制的研究,将会深入揭示太阳辐射—大气—海洋气—冰盖气—陆地气—生物圈相互作用系统中的非线性反馈现象,为探索人类面临的全球变化问题提供借鉴。  相似文献   

10.
晚更新世末期北方陆架区沙漠-黄土堆积群的初步研究   总被引:5,自引:1,他引:4  
晚更新世末期,强劲古季风活动的结果,在中国西部形成沙漠-黄土堆积群(黄土高原及其以西或西北的沙漠区),当它到达陆架区以后,风蚀作用继续存在,会产生同样的地质效果,因而在中国东部陆架区,形成两个新的沙漠-黄土堆积群。其一为渤海沙漠-黄土堆积群,包括渤海海底、渤海海岸一带的古沙漠活动区和辽东半岛西岸、庙岛群岛以及山东蓬莱以西的含有孔虫的黄土沉积。其二为黄海沙漠-黄土堆积群,包括苏北浅滩和长江三角洲地区全新世以前的沙漠活动区和南京一带的下蜀黄土。   相似文献   

11.
Marine ice sheets are grounded on land which was below sea level before it became depressed under the ice-sheet load. They are inherently unstable and, because of bedrock topography after depression, the collapse of a marine ice sheet may be very rapid. In this paper equations are derived that can be used to make a quantitative estimate of the maximum size of a marine ice sheet and of when and how rapidly retreat would take place under prescribed conditions. Ice-sheet growth is favored by falling sea level and uplift of the seabed. In most cases the buttressing effect of a partially grounded ice shelf is a prerequisite for maximum growth out to the edge of the continental shelf. Collapse is triggered most easily by eustatic rise in sea level, but it is possible that the ice sheet may self-destruct by depressing the edge of the continental shelf so that sea depth is increased at the equilibrium grounding line.Application of the equations to a hypothetical “Ross Ice Sheet” that 18,000 yr ago may have covered the present-day Ross Ice Shelf indicates that, if the ice sheet existed, it probably extended to a line of sills parallel to the edge of the Ross Sea continental shelf. By allowing world sea level to rise from its late-Wisconsin minimum it was possible to calculate retreat rates for individual ice streams that drained the “Ross Ice Sheet.” For all the models tested, retreat began soon after sea level began to rise (~15,000 yr B.P.). The first 100 km of retreat took between 1500 and 2500 yr but then retreat rates rapidly accelerated to between 0.5 and 25 km yr?1, depending on whether an ice shelf was present or not, with corresponding ice velocities across the grounding line of 4 to 70 km yr?1. All models indicate that most of the present-day Ross Ice Shelf was free of grounded ice by about 7000 yr B.P. As the ice streams retreated floating ice shelves may have formed between promontories of slowly collapsing stagnant ice left behind by the rapidly retreating ice streams. If ice shelves did not form during retreat then the analysis indicates that most of the West Antarctic Ice Sheet would have collapsed by 9000 yr B.P. Thus, the present-day Ross Ice Shelf (and probably the Ronne Ice Shelf) serves to stabilize the West Antarctic Ice Sheet, which would collapse very rapidly if the ice shelves were removed. This provides support for the suggestion that the 6-m sea-level high during the Sangamon Interglacial was caused by collapse of the West Antarctic Ice Sheet after climatic warming had sufficiently weakened the ice shelves. Since the West Antarctic Ice Sheet still exists it seems likely that ice shelves did form during Holocene retreat. Their effect was to slow and, finally, to halt retreat. The models that best fit available data require a rather low shear stress between the ice shelf and its sides, and this implies that rapid shear in this region encouraged the formation of a band of ice with a preferred crystal fabric, as appears to be happening today in the floating portions of fast bounded glaciers.Rebound of the seabed after the ice sheet had retreated to an equilibrium position would allow the ice sheet to advance once more. This may be taking place today since analysis of data from the Ross Ice Shelf indicates that the southeast corner is probably growing thicker with time, and if this persists then large areas of ice shelf must become grounded. This would restrict drainage from West Antarctic ice streams which would tend to thicken and advance their grounding lines into the ice shelf.  相似文献   

12.
The Malin Shelf, off north-west Ireland, was an important zone of confluence for marine-based ice streams of the former British–Irish Ice Sheet (BIIS). Legacy geophysical datasets are used to construct models of the seismic character, relative age and distribution of shelf sediments and landforms. Buried and surface landform assemblages provide evidence that during deglaciation of the Late Devensian BIIS, the region was occupied not by a single Hebrides Ice Stream as previously proposed, but by four discrete ice streams, here referred to as the Sea of the Hebrides (SHIS), Inner Hebrides, North Channel and Tory Island ice streams. Our observations of stratigraphic relationships between the deposits of these ice streams indicate physical interactions between them during shelf deglaciation. We interpret an initial dominant cross-shelf flow along the SHIS impeding cross-shelf ice flow from other ice sheet sectors. Following withdrawal of the SHIS grounding line from the shelf edge to mid-shelf bathymetric highs during deglaciation, a reconfiguration of ice sheet flow paths allowed the expansion of smaller cross-shelf ice streams draining central Scotland and north-western Ireland. This internal dynamic behaviour provides a possible physical analogue for time-transgressive flow patterns reported for outlets draining the West Antarctic Ice Sheet.  相似文献   

13.
Pleistocene ice sheets can be reconstructed through three separate approaches: (1) Evidence based on glacial geological studies, such as erratic trains, till composition, crossing striations and exposures of multiple tills/nonglacial sediments. (2) Reconstructions based on glaciological theory and observations. These can be either two- or three-dimensional models; they can be constrained by ‘known’ ice margins at specific times; or they can be ‘open-ended’ with the history of growth and retreat controlled by parameters resting entirely within the model. (3) Glacial isostatic rebound after deglaciation provides a measure of the distribution of mass (ice) across a region. A ‘best fit’ ice sheet model can be developed that closely approximates a series of relative sea level curves within an area of a former ice sheet; in addition, the model should also provide a reasonable sea level fit to relative sea level curves at sites well removed from glaciation.This paper reviews some of the results of a variety of ice sheet reconstructions and concentrates on the various attempts to reconstruct the ice sheets of the last (Wisconsin, Weischelian, Würm, Devensian) glaciation. Evidence from glacial geology suggests flow patterns at variance with simple, single-domed ice sheets over North America and Europe. In addition, reconstruction of ice sheets from glacial isostatic sea level data suggests that the ice sheets were significantly thinner than estimates based on 18 ka equilibrium ice sheets (cf. Denton and Hughes, 1981). The review indicates it is important to differentiate between ice divides, which control the directions of glacial flow, and areas of maximum ice thickness, which control the glacial isostatic rebound of the crust upon deglaciation. Recent studies from the Laurentide Ice Sheet region indicate that the center of mass was not over Hudson Bay; that a major ice divide lay east of Hudson Bay so that flow across the Hudson Bay and James Bay lowlands was from the northeast; that Hudson Bay was probably open to marine invasions two or three times during the Wisconsin Glaciation; and that the Laurentide Ice Sheet was thinner than an equilibrium reconstruction would suggest.  相似文献   

14.
Ice sheets are the only components of Earth’s climate system that can self-destruct. This paper presents the quantitative force balance for bottom-up modeling of ice sheets, as first presented qualitatively in this journal as a way to quantify ice-bed uncoupling leading to self-destruction of ice sheets (Hughes, 2009a). Rapid changes in sea level and climate can result if a large ice-sheet self-destructs quickly, as did the former Laurentide Ice Sheet of North America between 8100 and 7900 BP, thereby terminating the last cycle of Quaternary glaciation. Ice streams discharge up to 90 percent of ice from past and present ice sheets. A hypothesis is presented in which self-destruction of an ice sheet begins when ubiquitous ice-bed decoupling, quantified as a floating fraction of ice, proceeds along ice streams. This causes ice streams to surge and reduce thickness by some 90 percent, and height above sea level by up to 99 percent for floating ice, so the ice sheet undergoes gravitational collapse. Ice collapsing over marine embayments becomes floating ice shelves that may then disintegrate rapidly. This floods the world ocean with icebergs that reduce the ocean-to-atmosphere heat exchange, thereby triggering climate change. Calving bays migrate up low stagnating ice streams and carve out the accumulation zone of the collapsed ice sheet, which prevents its recovery, decreases Earth’s albedo, and terminates the glaciation cycle. This sequence of events may coincide with a proposed life cycle of ice streams that drain the ice sheet. A first-order treatment of these life cycles is presented that depends on the longitudinal force balance along the flowbands of ice streams and gives a first approximation to ice-bed uncoupling at snapshots during gravitational collapse into ice shelves that disintegrate, thereby removing the ice sheet. The stability of the Antarctic Ice Sheet is assessed using this bottom-up approach.  相似文献   

15.
A slight cooling can induce the formation of ice sheets in the Scandinavian mountains and in the American Arctic. The increasing albedo and the appearance of cold air masses above the glaciers cause glaciation to spread over a vast area. As a result, the sea level lowers and a large part of the Barents and Kara seabeds dries up. Ice sheets are formed there, which spread over the northeastern part of the Kola Peninsula, the Pechora River basin, and over northwestern Siberia. The glacier barrier extending nearly from the North Pole to central Europe hinders latitudinal atmospheric circulation. Precipitation decreases sharply in the areas east and southeast of the glaciers. As a consequence, glaciers in the mid-latitudes retreat and sea level rises. Increased iceberg formation is induced in the periphery of the Barents Ice Sheet, causing it to disappear. An interglacial sets in.  相似文献   

16.
High-resolution 2D seismic data from the western side of Dogger Bank (North Sea) has revealed that the glacigenic sediments of the Dogger Bank Formation record a complex history of sedimentation and penecontemporaneous, large-scale, ice-marginal to proglacial glacitectonism. The resulting complex assemblage of glacial landforms and sediments record the interplay between two separate ice masses revealing that Late Devensian ice sheet dynamics across Dogger Bank were far more complex than previously thought, involving the North Sea lobe of the British and Irish Ice Sheet, advancing from the west, interacting with the Dogger Bank lobe which expanded from the north. The active northward retreat of the Dogger Bank lobe resulted in the development of a complex assemblage of arcuate thrust-block moraines (≤ 15 km wide, > 30 km long) composed of highly folded and thrust sediments, separated by sedimentary basins and meltwater channels filled by outwash. The impact of the North Sea lobe was restricted to the western margin of Dogger Bank and led to deep-seated (100–150 m thick) glacitectonism in response to ice-push from the west. During the earlier expansion of the North Sea lobe, this thrust and fold complex initially occupied a frontal marginal position changing to a more lateral ice-marginal position as the ice sheet continued to expand to the south. The complex structural relationships between the two glacitectonic complexes indicates that these ice masses interacted along the western side of Dogger Bank, with the inundation of this area by ice probably occurring during the last glaciation when the ice sheets attained their maximum extents.  相似文献   

17.
Three‐dimensional (3D) seismic datasets, 2D seismic reflection profiles and shallow cores provide insights into the geometry and composition of glacial features on the continental shelf, offshore eastern Scotland (58° N, 1–2° W). The relic features are related to the activity of the last British Ice Sheet (BIS) in the Outer Moray Firth. A landsystem assemblage consisting of four types of subglacial and ice marginal morphology is mapped at the seafloor. The assemblage comprises: (i) large seabed banks (interpreted as end moraines), coeval with the Bosies Bank moraine; (ii) morainic ridges (hummocky, push and end moraine) formed beneath, and at the margins of the ice sheet; (iii) an incised valley (a subglacial meltwater channel), recording meltwater drainage beneath former ice sheets; and (iv) elongate ridges and grooves (subglacial bedforms) overprinted by transverse ridges (grounding line moraines). The bedforms suggest that fast‐flowing grounded ice advanced eastward of the previously proposed terminus of the offshore Late Weichselian BIS, increasing the size and extent of the ice sheet beyond traditional limits. Complex moraine formation at the margins of less active ice characterised subsequent retreat, with periodic stillstands and readvances. Observations are consistent with interpretations of a dynamic and oscillating ice margin during BIS deglaciation, and with an extensive ice sheet in the North Sea basin at the Last Glacial Maximum. Final ice margin retreat was rapid, manifested in stagnant ice topography, which aided preservation of the landsystem record. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Few well‐dated records of the deglacial dynamics of the large palaeo‐ice streams of the major Northern Hemisphere ice sheets are presently available, a prerequisite for an improved understanding of the ice‐sheet response to the climate warming of this period. Here we present a transect of gravity‐core samples through Trænadjupet and Vestfjorden, northern Norway, the location of the Trænadjupet – Vestfjorden palaeo‐ice stream of the NW sector of the Fennoscandian Ice Sheet. Initial ice recession from the shelf break to the coastal area (~400 km) occurred at an average rate of about 195 m a−1, followed by two ice re‐advances, at 16.6–16.4 ka BP (the Røst re‐advance) and at 15.8–15.6 ka BP (the Værøy re‐advance), the former at an estimated ice‐advance rate of 216 m a−1. The Røst re‐advance has been interpreted to be part of a climatically induced regional cold spell while the Værøy re‐advance was restricted to the Vestfjorden area and possibly formed as a consequence of internal ice‐sheet dynamics. Younger increases in IRD content have been correlated to the Skarpnes (Bølling – Older Dryas) and Tromsø – Lyngen (Younger Dryas) Events. Overall, the decaying Vestfjorden palaeo‐ice stream responded to the climatic fluctuations of this period but ice response due to internal reorganization is also suggested. Separating the two is important when evaluating the climatic response of the ice stream. As demonstrated here, the latter may be identified using a regional approach involving the study of several palaeo‐ice streams. The retreat rates reported here are of the same order of magnitude as rates reported for ice streams of the southern part of the Fennoscandian Ice Sheet, implying no latitudinal differences in ice response and retreat rate for this ~1000 km2 sector of the Fennoscandian Ice Sheet (~60–68°N) during the climate warming of this period.  相似文献   

19.
The ice sheet that once covered Ireland has a long history of investigation. Much prior work focussed on localised evidence-based reconstructions and ice-marginal dynamics and chronologies, with less attention paid to an ice sheet wide view of the first order properties of the ice sheet: centres of mass, ice divide structure, ice flow geometry and behaviour and changes thereof. In this paper we focus on the latter aspect and use our new, countrywide glacial geomorphological mapping of the Irish landscape (>39 000 landforms), and our analysis of the palaeo-glaciological significance of observed landform assemblages (article Part 1), to build an ice sheet reconstruction yielding these fundamental ice sheet properties. We present a seven stage model of ice sheet evolution, from initiation to demise, in the form of palaeo-geographic maps. An early incursion of ice from Scotland likely coalesced with local ice caps and spread in a south-westerly direction 200 km across Ireland. A semi-independent Irish Ice Sheet was then established during ice sheet growth, with a branching ice divide structure whose main axis migrated up to 140 km from the west coast towards the east. Ice stream systems converging on Donegal Bay in the west and funnelling through the North Channel and Irish Sea Basin in the east emerge as major flow components of the maximum stages of glaciation. Ice cover is reconstructed as extending to the continental shelf break. The Irish Ice Sheet became autonomous (i.e. separate from the British Ice Sheet) during deglaciation and fragmented into multiple ice masses, each decaying towards the west. Final sites of demise were likely over the mountains of Donegal, Leitrim and Connemara. Patterns of growth and decay of the ice sheet are shown to be radically different: asynchronous and asymmetric in both spatial and temporal domains. We implicate collapse of the ice stream system in the North Channel – Irish Sea Basin in driving such asymmetry, since rapid collapse would sever the ties between the British and Irish Ice Sheets and drive flow configuration changes in response. Enhanced calving and flow acceleration in response to rising relative sea level is speculated to have undermined the integrity of the ice stream system, precipitating its collapse and driving the reconstructed pattern of ice sheet evolution.  相似文献   

20.
A considerable discussion concerning the extent of the last Scandinavian and Scottish ice sheets has continued for several years. In contrast to earlier models based on an ice sheet extending to the edge of the continental shelf, recent proposals favor a limited geographical and vertical extent and imply that the Scandinavian and British ice sheets did not coalesce in the North Sea. These models indicate an ice-free, open embayment in the northern North Sea and areas of dry land in the southern North Sea region during the Late Weichselian/Devensian glacial maximum. Late Weichselian ice-sheet profiles from the North Sea to the adjacent land areas of southern Norway have been tentatively reconstructed. Low-gradient profiles in the present shelf areas are explained by unconsolidated, deformable sediments on the continental shelf inducing subglacial water pressure and low basal shear stress beneath marginal parts of the Scandinavian ice sheet. Combined with higher basal shear stress conditions in the present mainland areas, this explains the slightly concave and convex shape of the reconstructed ice-sheet profiles in the present coastal and inland areas of western Norway, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号