首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Calc-alkaline plutonic rocks, intruded at 3450Ma, comprise a major component of the Shaw Batholith in the Archaean east Pilbara Block, Western Australia. New whole-rock Pb isotopic geochronology confirms the extent of these rocks, but a minor plutonic phase is dated at 3338±52 Ma and represents a second plutonic event of the same age as much of the nearby Mt Edgar Batholith. The Sm----Nd isotopic systematics of the 3450Ma rocks imply their derivation from a heterogeneous source, which probably included a slightly older crustal component as well as a depleted mantle component. The 3338±52 Ma pluton includes components derived from crustal sources older than 3600 Ma. The geochemistry and Sm---Nd isotopic systematics of these rocks are consistent with crustal growth in the early Archaean from upper mantle sources as depleted as the modern upper mantle. The Shaw Batholith calc-alkaline suites exhibit very similar chemical trends on variation diagrams to modern calc-alkaline plutonic rocks which can be modelled by a combination of mixing and fractionation. A suite collected from outcrops displaying prominent igneous layering shows distinct geochemical trends which can be modelled by differentiation into a component enriched in ferromagnesian minerals, principally hornblende, and possibly sphene, magnetite and epidote, and into a leucocratic component containing quartz, plagioclase and K-feld-par. These Archaean calc-alkaline plutonic rocks, in common with rocks from many other Archaean calc-alkaline provinces, exhibit very fractionated REE patterns with depleted HREE contents, a feature considered to result from equilibrium with garnet at depth in lower crustal regions. The geochemistry of the Pilbara Archaean calc-alkaline rocks is identical to the subset of modern continental-margin calc-alkaline plutonic rocks with fractionated REE patterns, such as those from the central and eastern Peninsular Ranges Batholith, western USA. The tectonic setting in which the Archaean calc-alkaline rocks formed is still not known. This reflects both uncertainty associated with the petrogenesis and environments of modern calc-alkaline rocks, as well as the limited knowledge of the precise timing and relationships of plutonic, depositional and tectonic events in the Pilbara Archaean.  相似文献   

2.
The possibilities of using the average compositions of tonalite–trondhjemite–granodiorite association rocks (TTG), which make up a significant part of the Archaean continental crust, have been examined. The results of the TTG average compositions obtained by other researchers and the authors' data of the average compositions of TTG from the Baltic and Ukrainian shields and the entire Archaean crust are given. It is shown that the average compositions of the Archaean TTG of continental large crustal fragments (cratons or provinces) practically do not bear any information on their sources or conditions of their formation. The possibility of obtaining of such information by means of analysis of the average compositions of TTG, composing smaller fragments of the crust, exemplified by rocks of the Karelian subprovinces of the Baltic Shield has been demonstrated.  相似文献   

3.
大陆的起源     
太阳系固体星球都有类似的核-幔-壳结构,但唯独人类居住的地球具有长英质组成的大陆壳.太古宙大陆克拉通主要由英云闪长岩(Tonalite)-奥长花岗岩(Trondhjemite)-花岗闪长岩(Granodiorite)为主的TTG深成侵入体变质而成的正片麻岩和由基性-超基性酸性火山岩及少量沉积岩变质的表壳岩(绿岩)组成....  相似文献   

4.
《Gondwana Research》2002,5(1):95-99
Granulite TTG and khondalite formations are the two typical types of Precambrian metamorphic basement in the North China Craton. The former belongs to the basement of the Archean craton, while the latter is a Paleoproterozoic metasedimentary rock series. The formation of the TTG rock series took place during the period of 2500 to 2450 Ma, near the end of the Archean, and it has undergone multiple times of metamorphism. The cooling rate of the TTG lower crust is quite low (less than 0.3°/Ma), developed during slow crustal cooling in a rather stable tectonic environment. The khondalite rock series underwent amphibolite- to granulite-facies metamorphism that is isotopically constrained to 2000 to 1800 Ma followed by fast crustal cooling from 2.4° to 3.4°/Ma. Based on the thermal and dynamic features of different types of metamorphic rocks, the tectonic state of the crust, and the obvious change of crustal cooling rate from Neo-Archean to Paleoproterozoic, it is clear that continental orogeny existed in the North China craton between 2000 Ma and 1800 Ma.  相似文献   

5.
鲁西地区石门山岩体主要岩性为片麻状花岗闪长岩,原划为新太古代早期侵入岩。根据新测锆石SHRIMPU-Pb年龄为(2530±8)Ma,其形成时代确定为新太古代晚期。凤仙山岩体为中粒二长花岗岩,锆石SHRIMP U-Pb年龄为(2513±12)Ma,并侵入片麻状花岗闪长岩。石门山岩体属峄山岩套,为TTG质花岗岩,是地幔岩浆侵入混入地壳物质形成的。凤仙山岩体属傲徕山岩套二长花岗岩,为上地壳物质重熔(深熔)作用形成的。峄山岩套TTG类岩石是2560~2530 Ma壳幔岩浆活动的产物,岩体普遍具有片麻状构造,表明经历变质变形作用。未受区域变质作用的傲徕山岩套大规模壳源花岗岩是2530~2500 Ma地壳物质部分熔融形成的,与华北克拉通新太古代末超大陆拼合有关,2530 Ma是鲁西地区重要的构造热事件发生时期。  相似文献   

6.
本文收集了阜平杂岩新太古代早期-古元古代晚期基底岩石的岩石地球化学、锆石U-Pb年代学、同位素地球化学和变质作用资料,以期对阜平杂岩早寒武纪演化历史进行初步总结.阜平新太古代早期~2.7 Ga片麻岩原岩为英云闪长岩,具有TTG质片麻岩的地球化学特征;其锆石εHf(t)具有较高的正值(+5.44~+7.50),单阶段模式年龄为2 745~2 824 Ma,表明新太古代早期为阜平杂岩强烈的地壳生长时期.新太古代晚期片麻岩的时代集中于2 543~2 484 Ma,主要岩石类型为英云闪长岩-奥长花岗岩-花岗闪长岩(TTG),同时区域内还存在二长花岗岩.TTG质片麻岩的εNd(t)值为-1.64~+0.96,单阶段模式年龄为2.76~3.04 Ga;锆石εHf(t)值为-1.9~+7.91,单阶段和两阶段模式年龄分别为2 546~2 888 Ma和2 548~3 119 Ma.这些TTG岩石主要为新太古代早期岩石的部分熔融,并有少量中太古代地壳物质参与.近于同期具有岛弧性质的辉长岩和变质作用暗示阜平杂岩新太古代晚期可能经历了俯冲和弧-陆或陆-陆碰撞.古元古代中期(2.1~2.0 Ga)阜平地区花岗质岩浆活动强烈.该阶段花岗岩具有A型花岗岩特征,与同期的火山-沉积岩系形成于华北克拉通古元古代中期伸展的陆内裂谷环境中.阜平杂岩中基性麻粒岩包体记录的变质作用时代为1.89~1.85 Ga,并具有顺时针演化的P-T轨迹,其代表了古元古代晚期裂谷闭合的陆内造山过程,表明华北最终克拉通化.   相似文献   

7.
There is no consensus on the processes responsible for near-coeval formation of Archaean continental crust (dominantly tonalite-trondhjemite-granodiorite: TTG), greenstone belts dominated by komatiitic to tholeiitic lavas (KT), and sub-continental lithospheric mantle (SCLM). The Douglas Harbour domain (2.7-2.9 Ga) of the Minto Block, northeastern Superior Province, has two TTG suites, the western and eastern Faribault-Thury (WFT and EFT), with embedded KT greenstones. Tonalites of both suites have high light/heavy rare-earth element ratios (L/HREE), high large ion lithophile element (U-Th-Rb-Cs-La: LILE) contents, positive Sr-Pb anomalies, and negative Nb-Ta-Ti anomalies. Such typical Archaean TTG signatures are commonly explained by melting of subducted oceanic crust, but could also originate by melting the base of thick basaltic plateaux formed above mantle upwellings (plumes), leaving behind restites containing pyroxene, garnet, and rutile. Field relationships (in situ segregation veins), phase equilibria (hornblende stabilized at lower crustal pressure), petrography (corroded epidote and muscovite phenocrysts, rare plagioclase phenocrysts), and trace element models, all imply that FT tonalite to trondhjemite evolution reflects hornblende-dominated fractional crystallization, not partial melting of subducted crust. The geochemistry of parental FT tonalites can be modeled by 15-30% melting of FT tholeiitic metabasalts, with residues of eclogite, garnet-websterite, or hornblende-garnet websterite. A minor residual Ti-phase such as rutile is also needed to generate negative Ti-Nb-Ta troughs in the TTGs. However, large volumes of eclogitic restites complementary to TTG are not observed either at the base of Archaean crustal sections, or in the SCLM. Additional problems with slab-melting models include: (a) the rarity of lithologies and associations characteristic of active margins (ophiolites, andesites, blueschists, accretionary mélanges, molasse, flysch, high-pressure belts, and thrust-and-fold belts); (b) the need to deliver plume-derived KT melt through the slab; and (c) extracting enough TTG melt from a subducting slab in the time available (200-300 my). In the plateau-melting model, heat for crustal anatexis is supplied by ongoing KT magma derived from mantle upwellings. However, SCLM rocks differ from predicted 1-stage mantle melting residua; and the voluminous residual eclogites complementary to TTG generation somehow need to be removed. These two problems might solve one another if the dense crustal restites disaggregated and mixed into the underlying depleted mantle. Mantle melting slows upon exhaustion of Ca-Al-rich phases, with large temperature increases needed to extract more melt from harzburgite residua. Physical addition of delaminated crustal restites would refertilize the refractory mantle, allowing extraction of additional melt increments, and might explain the ultra-depleted and orthopyroxene-rich nature of the SCLM. A hybrid source composed of 10% eclogitic restite of EFT tonalite generation, mixed with harzburgitic residues from 25% melting of primitive mantle, yields model melts with trace element signatures resembling typical Munro komatiites. Variations in the mineralogy and geochemistry of the delaminated component might account for the diversity of komatiite types. Degassing of hornblende-rich delaminated restites would transfer LILE to surrounding depleted mantle and could generate boninites. Fusion of undepleted metabasalt sandwiched among denser restites could generate sanukitoids. Mantle melt pulses generated by catastrophic delamination events would underplate nascent TTG crust and trigger renewed crustal melting, followed by delamination of newly formed eclogitic restites, triggering additional mantle melting, and so on. I posit that delamination of crustal restites catalyzed multi-stage melting of the SCLM and maturation of the Archaean continental crust. Thus, Archaean crust and SCLM are genetically inter-linked, and both form above major mantle upwellings.  相似文献   

8.
The In Ouzzal terrane (Western Hoggar) is an example of Archaean crust remobilized during a very-high-temperature metamorphism related to the Paleoproterozoic orogeny (2 Ga). Pan-African events (≈0.6 Ga) are localized and generally of low intensity. The In Ouzzal terrane is composed of two Archaean units, a lower crustal unit made up essentially of enderbites and charnockites, and a supracrustal unit of quartzites, banded iron formations, marbles, Al–Mg and Al–Fe granulites commonly associated with mafic (metanorites and garnet pyroxenites) and ultramafic (pyroxenites, lherzolites and harzburgites) lenses. Cordierite-bearing monzogranitic gneisses and anorthosites occur also in this unit. The continental crust represented by the granulitic unit of In Ouzzal was formed during various orogenic reworking events spread between 3200 and 2000 Ma. The formation of a continental crust made up of tonalites and trondhjemites took place between 3200 and 2700 Ma. Towards 2650 Ma, extension-related alkali-granites were emplaced. The deposition of the metasedimentary protoliths between 2700 and 2650 Ma, was coeval with rifting. The metasedimentary rocks such as quartzites and Al–Mg pelites anomalously rich in Cr and Ni, are interpreted as a mixture between an immature component resulting from the erosion and hydrothermal alteration of mafic to ultramafic materials, and a granitic mature component. The youngest Archaean igneous event at 2500 Ma includes calc-alkaline granites resulting from partial melting of a predominantly tonalitic continental crust. These granites were subsequently converted into charnockitic orthogneisses. This indicates crustal thickening or heating, and probably late Archaean high-grade metamorphism coeval with the development of domes and basins. The Paleoproterozoic deformation consists essentially of a re-activation of the pre-existing Archaean structures. The structural features observed at the base of the crust argue in favour of deformation under granulite-facies. These features are compatible with homogeneous horizontal shortening of overall NW–SE trend that accentuated the vertical stretching and flattening of old structures in the form of basins and domes. This shortening was accommodated by horizontal displacements along transpressive shear corridors. Reactional textures and the development of parageneses during the Paleoproterozoic suggest a clockwise P–T path characterized by prograde evolution at high pressures (800–1050 °C at 10–11 kbar), leading to the appearance of exceptional parageneses with corundum–quartz, sapphirine–quartz and sapphirine–spinel–quartz. This was followed by an isothermal decompression (9–5 kbar). Despite the high temperatures attained, the dehydrated continental crust did not undergo any significant partial melting. The P–T path followed by the granulites is compatible with a continental collision, followed by delamination of the lithosphere and uprise of the asthenosphere. During exhumation of this chain, the shear zones controlled the emplacement of carbonatites associated with fenites.  相似文献   

9.
The majority of continental crust formed during the hotter Archean was composed of Tonalite-Trondhjemite-Granodiorite (TTG) rocks. In contrast to the present-day loci of crust formation around subduction zones and intra-plate tectonic settings, TTGs are formed when hydrated basalt melts at garnet-amphibolite, granulite or eclogite facies conditions. Generating continental crust requires a two step differentiation process. Basaltic magma is extracted from the pyrolytic mantle, is hydrated, and then partially melts to form continental crust. Here, we parameterise the melt production and melt extraction processes and show self-consistent generation of primordial continental crust using evolutionary thermochemical mantle convection models. To study the growth of TTG and the geodynamic regime of early Earth, we systematically vary the ratio of intrusive (plutonic) and eruptive (volcanic) magmatism, initial core temperature, and internal friction coefficient. As the amount of TTG that can be extracted from the basalt (or basalt-to-TTG production efficiency) is not known, we also test two different values in our simulations, thereby limiting TTG mass to 10% or 50% of basalt mass. For simulations with lower basalt-to-TTG production efficiency, the volume of TTG crust produced is in agreement with net crustal growth models but overall crustal (basaltic and TTG) composition stays more mafic than expected from geochemical data. With higher production efficiency, abundant TTG crust is produced, with a production rate far exceeding typical net crustal growth models but the felsic to mafic crustal ratio follows the expected trend. These modelling results indicate that (i) early Earth exhibited a “plutonic squishy lid” or vertical-tectonics geodynamic regime, (ii) present-day slab-driven subduction was not necessary for the production of early continental crust, and (iii) the Archean Earth was dominated by intrusive magmatism as opposed to “heat-pipe” eruptive magmatism.  相似文献   

10.
肖玲玲  刘福来  张健 《岩石学报》2019,35(2):325-348
新太古代早期是全球地质历史上一个重要的地壳生长时期,世界众多克拉通中广泛存在2. 7Ga左右的岩浆年龄记录。华北克拉通最主要的岩浆事件发生在新太古代晚期,这与世界其他克拉通广泛存在~2. 7Ga的构造热事件明显不同。但全岩Nd和锆石Hf同位素研究表明,华北克拉通~2. 5Ga的岩石主体来自于中太古代晚期-新太古代早期大陆物质的重熔或再造。因此,厘定~2. 7Ga地质事件在华北克拉通的空间分布对深入理解新太古代地壳形成与演化具有重要科学意义。华北克拉通已识别出的~2. 7Ga的花岗质岩石主要分布在胶东、鲁西、武川、赞皇和太华等少数杂岩区,中部带的恒山、阜平和中条杂岩中亦有零星出露。左权变质杂岩位于中部带中南段,赞皇杂岩西南,初步地球化学和锆石年代学研究表明,该地区有多种岩石类型记录了~2. 7Ga的年龄信息,包括副片麻岩、长英质浅色体、磁铁矿角闪片麻岩和TTG片麻岩。其中,TTG片麻岩的原岩为英云闪长岩,锆石发育明显的核边结构,核部具有清晰的岩浆环带,两个不同LA-ICP-MS实验室获得的不一致线上交点年龄分别为2727±14Ma和2731±12Ma,代表了TTG岩浆岩的结晶年龄。同时,左权变质岩石中较好地保存了新太古代晚期的岩浆和变质年龄记录,推测其所代表的构造热事件与华北克拉通~2. 5Ga所经历的大规模幔源岩浆的底侵作用有关。  相似文献   

11.
The Gangdese magmatic arc, southeastern Tibet, was built by mantle‐derived magma accretion and juvenile crustal growth during the Mesozoic to Early Cenozoic northward subduction of the Neo‐Tethyan oceanic slab beneath the Eurasian continent. The petrological and geochronological data reveal that the lower crust of the southeastern Gangdese arc experienced Oligocene reworking by metamorphism, anatexis and magmatism after the India and Asia collision. The post‐collisional metamorphic and migmatitic rocks formed at 34–26 Ma and 28–26 Ma respectively. Meta‐granitoids have protolith ages of 65–38 Ma. Inherited detrital zircon from metasedimentary rocks has highly variable ages ranging from 2708 to 37 Ma. These rocks underwent post‐collisional amphibolite facies metamorphism and coeval anatexis under P–T conditions of ~710–760 °C and ~12 kbar with geothermal gradients of 18–20 °C km ? 1, indicating a distinct crustal thickening process. Crustal shortening, thickening and possible subduction erosion due to the continental collision and ongoing convergence resulted in high‐P metamorphic and anatectic reworking of the magmatic and sedimentary rocks of the deep Gangdese arc. This study provides a typical example of the reworking of juvenile and ancient continental crust during active collisional orogeny.  相似文献   

12.
Abundant late Neoarchean granitoids occur in southwestern Liaoning Province, part of the Eastern Ancient Terrane of the North China Craton. These rocks include intermediate gneiss, TTG gneisses and potassic granitoids, and we report on the geochemistry and zircon SHRIMP ages as well as Hf-in-zircon isotopes of these granitoids in order to determine their petrogenesis. Field relationships suggest that most of these granitoids experienced widespread metamorphism and deformation, associated with anatexis at some localities. The intermediate gneisses, TTG gneisses and potassic granitoids were all emplaced at the end of the Neoarchean (2.50–2.53 Ga), and CL images document widespread recrystallization in the zircons. The intermediate and TTG gneisses yielded similar Hf isotopic systematics (εHf(t) = −3.73 to +6.42) as the associated potassic granitoids (εHf(t) = −2.44 to +7.80), and both rock types yielded mean Hf crustal model ages of 2.8–2.9 Ga. Combined with the geochemistry, we propose that the formation of the intermediate and TTG gneisses was related to partial melting of mafic rocks at different depth, whereas the potassic granitoids have variable petrogenesis. The nearly coeval TTG gneisses and potassic granitoids and their widespread metamorphism, deformation and zircon recrystallization suggest that a large-scale heat source must have been present at or near the base of the crust in southwestern Liaoning Province at the end of the Neoarchean. We propose that collision and post-collisional extension is the most likely tectonic environment for generation of the above granitoids, and the formation of widespread potassic granitoids played an important role in the maturation of continental crust in the North China Craton.  相似文献   

13.
The Archean basement of Sierra Leone is a typical example of granite-greenstone terrains found in ancient continental nucleii. Reconnaissance field mapping showed that the area can be subdivided into old gneiss, which predates the greenstone belts, and young granite which is later than the greenstone belts.New Rb-Sr whole-rock age determinations on two suites of old tonalitic gneiss yield ages of 2786 ± 49 Ma and 2770 ± 137 Ma, which either reflect the time of formation of the original tonalites or their metamorphism. Three new Rb-Sr whole-rock age determination on young granites yield ages of 2786 ± 143 Ma, 2780 ± 79 Ma and 2770 ± 50 Ma, which are interpreted as the time of emplacement. The widespread occurrence of similar young granites, throughout the Archaean of West Africa, suggests that these results date a major event in the evolution of this segment of the crust.A published Pb-Pb age of the old gneiss and the new ages of the young granite bracket the age of the greenstone belts to 3000-2770 Ma. However, if the Rb-Sr ages of the old gneiss reported in this paper reflect the time of their formation, the age of the greenstone belts is tightly bracketed to ca. 2770 Ma. There is no isotopic evidence for rocks substantially older than 3000 Ma in the West African Archaean.  相似文献   

14.
The late- to post-collisional stage in orogenic systems is characterized by the coeval existence of bimodal potassic to ultrapotassic magmatic activity related to partial melting of an enriched lithospheric mantle together with crustal derived melts. In this paper, we present new whole rock geochemical analyses combined with zircon and titanite U–Pb and zircon Hf isotopic data from potassic to ultrapotassic rocks from six plutons that occur within the Archean Itacambira-Monte Azul block (BIMA), to discuss their petrogenesis and the tectonic implications for the São Francisco paleocontinent. The new U–Pb ages range from ca. 2.06 Ga to 1.98 Ga and reveal long-lasting potassic magmatism within the BIMA, which is within the late- to- post-collisional stage of the São Francisco paleocontinent evolution. The ultrapotassic rocks are compatible with a fluid-related metasomatized mantle source enriched by previous subduction events, whereas the potassic rocks are bimodal and have a transitional shoshonitic to A-type affinity. These rocks have a hybrid nature, possible related to the mixing between the mafic potassic/ultrapotassic rocks and high temperature crustal melts of the Archean continental crust. Our results also show an increase of within-plate signature towards the younger potassic magmas. The participation of an important Archean crustal component in the genesis of these rocks is highlighted by the common and occasionally abundant occurrence of Archean inherited zircons. The Hf isotopic record shows that most of the zircon inheritance has dominantly subchondritic εHf(t) values, which fits a crustal reworking derivation from a similar Eo- to Paleoarchean precursor crust. However, the presence of juvenile 2.36 Ga zircon inheritance in an ultrapotassic sample reveal the existence of a hidden reservoir that is somewhat similar to the described for the Mineiro Belt in southern São Francisco paleocontinent.  相似文献   

15.
In the Archaean Murchison Province of Western Australia, granitoid batholiths and plutons that intruded into the ca. 2.7–2.8 Ga and ca. 3.0 Ga greenstone belts can be divided into three major suites. Suite I is a ca. 2.69 Ga monzogranite-granodiorite suite, which was derived from anatexis of old continental crust and occurs as syn-tectonic composite batholiths over the entire province. Suite II is a trondhjemite-tonalite suite (termed I-type) derived from partial melting of subducted basaltic crust, which intruded as syn- to late-tectonic plutons into the greenstone belts in the northeastern part of the province where most of the major gold deposits are situated. One of the Suite II trondhjemite plutons has a Pb−Pb isochron age of 2641±36 Ma, and one of the structurally youngest tonalite plutons has a minimum Pb−Pb isochron age of 2630.1±4.3 Ma. Suite III is a ca. 2.65–2.62 Ga A-type monzogranite-syenogranite suite which is most abundant in the largely unmineralised southwestern part of the province. Gold deposits in the province are mostly hosted in brittle-ductile shear zones, and were formed at a late stage in the history of metamorphism, deformation and granitoid emplacement. At one locality, mineralisation has been dated at 2636.8±4.2 Ma through a pyritetitanite Pb−Pb isochron. Lead and Sr isotope studies of granitoids and gold deposits indicate that, although most gold deposits have initial Pb isotope compositions most closely similar to those of Suite II intrusions, both Suite I and Suite II intrusions or their source regions could have contributed solutes to the ore fluids. These preliminary data suggest that gold mineralisation in the Murchison Province was temporally and spatially associated with Suite II I-type granitoids in the northeastern part of the province. This association is consistent with the concept that Archaean gold mineralisation was related to convergent-style tectonic settings, as generation of both Suite II I-type granitoids and hydrothermal ore fluids could have been linked to the dehydration and partial fusion of subducted oceanic crust, and old sialic crust or its anatectic products may also contribute solutes to the ore fluids. Integration of data from this study with other geological and radiogenic isotope constraints in the Yilgarn Block argue against direct derivation of gold ore fluids from specific I-type granitoid plutons, but favour a broad association with convergent tectonics and granitoid magmatism in the late Archaean.  相似文献   

16.
The south São Francisco craton (SSFC) in Brazil is one of the few areas that are key to unveiling the Archean evolution of South America. Despite economic interest since the 18th century, the SSFC was not studied in detail until the beginning of the present decade. The two main greenstone belts in the SSFC, namely, the Rio das Velhas (RVGB) and the Pitangui (PGB), have traditionally been considered to represent a single Archean basin. Here, new geochemistry and geochronology data from both greenstone and TTG-granite rocks are integrated and suggest that these belts evolved as separate domains. These are marked by distinct basal komatiite geochemistry, indicating that the PGB evolved as a back-arc rift on a thick lithosphere section at 2.86 Ga, in contrast to the RVGB basin, which developed near an exotic juvenile TTG terrain. Approximately 100 Ma later, the PGB basin transitioned to a calc-alkaline dominated setting, coeval with the emplacement of two large TTG igneous bodies at the margins of a poly-recycled ancient terrain. This protracted recycling is marked by extremely negative ƐHf values, which are not common for Archean terrains. The dominant strong crustal signature of the SSFC Archean rocks implies the existence of an anomalous overthickened crust or a Meso- to Neoarchean protocontinent. This thickened crust developed by continuous magmatism, delamination and differentiation in a flat-subduction setting. These mechanisms suggest that modern-style plate tectonics or a similar process such as “dripduction” was operating in this area prior to 3.0 Ga, the time at which a thick continental crust regime and horizontal tectonics were thought to have been established. Late TTG magmatism in the PGB suggests the western SSFC experienced an episode of late crustal thickening at ~2.71 Ga in response to collision, while coeval shallower K-rich magmatism in the RVGB corroborates the diachronous evolution of both belts and the surrounding crystalline terrains.  相似文献   

17.
For the last two decades, Iceland and other oceanic plateaux have been considered as potential analogues for the formation of the early Earth's continental crust. This study examines the compositions of silicic rocks from modern oceanic plateaux, revealing their differences to Archaean continental rock types (trondhjemite–tonalite–granodiorite or TTG) and thereby emphasising the contrasted mechanisms and/or sources for their respective origins. In most oceanic plateaux, felsic magmas are thought to be formed by fractional crystallization of basalts. In Iceland, the interaction between mantle plume and the Mid‐Atlantic ridge results in an abnormally high geothermal gradient and melting of the hydrated metabasaltic crust. However, despite the current `Archaean‐like' high geothermal gradients, melting takes place at a shallow depth and is unable to reproduce the TTG trace element signature. Consequently, oceanic plateaux are not suitable environments for the genesis of the Archaean continental crust. However, their subduction could account for the episodic crustal growth which has occurred throughout the Earth's history.  相似文献   

18.
U–Pb single zircon crystallization ages were determined using TIMS and sensitive high resolution ion microprobe (SHRIMP) on samples of granitoid rocks exposed in the Serrinha nucleus granite–greenstone terrane, in NE Brazil. Our data show that the granitoid plutons can be divided into three distinct groups. Group 1 consists of Mesoarchaean (3.2–2.9 Ga) gneisses and N-S elongated TTG (Tonalite-Trondhjemite-Granodiorite) plutons with gneissic borders. Group 2 is represented by ca. 2.15 Ga pretectonic calc-alkaline plutons that are less deformed than group 1. Group 3 is ca. 2.11–2.07 Ga, late to post-tectonic plutons (shoshonite, syenite, K-rich granite and lamprophyre). Groups 2 and 3 are associated with the Transamazonian orogeny. Xenocryst ages of 3.6 Ga, the oldest zircon yet recorded within the São Francisco craton, are found in the group 3 Euclides shoshonite within the Uauá complex and in the group 2 Quijingue trondhjemite, indicating the presence of Paleoarchaean sialic basement.Group 1 gneiss-migmatitic rocks (ca. 3200 Ma) of the Uauá complex constitute the oldest known unit. Shortly afterwards, partial melting of mafic material produced a medium-K calc-alkaline melt, the younger Santa Luz complex (ca. 3100 Ma) to the south. Subsequent TTG melts intruded in different phases now exposed as N-S elongated plutons such as Ambrósio (3162 ± 26 Ma), Araci (3072 ± 2 Ma), Requeijão (2989 ± 11 Ma) and others, which together form a major part of the Archaean nucleus. Some of these plutons have what appear to be intrusive, but are probably remobilized, contacts with the Transamazonian Itapicuru greenstone belt. The older gneissic rocks occur as enclaves within younger Archaean plutons. Thus, serial additions of juvenile material over a period of several hundred m.y. led to the formation of a stable micro-continent by 2.9 Ga. Evidence for Neoarchaean activity is found in the inheritance pattern of only one sample, the group 2 Euclides pluton.Group 2 granitoid plutons were emplaced at 2.16–2.13 Ga in a continental arc environment floored by Mesoarchaean crust. These plutons were subsequently deformed and intruded by late to post-tectonic group 3 alkaline plutons. This period of Transamazonian orogeny can be explained as a consequence of ocean closure followed by collision and slab break-off. The only subsequent magmatism was kimberlitic, probably emplaced during the Neoproterozoic Braziliano event, which sampled older zircon from the basement.  相似文献   

19.
长乐-南澳构造带燕山期(J-K)TTG岩石组合及其地质意义   总被引:2,自引:2,他引:0  
长乐-南澳构造带火成岩类多年来备受国内外地学界关注和瞩目,但对其构造环境的认识却存在较大分歧.本文通过分析构造带燕山期(J-K)火成岩类的时空分布、岩石学特征及其TTG岩石组合等,讨论厘定构造带的构造性质与岩浆源区.据构造带花岗岩类岩石结构构造特征、锆石SHRIMP U-Pb与LA-ICP-MS U-Pb同位素定年,测年结果集中分布于200~191Ma、155~97Ma与84~69Ma三个区间,暗示构造带燕山期(J-K)岩浆活动可以划分为三个阶段:(1)早侏罗世(J1),以片麻岩类与糜棱岩类为主;(2)晚侏罗世-早白垩世(J3-K1),片麻状花岗岩类占优势;(3)晚白垩世(K2),出现大量的晶洞花岗岩类与脉岩类.采用O'Connor An-Ab-Or标准矿物分类方案识别TTG岩石组合获知,早侏罗世(J1)与晚侏罗世-早白垩世(J3-K1)时,构造带存在TTG岩石组合;晚白垩世(K2)时,构造带TTG岩石组合消失,发育典型的双峰式火成岩.TTG岩石组合以钙性(C)和中钾钙碱性(MKCA)为主,显示奥长花岗岩演化趋势(Tdj),具大陆边缘弧花岗岩(CAG)的特征,由此可推断长乐-南澳构造带燕山期(J-K)构造性质为主动大陆边缘弧.构造带发育两类成因机制的TTG岩石组合,分别来自不同的岩浆源区:具镁安山质(MA)性质的TTG岩浆来源于玄武质洋壳的脱水融熔,具正常安山质(A)性质的TTG岩浆来源于陆壳底部玄武质岩石的局部熔融.  相似文献   

20.
中国东北地区处于古亚洲洋构造域和古太平洋构造域的结合部位,地质演化历史复杂,岩浆构造活动发育。本文选取吉黑东部延边地区的东宁、福洞两个侏罗纪岩体,对其成因及成矿潜力进行了分析。研究表明,东宁花岗岩(198.6±2.6 Ma)具有较高的SiO2含量和较低的MgO含量,富集LILEs和LREEs,亏损HFSEs和HREEs,此外显示亏损的Hf同位素组成(εHf(198.6 Ma)=+1.0^+6.0),具有较高的锆石饱和温度(796~902℃),推测其为玄武质岩浆底侵新生下地壳发生部分熔融而成。福洞黑云母石英闪长岩(173.6±2.8 Ma)和其内部的暗色包体(173.8±7.4 Ma)形成年龄一致,但具有不同的Hf同位素组成,表明福洞岩体为壳幔两端元岩浆混合成因。东宁和福洞岩体的形成与古太平洋板块在侏罗纪时期向东亚大陆边缘俯冲有关,分别代表了地壳重熔和地壳增生的两种过程。与中亚造山带内大型斑岩型矿床的成矿岩浆相比,延边地区的岩体普遍具有较低的锆石Ce4+/Ce3+比值,指示岩浆偏低的氧逸度可能是导致区内不发育大规模斑岩成矿的制约因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号