首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
为研究水平轴潮流能发电装置结构对其水动力性能的影响,运用格子玻尔兹曼(LBM)方法,建立水平轴潮流能发电装置的数值模拟分析模型,对水轮机在不同尖速比工况下的水动力性能进行模拟。将模拟结果与同工况水池拖曳实验得到的数据相对比,二者捕获能系数误差在2%左右,验证了LBM方法的可行性和准确性。在此基础上利用LBM方法研究机舱和立柱结构对水轮机特性的影响,得到其对水轮机捕获效率的影响规律。  相似文献   

2.
Although a lot can be learnt from technology transfer from wind turbines and ship propellers, there have been a few experiments investigating marine current turbines. As a result, a study has been carried out on the power, thrust and cavitation characteristics of 1/20th scale model of a possible 16 m diameter horizontal axis tidal turbine. Cavitation tunnel experiments for different blade pitch settings have been compared with simulations based on a developed blade element-momentum theory. This theory has been shown to provide a satisfactory representation of the experimental turbine performance characteristics. As an example application, the developed theory has been used to design possible horizontal axis tidal turbines for the tidal flows around Portland Bill. The results show that there is a clear balance between design loads and optimisation of energy yields.  相似文献   

3.
潮流能发电装置支撑结构对水轮机水动力学性能影响研究   总被引:1,自引:0,他引:1  
水平轴潮流能水轮机在工作过程中,由于支撑结构的存在,会使水轮机周围流场中的潮流流向、流速等参数发生不同程度的改变,进而影响水轮机的性能和发电装置的稳定性。为了研究支撑结构对水轮机水动力学性能的影响规律,以某100 k W单立柱座底式潮流能发电装置的支撑结构为研究对象,采用CFD方法,分别在正、反向来流时采用不同支撑结构的共六种工况下,对潮流能水轮机模型的获能和受力进行数值模拟。通过水槽模型试验,验证数值模拟的可靠性。研究结果表明:支撑结构对水轮机的水动力学性能的影响不容忽视,针对所研究的支撑结构,在正向来流时水轮机的获能系数降幅约30%,轴向力系数降幅约28%;反向来流时的降幅更大,分别约为63%和41%。  相似文献   

4.
对30 W海流能水平轴水轮机进行叶片设计,应用FLUENT软件对水轮机的水动力性能进行数值模拟,研究了边界效应对叶片表面压力、流场、湍流强度、获能和轴向力的影响。受海底边界效应影响,海流速度沿深度呈现梯度变化,底层流速较小,中上层流速较大。边界效应导致水轮机的水动力性能呈现周期性变化,降低了水轮机的获能和轴向力。机组布置时,宜选择水流稳定且流速较大的中上层区域。  相似文献   

5.
一种新型鲸鱼式潮流能发电装置的设计与试验研究   总被引:1,自引:0,他引:1  
王世明  李泽宇  申玉  陈炳 《海洋工程》2019,37(3):128-135
为了进一步提高潮流能的利用率,提出了一种新型鲸鱼式潮流能发电装置。借鉴风机叶片设计方法及水平轴水轮机的设计原理,利用结构力学、流体力学和CFD相关方法,对该装置的螺旋桨叶、导流筒和固定桩等部件进行了设计研究,从获能效果、装置可靠性和发电功率等方面进行了优化设计,并通过900 W样机试验验证了设计的有效性。试验结果显示,海流高潮期装置最大发电功率可达到980 W,一天内大约有4个缓潮期,此间发电功率明显下降,但持续时间不长,总体平均发电功率在800 W上下;同时潮流能轮机启动流速在0.41 m/s左右,有着良好的低速启动性能。  相似文献   

6.
The paper presents the effects of blade twist and nacelle shape on the performance of horizontal axis tidal current turbines using both analytical and numerical methods. Firstly, in the hydrodynamic design procedure, the optimal profiles of untwisted and twisted blades and their predicted theoretical turbine performance are obtained using the genetic algorithm method. Although both blade profiles produce desired rated rotational speed, the twisted blade achieves higher power and thrust performance. Secondly, numerical simulation is performed using sliding mesh technique to mimic rotating turbine in ANSYS FLUENT to validate the analytical results. The Reynolds-Averaged Navier-Stokes (RANS) approximation of the turbulence parameters is applied to obtain the flow field around the turbine. It is found that power and axial thrust force from BEMT (Blade Element Momentum Theory) method are under-predicted by 2% and 8% respectively, compared with numerical results. Afterwards, the downstream wake field of the turbine is investigated with two different nacelle shapes. It is found that the rotor performance is not significantly affected by the different nacelle shapes. However, the structural turbulence caused by the conventional nacelle is stronger than that by the NACA-profiled shape, and the former can cause detrimental effect on the performance of the downstream turbines in tidal farms.  相似文献   

7.
Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the pressure distribution along the span of the turbine blade, herein we call it 3D effect. However, so far the effect is rarely reported in the research, moreover, in numerical simulation. In the present study, a 3D numerical model of the turbine with the connecting arm was developed by using FLUENT software compiling the UDF (User Defined Function) command. The simulation results show that the pressure distribution along the span of blade with the connecting arm model is significantly different from those without the connecting arm. To facilitate the validation of numerical model, the laboratory experiment has been carried out by using three different types of NACA aerofoil connecting arm and circle section connecting arm. And results show that the turbine with NACA0012 connecting arm has the best start-up performance which is 0.346 m/s and the peak point of power conversion coefficient is around 0.33. A further study has been performed and a conclusion is drawn that the aerofoil and thickness of connecting arm are the most important factors on the power conversion coefficient of the vertical axis tidal current turbine.  相似文献   

8.
实密度是影响轮机获能特性的关键因素之一。文中以卧式轮机实密度为基变量,以其获能系数为主要考察点,对3种实密度卧式轮机进行水槽实验方案设计和水动力性能研究。实验分别对水流流速、轮机旋转角速度、主轴转矩以及功率进行测量,并对其对主轴的扭矩、轮机的获能系数以及叶片的旋转特性进行定量分析,最终证实了该卧式轮机的单一运行特性。通过绘制基于实密度的轮机转矩—转角曲线、获能系数—尖速比曲线和轮机功率—尖速比曲线,阐明了实密度影响卧式轮机获能水动力性能的规律,即其获能系数和发电功率都随着工况速比呈先增后降趋势。实密度较低轮机因浪流流失而获得能量小,但实密度过高轮机会导致叶片间湍流涌动,加速叶片失速特性而影响轮机获能。这为卧式浪流轮机结构优化提供了可靠依据和借鉴。  相似文献   

9.
The research on the hydrodynamics of blades is mainly focused on sea areas with high-speed current. However, the average velocity in most territorial waters of China is smaller than 1 m/s, and the lift type of airfoil blades has limited application in most of these conditions. Therefore, it is of great significance to study the tidal current energy capture of blades in sub-low speed sea areas. The effect of flow impact resistance on the blade at sub-low current speed is considered and a new type of thin-walled blade based on the lift type of blade is proposed, and then the lift-impact combined hydrodynamic model of horizontal axis blade is established. Based on this model, and considering the characteristics of tidal current and velocity in the sea area of Yushan Islands, simulation and optimization of blade design are carried out. Additionally, the horizontal axis thin-walled blade and the NACA airfoil contrast blade under the same conditions are developed. By using a synthetical experimental test system, the power, torque, rotational speed and load characteristics of these two blades are tested. The performance of the thin-walled blade and the design theory are verified. It shows that this type of blade has much better energy capture efficiency in the sub-low speed sea area. This research will promote the study and development of turbines that can be used in low-speed current sea areas in the future.  相似文献   

10.
针对水平轴单叶轮海流机在低流速时启动性能差、获能少的缺点,采用共水平轴同向旋转双叶轮水轮机进行了水动力学性能的水槽试验.由实验结果研究了共水平轴单叶轮和双叶轮水轮机的功率特性和启动特性,分析了不同上、下游叶轮安装角和叶轮轴向间距对叶轮启动水流速度以及发电机获得功率的影响,并对单叶轮和双叶轮水轮机的运行情况进行了比较.结果表明,共水平轴双叶轮水轮机的启动水流速度较单叶轮低很多,而且能从水流中获得更多的能量.因此,共水平轴双叶轮水轮机能改进一般水平轴单叶轮水轮机难以启动和获能少的不足,更适合于我国低海流流速的实际海况.  相似文献   

11.
叶素动量理论和CFD方法是水平轴潮流能水轮机性能分析中运用较为广泛的数值模拟方法,文中结合小尺寸水轮机模型试验,对比分析了叶素动量理论和CFD方法在水轮机性能分析中的准确性和适用性.验证结果表明:叶素动量理论和CFD方法均能对水轮机的性能进行预报,且CFD精度高于动量叶素理论;大尖速比时,动量叶素理论偏离较高,不再适合性能预报;在小尖速比下,建议采用RNGk-ε模型的CFD方法进行分析计算;动量叶素理论适合设计初期设计方案的对比分析,而CFD方法适合对设计结果的验证校核和详细分析.  相似文献   

12.
A novel tidal turbine with winglet is given, and the influences of winglets on the hydrodynamic performance of horizontal axis current turbines (HACT) are investigated. The incompressible Reynolds-Averaged Navier–Stokes (RANS) Equations with the k − ω shear stress transport (SST) turbulence model are solved. Two HACTs with the winglet that bent towards the pressure side or suction side are designed as the conceptual designs. The pressure distribution and tip vortices are analyzed and compared to investigate the effect of the winglets. Based on the simulation results, the parameter study of the winglet is performed to investigate the effect of length, tip chord and cant angle on the hydrodynamic performance. Results demonstrate that the numerical simulation shows good agreement with the experimental data. The performance of HACT could be improved only when the winglet bends towards the suction side. At the optimum tip speed ratio (TSR), the best design can achieve 4.66% power increase rate compared with that of the baseline turbine. The proper length, tip chord and cant angle of the winglet could improve power at the whole conditions.  相似文献   

13.
Wake studies of a 1/30th scale horizontal axis marine current turbine   总被引:1,自引:0,他引:1  
A 0.4 m diameter (1:30th scale) horizontal axis marine current turbine (MCT) was tested in a circulating water channel. The turbine performance and wake characteristics were determined over a range of flow speeds and rotor thrust coefficients. Measurements of the water surface elevation profiles indicated increasing variation and surface turbulence with increasing flow speeds. Blockage-type effects (where the measured point velocity was greater than the inflow velocity) occurred around the sides of the rotor for all flow speeds. Although the effects were exaggerated at model scale, it is expected that reasonable variations in water level and flow velocity could also occur over a full scale MCT array.  相似文献   

14.
考虑发电机尾流作用的潮流能理论可开发量的评估   总被引:1,自引:1,他引:0  
In this study, we construct one 2–dimensional tidal simulation, using an unstructured Finite Volume Coastal Ocean Model(FVCOM). In the 2–D model, we simulated the tidal turbines through adding additional bottom drag in the element where the tidal turbines reside. The additional bottom drag was calculated from the relationship of the bottom friction dissipation and the rated rotor efficiency of the tidal energy turbine. This study analyzed the effect of the tidal energy turbine to the hydrodynamic environment, and calculated the amount of the extractable tidal energy resource at the Guishan Hangmen Channel, considering the rotor wake effect.  相似文献   

15.
基于UDF的水平轴潮流能水轮机被动旋转水动力性能研究   总被引:1,自引:1,他引:0  
针对水平轴潮流能水轮机被动旋转问题,基于Fluent 17.0,运用UDF(User Defined Function)控制滑移网格对网格进行动态调整,仿真研究水轮机在不同安放角下被动旋转的水动力特性。通过仿真分析,结果表明:潮流能水轮机随着叶片安放角度的增加,尖速比、输出功率、捕能系数都是先增大后减小,叶片安放角为6°时,叶轮前后速度差最大,对潮流能利用充分,且各项性能均达到最佳;通过分析叶片受力,叶尖叶素在安放角为2°时阻力最大,3°时升力最大,升阻比在6°时最大,此时叶尖叶素升阻比C_L/C_D=6.27、攻角α=3.06°。由仿真结果可知水平轴潮流能叶轮的自启动过程由5个阶段组成,即加速度增大的加速运动段—加速度减小的加速运动段—加速度反向增大的减速运动段—加速度反向减小的减速运动段—稳定运行段,这对潮流能水轮机的设计具有重要的指导意义。  相似文献   

16.
The unsteady hydrodynamic characteristics of vertical axis tidal turbine are investigated by numerical simulation based on viscous CFD method. The starting mechanism of the turbine is revealed through analyzing the interaction of its motion and dynamics during starting process. The operating hydrodynamic characteristics of the turbine in wave-current condition are also explored by combining with the linear wave theory. According to possible magnification of the cyclic loads in the maximum power tracking control of vertical axis turbine, a novel torque control strategy is put forward, which can improve the structural characteristics significantly without effecting energy efficiency.  相似文献   

17.
水平轴海流能发电机叶片设计与性能分析   总被引:2,自引:1,他引:1  
全球海洋蕴藏着丰富的海流能,合理利用海流能可以有效缓解能源危机。以额定工况下获能系数达到最大值为目标,利用叶素-动量理论设计了150 kW水平轴海流能发电机的叶片。使用叶素-动量理论结合普朗特修正和葛劳渥修正的方法,预测了海流机在不同尖速比以及不同桨距角下的水动力性能,分析了攻角和载荷沿着叶片径向的分布规律。使用CFD方法计算了海流机在不同尖速比下的水动力性能,并与理论方法的计算结果进行了比较。理论方法和CFD方法的结果均表明,所设计的海流机最大获能系数位于设计尖速比处,证明基于叶素-动量理论的水平轴海流机叶片设计方法是有效的。  相似文献   

18.
A combined experimental and numerical investigation is carried out to study the performance of a vertical-axis eccentric-disc variable-pitch turbine(VEVT). A scheme of eccentric disc pitch control mechanism based on doubleblock mechanism is proposed. The eccentric control mechanism and the deflection angle control mechanism in the pitch control structure are designed and optimized according to the functional requirements of the turbine, and the three-dimensional model of the turbine is established. Kinematics analysis of the eccentric disc pitch control mechanism is carried out. Kinematics parameters and kinematics equations which can characterize its motion characteristics are derived. Kinematics analysis and simulation are carried out, and the motion law of the corresponding mechanical system is obtained. By analyzing the force and motion of blade of VEVT, the expressions of the important parameters such as deflection angle, attack angle and energy utilization coefficient are obtained. The lateral induced velocity coefficient is acquired by momentum theorem, the hydrodynamic parameters such as energy utilization coefficient are derived, and the hydrodynamic characteristics of VEVT are also obtained. The experimental results show that the turbine has good energy capture capability at different inflow velocities of different sizes and directions, which verifies that VEVT has good self-startup performance and high energy capture efficiency.  相似文献   

19.
We recently showed the advantage of using a numerical system to extract energy from tidal currents by developing a new twin-turbine model (Li and Calisal, 2010a). Encouraged by this result, we decided to use this model to study another important characteristic of the turbine system, torque fluctuation. This effort is summarized in this paper. The torque fluctuation is expected to reduce the fatigue life of tidal current turbines, though potentially it also may deteriorate the power quality of tidal current turbines. In this paper, after reviewing the twin-turbine model, we use it to predict the torque fluctuation of the system with the same configurations as we used to study the power output in Li and Calisal (2010a). Specifically, we investigate the torque fluctuation of twin-turbine systems with various turbine parameters (e.g., relative distance between two turbines and incoming flow angle) and operational condition (e.g., tip speed ratio). The results suggest that the torque of an optimally configured twin-turbine system fluctuates much less than that of the corresponding stand-alone turbine, under the same operating conditions. We then extensively compare the hydrodynamic interaction’s impact on the torque fluctuation and the power output of the system. We conclude that the hydrodynamic interactions pose more constructive impacts on the torque fluctuation than on the power output. The findings indicate that the optimally configured counter-rotating system should be a side-by-side system, and that the optimally configured co-rotating system should have the downstream turbine partially in the wake of the upstream turbine depending on the detailed configuration of the turbines. Furthermore, one must balance the optimal torque fluctuation against the optimal power output.  相似文献   

20.
Experimental model tests were conducted to predict the performance of two sets of metal and plastic bi-directional tidal turbine rotors. This test programme aims to provide reliable and accurate measurement data as references for developers, designers and researchers on both model and full scale. The data set presented in this paper makes available the detailed geometry and motion parameters that are valuable for numerical tools validation. A rotor testing apparatus that was built using an off-the-shelf K&R propeller dynamometer, its configuration, testing set-up, calibration of the apparatus and data acquisition are described. Comparison analysis between the metal and plastic rotors hydrodynamic performance in terms of torque, drag and derived power and drag coefficients are also presented. The results show a substantial decrease in maximum power performance for the plastic rotors – about 40% decrease at a tip speed ratio of around 3.0, compared with rigid metal rotors. The plastic rotors have also a much higher cut-in speed. It showed that materials for rotor models with low rigidity such as polyamide (nylon) produced by selective laser sintering (SLS) systems may substantially under-predict power generation capacity. As a result, they are considered unsuitable for rotor model performance evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号