首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了监测全球海洋上空的大气可降水量,已发射上天多种星载微波波谱仪和辐射计,相应地发展建立了多种反演算式。我们利用逐步回归分析,研究比较了反演晴天大气可降水量(PW)的多种通道组合以及算式中不同的亮温(Ta)函数形式的效果。主要结果有:(1)对应于高中低PW值有不同的最佳通道组合;(2)常选的水汽吸收中心线22.235 GHz不太适合于反演高中且变化范围大的PW值;(3)有必要建立分气候区域和分季节的反演算式;(4)在反演算式中采用ln(T0-TB)一般比线性形式有更好的回归和反演效果,但在有22.235 GHz通道时则不然;(5)反演中低或变化范围大的PW时,22.235 GHz亮温的平方项能显著改善回归和反演结果。  相似文献   

2.
TRMM卫星微波成像仪资料的陆面降水反演   总被引:5,自引:0,他引:5  
为了探讨微波亮温与降水的关系,用TRMM卫星上微波降水雷达PR、微波辐射计TMI资料和973资料组提供的2002年6~7月120站的每小时自记降水记录,采用逐步回归方法,反演陆面降水.通过资料匹配分析显示,由于时空匹配问题,站点降水与微波辐射计亮温及亮温的组合因子的相关性并不高,明显低于TRMM卫星的测雨雷达PR与微波辐射计亮温及其组合因子的相关程度,因此仅用微波亮温和站点降水难以建立较好的反演算式.结合时空匹配较好的TRMM卫星降水雷达PR、微波辐射计TMI资料,建立新的算式,并且和其它算式进行比较.就反演降水结果而言,新算式比原有算式有一定改善,但对6~10 mm/h的降水来说,新算式与原有算式反演结果都较差.  相似文献   

3.
热带气旋上层的暖异常与气旋强度密切相关。利用匹配的NOAA-16和NOAA-18上的AMSU-A从不同角度几乎同时对同一气旋的观测数据,对基于变分理论的热带气旋暖异常物理反演算法进行检验。结果表明,采用物理反演方法后可明显提高不同卫星平台上同类仪器观测的亮温异常之间的相关性,即显著地减小了水平分辨率因素对亮温异常观测的影响。对实测数据的分析表明,不同平台上通道8(55.5 GHz)观测的亮温异常之间的相关性大于通道7(54.94 GHz)。为了选择更优的亮温异常观测通道,利用2002-2003年西北太平洋区域的344对匹配数据,分别建立了AMSU-A的通道7、8反演的亮温异常与日本气象厅提供的最佳路径数据中的MSLP(最低海平面气压)之间的统计关系,再利用2004年的229对匹配数据对算式进行了检验,对检验结果进行了比较表明,对于独立的检验数据,采用通道8所得结果的均方根误差比采用通道7时相对减小25%。   相似文献   

4.
机载微波大气温度探测仪可以机动灵活地获取大气温度廓线信息。针对一次机载微波大气温度探测仪的多高度飞行观测试验,基于逐线积分模式和大气参数廓线库,建立用于不同飞行高度的快速辐射传输模式,分析了仪器观测亮温的质量并对仪器观测进行了订正;建立了基于神经网络的微波大气温度廓线反演算式,分析了不同高度、不同通道选择对于大气温度廓线反演性能的影响。研究结果表明:(1)较低飞行高度计算得到的各地表敏感通道地表比辐射率之间具有较好的一致性;(2)采用订正算式订正后,不同飞行高度的模拟亮温与观测亮温具有较好的一致性;(3)机载微波大气温度反演最优通道组合依赖于平台飞行高度;(4)采用最优的通道组合,4 200 m、3 200 m和2 500 m高度层温度反演均方根误差范围分别为0.5~1.8 K、0.5~1.3 K和0.4~1.0 K。   相似文献   

5.
从红外太阳透过率反演大气可降水量的研究   总被引:6,自引:0,他引:6  
从红外波段太阳透过率测量中可以反演大气可降水量#AW#a。我们在近、中红外波段选取了三对波长,用LOWTRAN 7辐射传输模式,主要研究了散射和气溶胶对这三对波长反演#AW#a算式的影响。结果表明,通常采用近红外波长对(即0.9422~0.862 μm)反演#AW#a并非最佳选择,因为其反演算式受到大气状态(混浊度)的很大影响;而在稍远段两对波长(1.47~1.55 μm和3.704~3.067 μm)对应的算式较为稳定。  相似文献   

6.
基于微波成像仪资料反演陆面降水   总被引:2,自引:0,他引:2  
为了探讨微波亮温与降水的关系,结合时空匹配较好的TRMM卫星测雨雷达(PR)、微波成像仪(TMI)资料,用逐步回归方法,建立统计反演降水的新算式,并对新算式反演结果进行验证.结果表明:对0.1~3 mm/h和3~6 mm/h的降水来说.新算式反演结果与PR雷达反演降水相关较好;对6~10 mm/h的降水来说,新算式反演结果与PR雷达反演降水相关较差;对于大于10 mm/h的降水,新算式反演结果与PR雷达反演降水有较好的相关性,但均方根误差比较大,说明用这种方法反演降水,对于强降水中心的确定有很好的参考价值,但反演结果较实际偏小.通过对2004年7月18日发生的一次特大降水反演结果表明,卫星反演雨带的空间分布、强降水中心位置与PR雷达反演降水以及地基雷达反演降水基本一致.  相似文献   

7.
利用热带降雨测量卫星(TRMM)的微波成像仪(TMI)和星载测雨雷达(PR)资料,选取了2003年出现在西北太平洋亚洲季风区的热带气旋ETAU(T0310),采用间接对数组合方案建立了多频道线性回归算式,对4种不同分辨率(0.1°、0.2°、0.25°、0.5°)进行了TMI反演降水试验。结果表明,间接对数组合法能够较好地表征降水区的范围和强度分布,且反演结果稳定,是由微波亮温资料反演洋面降水的一种较为理想方法。采用0.2°和0.25°分辨率反演降水效果相对较好,具有实际应用价值,能对降水的宏观特征做出一定的指示。本文结果对于利用卫星微波遥感资料反演降水的研究具有一定参考价值。  相似文献   

8.
经典变分反演法是基于观测误差服从高斯分布的假定,对偏离均值较大的离群值较敏感。当实际观测数据包含离群值观测误差呈现非高斯分布时,如果采用经典反演法进行变分反演就会产生大的偏差,甚至导致变分反演的失败。使用经典变分反演法首先需要进行质量控制,剔除所谓的离群值,但有相当部分的离群值包含了一些亮点,如天气现象。如果对其“视而不见”,则对很多重要的信息就无法把握。基于此,研究采用稳健变分反演的思想同化这些离群值,主要思想是把M-估计法(L2、Huber、Fair和Cauchy一估计)的权重函数耦合到经典变分反演中,在每次变分反演极小化迭代过程中重新估计观测项对经典变分反演目标泛函的贡献率。采用高光谱大气红外探测器(AtmosphericInfraRedSounder,AIRS)的通道模拟亮温进行理想试验,结果表明:采用Huber一估计进行稳健变分反演对温度和湿度反演具有较好的效果;采用Cauchy-估计得到的效果反而更差,这是由Cauchy等分布函数固有的缺陷所决定的。因此,稳健变分反演观测误差非高斯分布是可行的,但依赖M-估计法权重函数的选取。  相似文献   

9.
利用红外高光谱探测仪(Infrared Atmospheric Sounding Interferometer,IASI)在二氧化碳吸收带的长短波红外通道对云反应程度的不同来探测云。依据不同通道的权重函数峰值高度和云不敏感层高度将IASI长短波红外通道进行配对,成功配对的长短波红外通道晴空亮温之间建立线性回归模型,即通过长波红外通道亮温可以线性回归得到配对的短波通道亮温,将短波通道的晴空回归亮温和观测亮温之差定义为云指数。权重函数峰值高度位于383 hPa的云指数空间分布和云成分为冰的空间分布较为一致,尤其在赤道和低纬度地区。权重函数峰值高度位于790 hPa的云指数空间分布和低云云顶气压也有较好的一致性。  相似文献   

10.
经典变分同化基于误差服从高斯分布理论,在同化受云影响的红外探测器通道亮温时,需进行云检测或只同化权重函数峰值位于云顶之上的通道亮温。在云检测过程中需对亮温进行严格的质量控制以剔除"离群值",导致丢失大量有用数据。文中基于带约束项非高斯模型的广义变分对高光谱大气红外探测器(Atmospheric Infra-Red Sounder,AIRS)受云影响亮温进行了初步的同化研究。在执行过程中,首先,动态选择AIRS通道形成通道子集。其次,把云参数(有效云量和有效云顶气压)作为辐射传输模式输入变量参与变分同化极小化迭代并用于通道子集亮温模拟。同化试验结果表明,对于高云,基于Cauchy-估计的变分同化反演结果最好,而对于中云和低云,基于Huber-估计得到了较好的同化反演结果。然而,在反演模式高层温度时,基于Fair-估计反而得到了较差的结果,但其对于湿度反演效果较为理想,其结果可能与Fair-估计分布的固有特点有关。带约束项广义变分同化方法对受云影响亮温的同化效果比经典变分方法的好,但依赖于M-估计的选取。  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

16.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

17.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

18.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

19.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

20.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号