首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
1981—2013年京津冀持续性霾天气的气候特征   总被引:1,自引:0,他引:1  
张英娟  张培群  王冀  曲恩杉  刘秋锋  李刚 《气象》2015,41(3):311-318
近年来我国不断增多的霾天气的一个显著特征就是持续性增强,为此,本文利用1981—2013年京津冀霾日统计资料,对京津冀持续性霾事件(定义为连续2 d及以上有烟或霾发生的天气)的基本时空分布特征和变化趋势进行了详细分析,结果表明:京津冀地区1981—2013年非持续性霾日数没有显著的变化趋势,持续性霾日数及其所占百分率均呈显著增加趋势,持续性霾日数的增加是总的霾天气增加的主要原因。持续性霾天气主要集中在北京、天津北部和河北西南部,年平均持续性霾日数占到霾的年总日数一半以上。持续性霾高发区的范围呈现年代际增大趋势,2000年之后扩展趋势显著加速。  相似文献   

2.
利用长江中游地区的湖北和安徽境内的156个气象站1961-2013年的逐日能见度、相对湿度、降水、天气现象等常规观测要素,对长江中游地区霾日进行了重建,并分析了霾日长期变化特征及其主要影响因素。结果表明:城市站较乡村站霾日数普遍偏多,且不同区域的霾日年际、年代际有着较为明显的差异。东亚冬季风的阶段性减弱(东亚大槽强度减弱)、北极海冰的减少等气候变率对大气环境容量变小、大气自净能力减弱和霾日的增加有较大的贡献。乡村地区的霾日年际变化和气候变率的相关性更高,表明乡村地区的霾日变化以受气候变率影响为主;而城市地区霾日数和气候变率的相关性较低,表明城市地区霾日变化主要受源排放影响,气候变率对霾日增加的贡献相对较小,城市区域大气环境容量的减弱是气候变化和城市化共同影响的结果。  相似文献   

3.
安徽霾日重建和时空特征分析   总被引:3,自引:0,他引:3  
利用1970-2009年安徽80个地面气象观测站点资料,借助霾的客观判别方法,重建了近40年安徽霾的气候序列,并在此基础上系统地分析了安徽霾日数的气候特征。结果表明:(1)通过重建与实测序列的比较,发现重建序列可以反映出霾日的时间变化,但数值上重建的霾日数较观测记录明显偏高,同时重建的霾日序列可以弥补部分台站霾日长时间缺测的现象。(2)安徽霾日具有明显的时空分布特征。在年变化上,以20世纪80年代初为分界点,霾日数发生激增,随着经济的不断发展,霾日数和霾强度都在不断增加;在空间上,安徽东部霾日数明显高于西部,霾影响范围不断地向北、向西扩展,并且逐渐形成了皖中地区和沿江东部两个高值中心;在季节上,霾日数在秋、冬季达到最大,而在春、夏季较少,同时中、重度等级的霾都出现在秋、冬季。  相似文献   

4.
根据广东省86个气象站1961—2014年气象资料,采用日均相对湿度和能见度标准,以及线性趋势分析、Mann-Kendall突变检验等方法,研究了广东省霾日的时空分布特征。结果表明:1961—2014年广东平均年霾日以1.2 d/年的速率明显增加。20世纪60、70年代霾日较少,80年代开始波动增加,2003年后上升尤为明显,2007年达到最高。霾日冬季最多,1月和12月的霾日数占全年总数的28%,夏季最少,尤其是7月份,仅为全年总数的1.9%。广东省霾日在1985年左右发生突变性增加。全省霾日及其变化速率空间分布比较一致,霾日高值区、增加速率较大的地区主要集中在珠江三角洲,霾日低值区、增加速率较小的地区主要分布在广东西南部和东部大部分地区。  相似文献   

5.
利用1981—2019年气象观测资料,分析了四川霾日的时空变化特征,并分析了污染物排放量和气象条件变化对霾日的影响。结果表明:(1)四川盆地为霾日高发区,年均霾日达53.7 d,其中轻、中、重度霾日数分别为26.9、24.1和2.7 d,川西高原年均霾日数不足1 d。霾日高值区主要分布在盆地的中部、东部及南部,轻、中、重度霾日高值区分布与霾日基本一致。(2)近39 a盆地霾日总体呈下降趋势,气候倾向率为-0.03 d/10 a,霾日数及霾分布范围在20世纪90年代达到最大,进入21世纪后霾日数和霾范围呈减小趋势。(3)霾在冬季发生频繁,冬季年均霾日数达24.7d,且盆地大部地区超过30 d。(4)近39 a盆地共发生持续性霾12 782次,自贡市、德阳市、内江市、乐山市为持续性霾的高发区;盆地共发生区域持续性霾509次,其中10 d的区域持续性霾发生的次数最多,占比为87.8%。(5)盆地霾天气的主要贡献污染物为PM2.5和PM10。二者排放量在20世纪90年代达到最大,进入21世纪后开始减少,21世纪10年代减少最为明显。21世纪10年代前盆地平均气温升高、相对湿度下降,污染物的排放与气象条件的共同作用,导致霾事件出现频率较高。随着城市生态文明的建设与治理,在21世纪10年代,盆地区域污染物排放减少,区域升温率减小,相对湿度显著升高,霾出现频率有所降低。  相似文献   

6.
根据湛江市6个地面观测站1961—2014年的气象资料,采用日均UV法(U为相对湿度,V为能见度)、线性趋势分析、Mann-Kendall突变检验、小波分析等方法,研究了湛江市霾日的时空变化特征。结果表明:1961—2014年湛江市年平均霾日10.4 d,年霾日以每年0.5 d的速率显著增加。20世纪60年代和90年代霾日较少,20世纪80年代和21世纪霾日较多。冬季最多,1和12月的霾日之和占全年的39.4%;春季、夏季霾日较少,5—8月霾日之和仅占全年的5.8%。湛江市霾日在1977年左右发生突变性增加。霾日在20世纪80年代具有显著的2~4年周期,2000年以来具有3~5年的显著周期。霾日及其增加速率高值区集中在湛江城区、吴川、廉江;低值区集中在遂溪、雷州、徐闻。  相似文献   

7.
中国霾天气的气候特征分析   总被引:26,自引:1,他引:25  
胡亚旦  周自江 《气象》2009,35(7):73-78
利用1961-2007年全国721个气象站的霾天气观测资料,分析了中国大陆地区霾天气的时空分布特征.结果表明:中国的霾天气主要分布在100°E以东、42°N以南地区,且"浊岛"现象非常明显;霾天气的季节分布基本为冬多夏少;近47年中国霾天气的总体趋势为波动增多,线性倾向率为3.19d/10a,1960年代至1970年代中期处于少霾的负位相,1976-2000年在很弱的正位相内振荡,但近5年霾天气显著增多;47年间中国霾天气序列有2次明显的突变,分别位于1970年代中期和2000年之后;在年际尺度上,霾天气与风力条件具有很好的反相关对应关系,f≥5 m·s-1日数和f≥10m·s-1日数与霾日数的相关系数分别为-0.809和-0.734,表明风力条件(大气污染物稀释扩散能力)的变化对霾天气增减趋势的影响非常显著.  相似文献   

8.
邹瑾  李君  高理  孔祥宁 《气象科技》2022,50(6):802-811
基于区域性高温天气过程等级划分标准,利用逐日最高气温资料,客观识别山东省区域性高温事件,并分析其时空分布和变化特征及其对气候增暖的响应。结果表明:1961—2020年山东省共发生了区域性高温154次,平均每年约2.6次,主要出现在6—7月;西部地区多,山区和沿海地区少;年际和年代际变化明显,发生了减少到增多的趋势变化,20世纪60年代至80年代显著减少,90年代中期之后开始增多,21世纪明显增多,持续时间、影响范围和过程强度明显增加增强。区域性高温对气候增暖响应显著,随着增暖加剧,年最晚出现时间明显推迟,频次也更多,持续时间更长,影响范围更大,强度更强,且更长更强的区域性高温事件也更容易发生。  相似文献   

9.
近50年中国霾年代际特征及气象成因   总被引:6,自引:3,他引:3       下载免费PDF全文
根据1961-2013年全国745个国家基准站的长期观测资料,分析中国霾日数年代际变化特征及可能的气象成因。结果表明:近50年来,中国霾天气主要集中在东部从华南到华北的大部分地区,霾日数呈增加趋势。秋冬两季是霾天气发生最频繁、变化最明显的两个季节。中国东部淮河以南地区秋冬两季霾日数在2000年前呈增加趋势,其后增加趋势变得较为平缓,20世纪90年代前霾日数与近地面风速呈显著负相关关系,90年代后则与大气相对湿度呈显著负相关关系,随着90年代前近地面风速减小和90年代后大气相对湿度降低,该区域霾日数表现出明显的增加趋势。中国东部从淮河到华北大部分地区秋冬两季霾日数1980年后增加趋势变得不明显,这可能与该区域近地面风速和大气相对湿度的变化趋势较为平缓有关。  相似文献   

10.
利用1961—2016年洛阳9个县(市)地面气象观测站的雾、霾日数及相关气象要素资料,采用统计学方法分析了洛阳地区雾和霾日数的时空分布特征及影响其产生的气象要素特征。结果表明:近56a来洛阳市平均年雾日数在20世纪80和90年代较多,21世纪初开始逐渐减少,但在2015—2016年明显增加;平均年霾日数以2013—2016年最多;雾和霾日数在冬季最多,夏季最少。2000—2016年洛阳市雾日数自北向南逐渐减少,霾日数则在西部多、东部少,全区霾日数较1981—2010年明显增加。对雾、霾日气象要素的分析表明,相对湿度越大雾出现的频率越高、能见度越低,浓雾发生时相对湿度一般都在90%以上;中度和重度霾发生时相对湿度主要集中在50%~79%。雾发生时气温主要在-4.0~4.0℃之间,中度和重度霾发生时,气温分别集中在0~15.0℃和0~8.0℃,轻微和轻度霾发生时气温分布范围较大,以0~10.0℃较为集中。雾和霾出现时风速大部分在3.0m·s^-1及以下,并且主要是来自东北、东东北风向区域。  相似文献   

11.
利用全国664站1961—2012年逐日霾观测资料、降水量、平均风速和最大风速资料,分析中国霾日数变化特征及其气候成因。结果表明:我国年霾日数分布呈明显东多西少特征,中东部大部地区年霾日数在5~30 d,部分地区超过30 d,西部地区基本在5 d以下。霾日数主要集中在冬半年,冬季最多,秋季和春季次之,夏季最少,12月是霾日数最多的月份,约占全年霾日数的2成。我国中东部地区冬半年平均霾日数呈显著的增加趋势(1.7 d/10a),霾日数显著增加时段主要在1960年代、1970年代和21世纪初,在1970年代初和21世纪初发生了明显均值突变。从区域分布来看,华南、长江中下游、华北等地霾日数呈增加趋势,而东北、西北东部、西南东部霾日数呈减少趋势。持续性霾过程增加,持续时间越长的霾过程比持续时间短的霾过程增加更为明显。不利的气候条件加剧了霾的出现。霾日数与降水日数在中东部地区基本以负相关为主,中东部冬半年降水日数呈减少趋势(-4 d/10a),表明降水日数的减少导致大气对污染物的沉降能力减弱。另一方面,霾日数与平均风速和大风日数以负相关为主,而与静风日数则以正相关为主,冬半年平均风速和大风日数减小,静风日数增加,表明风速减小导致空气中污染物不易扩散,从而更易形成霾天气。  相似文献   

12.
该文针对近年来人们普遍关心的高温热浪极端天气气候事件问题,利用湖南省1979—2013年的全省各县(市)95个地面气象观测站点逐日最高气温资料来研究湖南省单站高温日数时空变化特征,研究指出:湖南省高温天气日数空间分布特征呈现"东多西少";且存在2个高温多发区;高温天气的年发生日数空间差异很大,与地形密切相关。高温日数演变过程中存在着4类尺度的周期变化规律。同时不同的年代际也表现出不同的强度和范围,尤以21世纪的变化最为明显。此外,湖南高温也存在明显的年际和年代际变化,在20世纪80年代之前,年高温日总次数呈小幅减少的趋势,而在21世纪后,年高温日总次数表现出显著增加趋势。  相似文献   

13.
利用湖北省77个测站1961-2007年气象资料,分析了积雪的时空特征。结果表明,湖北省积雪年际变化振幅明显,20世纪60年代到70年代中期缓慢增加,为积雪多发期;80年代年波动较大;90年代开始明显减少。月积雪日数呈准正态分布,1月最多,2月、12月次之。积雪空间分布表现为西部多,中东部少;山地多,丘陵平原少;沿江多...  相似文献   

14.
金丽娜  曲静  张雅斌  赵荣  翟园 《气象科技》2015,43(2):314-319
选用1971—2013年西安7个一般气象站和西安探空站资料,综合人工观测霾日记录、能见度小于10.0km、相对湿度小于80%的标准,分析霾的年代际、季和月的时空分布特征,以及霾天气时风、降水、边界层等影响因子。结果表明:120世纪70年代至21世纪西安年代际平均霾日呈"减-增-减-增"趋势;2西安是关中地区主要大气污染区,霾主要出现在冬季,多发区域基本维持在中东部;城市化对霾天气发生影响显著,呈市区、近郊多,远郊少的特点;3大部分霾持续时间不超过一周;近95%霾出现在3.3m/s风速以下,一半以上霾天气风力小于1级;4霾日与雨日成反比,与连续无降水日数成正比,月均最长连续无降水日数低值区为4—9月,霾日数均不多;各月边界层高度和霾日数呈明显的反相关,冬季边界层低,霾日最多;5特殊的"盆地"地貌、风速逐年减小的气候变化趋势、城市工业污染加重等是造成西安霾天气形成并波动上升的重要影响因子。  相似文献   

15.
利用中国东北地区1981—2018年166个地面气象观测站资料, 定义了中国东北地区秋冬季霾日指数, 分析了年际尺度上该地区霾日数与同期大气环流异常的内在关系。结果表明: 中国东北地区秋冬季霾日指数存在显著的年际变化特征, 欧亚—太平洋遥相关型(Eurasia-Pacific Teleconnection Pattern, EUP)负位相、东亚大槽偏弱等大气环流异常配置导致中国东北地区秋冬季霾的发生频次增加。巴伦支海与喀拉海北部海域是影响中国东北地区秋冬季霾日年际变化的海冰关键区, 该区域海冰面积与霾日数呈显著负相关, 北极海冰通过改变大气环流间接影响中国东北地区秋冬季霾日发生频次, 当北极海冰异常偏少时, 东亚冬季风偏弱, 近地面风速偏低, 环境湿度偏高, 中国东北地区受东北亚异常反气旋西侧的异常偏南风控制, 且受“EUP”负位相模态影响, 东亚大槽减弱, 有利于大气污染物和水汽向中国东北地区输送, 该地区秋冬季霾的发生频次增加。  相似文献   

16.
广东记录霾日和统计霾日的气候特征及比较   总被引:1,自引:0,他引:1  
利用广东省86个气象观测站1961—2013年记录霾日资料和1981—2013年统计霾日资料,采用线性趋势分析、计算气候趋势系数等统计诊断方法,分析了广东记录霾日和统计霾日的气候特征并进行比较。结果表明:广东统计霾日与记录霾日的年平均分布非常相似,但是统计霾日数比记录霾日数明显增加10~80 d。广东霾分布可划分为三个区:(1)多霾区:包括珠江三角洲、北部的南雄、东南部的汕头,年统计霾日40.0~144.5d;(2)一般霾区:包括广东中部偏北的部分地区,年统计霾日20.0~39.9 d;(3)少霾区:广东西南部和东部大部分地区,年统计霾日1.0~19.9 d。广东年记录霾日和统计霾日均以11 d(10 a)的速率明显上升,1990年后显著增加,特别是2003年以来上升非常明显,2007年达到最大,但2008年以来逐年波动下降。广东年霾日数增加最明显的区域在珠三角、汕头、南雄等地。1980—2013年的广东平均年记录霾日序列与统计霾日序列的相关系数达0.78,显著相关。分析表明统计霾日比记录霾日总体上更客观合理,并对两者存在差异的原因进行了分析与讨论。  相似文献   

17.
近50年环渤海地区夏季降水时空变化特征   总被引:3,自引:0,他引:3  
根据环渤海地区1961-2008年夏季60个测站逐日降水资料序列,使用EOF和REOF方法将环渤海地区划分为4个区域,分析了近50年来环渤海不同区域夏季降水的时空变化特征.结果表明,环渤海地区夏季降水存在明显的区域一致性以及年际和年代际变化特征,降水总体呈下降趋势;各区夏季降水都存在2~3年的年际周期,辽东半岛和环渤海北部区域存在10~11年、环渤海西部和山东半岛存在14~15年的年代际周期;辽东半岛在20世纪60年代后期,山东半岛在70年代初期都发生了降水由多到少的显著突变,而环渤海北部和西部地区在90年代后期降水出现显著突变.  相似文献   

18.
1980~2013年安徽霾天气变化趋势及可能成因   总被引:4,自引:0,他引:4  
对1980~2013年安徽省霾日数的时空变化趋势及可能原因进行了分析,结果表明:(1)1980年以来,霾天气年均发生日数总体呈上升趋势,年际波动较大。不同年代,霾高发区的位置不同:20世纪80年代平均为5.5 d,沿江到江淮之间有零星的高发区;20世纪90年代平均为8.5 d,高发区在沿江中西部的望江和池州、省会合肥、淮北北部的萧县和灵璧;2000年代,平均发生日数为8.7 d,有3个高发区,分别是以合肥为中心的江淮之间中部、沿淮中部地区和沿江中东部地区。(2)按地理位置把安徽省分为6个子区,不同子区年霾日数的变化趋势不同:皖南山区变化较平缓,沿淮地区2000年后上升明显,淮北北部和沿江有先升后降的趋势。(3)地级市平均霾日数呈显著上升的趋势,而县城霾日数上升速度缓慢,且在2008年之后有下降趋势。(4)城市化和汽车拥有量激增导致氮氧化物排放量快速增多,可能是2000年之后地级市霾日数显著增多的主要因子,而县城霾日数变化的驱动因子可能是气候变化原因,如东亚季风强度的变化。  相似文献   

19.
利用1970—2013年石家庄地区17个县市的地面气象观测资料分析了霾的空间变化特征。结果表明:1970—2013年石家庄年霾日数的区域分布变化较大,由中东部平原霾日数多、西北部山区霾日数少的分布转变为西南部地区霾日数多、中东部地区霾日数少,这种空间分布在2010年后更显著。随着经济快速发展,石家庄市西部山区丰富的矿产资源被开采,大量排放的SO2、NOX和VOCS等污染物发生光化学反应,有利于气溶胶的转化形成;除本地污染物排放外,受太行山阻挡,在一定天气背景下东南部地区污染物向山前汇聚,区域性污染输送也是西部山区污染严重的成因。石家庄地区持续性霾事件日数占霾总日数的50%以上,霾持续日数超过4d和8d分别为中等持续性霾事件与极端持续性霾事件;中等持续性霾事件年平均发生次数为9.8次,极端持续性霾事件年平均发生次数为1.6次。以南—东北向铁路线为分界,石家庄区域呈中东部和南部县市(无极、正定、藁城、栾城、赵县)极端持续性霾事件较多、西北部3县市(平山、行唐、灵寿)和东部3县市(晋州、深泽、辛集)极端持续性霾事件少的分布。石家庄市中等持续性霾事件在12月和1月发生次数最多,6—8月中等持续性霾事件发生最少;极端持续性霾事件主要出现在11月至翌年2月,其中1月极端持续性霾事件发生的可能性最大,年平均发生次数为0.4次,其他月份极端持续性霾事件年平均发生次数不足0.2次,极端持续性霾事件的发生概率较小。  相似文献   

20.
湖北省积雪时空特征分析   总被引:1,自引:0,他引:1  
利用湖北省77个测站1961-2007年气象资料,分析了积雪的时空特征。结果表明,湖北省积雪年际变化振幅明显,20世纪60年代到70年代中期缓慢增加,为积雪多发期;80年代年波动较大;90年代开始明显减少。月积雪日数呈准正态分布,1月最多,2月、12月次之。积雪空间分布表现为西部多,中东部少;山地多,丘陵平原少;沿江多,内陆少。有利于湖北大范围出现积雪的大尺度背景的环流类型主要有纬向型和两槽一脊型。出现积雪时24h变压Δp24为正,24h变温Δt24和水汽压变化Δe24为负,地面气象要素的异常变化,也可以作为积雪预报的着眼点之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号