首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The results of a laboratory electromagnetic analogue model study, which employs a horizontal inducing field over a simple model of the British Isles region, delineate the location and frequency dependence of the major coast effect induction anomalies of the Scotland region. Contours of amplitudes, amplitude ratios, and in-phase and quadrature parts of the model field measurements are presented. The model vertical magnetic fields for two orthogonal source field polarizations and field station values for two hypothetical events for corresponding polarizations are compared.While major discrepancies occur between model and field Hz amplitudes, the Hz gradients across Scotland, which can be attributed to the coast-effect, are comparable in value, although sometimes reversed in sign. Superimposed on this coast-effect, the field data indicate the existence of current concentrations associated with the Great Glen and the Southern Uplands faults and possibly also of currents within the Scottish mainland near the east and west coasts.  相似文献   

2.
The results of deep electromagnetic soundings for the active transition ocean-continent zone at Sakhalin Island are presented. After an averaging procedure of the magnetotelluric response functions, the period range was extended up to 500 days by using the geomagnetic soundings of the Yuzhno-Sakhalinsk, Kakioka and Memambetsu observatory data. The existence of the asthenosphere and a high conductivity layer located at the base of the upper mantle was established by one-dimensional inverse methods. High resistivity revealed at depths of 250–450 km appears to be connected with the penetration of the cold slab into the mantle. The possible nature of a mid-mantle conductive layer and the relation of its conductances with the tectonic history are discussed.  相似文献   

3.
Long period magnetotelluric soundings are available in a 180-km long WSW–ENE profile across the Alto Paranaíba igneous province, a complex Cretaceous alkaline province situated mostly in the southern Neoproterozoic Brasília fold and thrust belt in central Brazil. The data indicate 3D complexity at upper and mid-crust and a simpler 2D regional structure at lower crustal and upper mantle depths. A 2D inversion emphasizing long period data identifies a highly resistive block at the uppermost mantle below the central part of the profile, surrounded by a rapid decrease in resistivity with depth. Resistivities at the block are typical of dry olivine under upper mantle conditions and a deep cratonic lithosphere is defined for this region. It is proposed that the resistive block is a rheologically enduring structure preserved within a southwestward extension of the pericratonic lithosphere of the Archean–Early Proterozoic São Francisco craton that lies beneath the nappes of the Brasília belt. Lower resistivities at shallower upper mantle depths beneath the Sanfranciscana basin at the northeastern end of the profile can be interpreted either as an increased conductivity within the lithosphere or as a localized thinned out lithosphere. The conductivity enhancement possibly arises from the addition of small amounts of water to mantle anhydrous minerals during previous metasomatic percolations.  相似文献   

4.
In the years 2001–2003, we accomplished the experimental phase of the project CEMES by collecting long-period magnetotelluric data at positions of eleven permanent geomagnetic observatories situated within few hundreds kilometers along the south-west margin of the East European Craton. Five teams were engaged in estimating independently the magnetotelluric responses by using different data processing procedures. The conductance distributions at the depths of the upper mantle have been derived individually beneath each observatory. By averaging the individual cross-sections, we have designed the final model of the geoelectrical structure of the upper mantle beneath the CEMES region. The results indicate systematic trends in the deep electrical structure of the two European tectonic plates and give evidence that the electrical structure of the upper mantle differs between the East European Craton and the Phanerozoic plate of west Europe, with a separating transition zone that generally coincides with the Trans-European Suture Zone.  相似文献   

5.
The first decade of 21st century is characterized by the appearance of new approaches to deep induction soundings. The theory of magnetovariation and magnetotelluric soundings was generalised or corrected. Spatial derivatives of response functions (induction arrows) were obtained for the ultra-long periods. New phenomena have been detected by this method: secular variations of the Earth’s apparent resistivity and the rapid changes of induction arrows over the last 50 years. The first one can be correlated with the number of earthquakes, and the second one–with geomagnetic jerks in Central Europe. The extensive studies of geoelectrical structure of the crust and mantle were realized in the frame of a series of international projects. New information about geoelectrical structures of the crust in Northern Europe and Ukraine was obtained by deep electromagnetic soundings involving controlled powerful sources. An influence of the crust magnetic permeability on the deep sounding results was confirmed.  相似文献   

6.
大地电磁测深结果表明,唐山地区深部电性中存在壳内高导层和上地幔高导层,其分别埋深为20公里和100公里左右,均显示为南浅北深。资料对比表明唐山、宁河地震都发生在两个高导层埋深变化梯度带上,其震源深度都不超过壳内高导层的埋深。此外,在该区南部发现埋深约45公里高导层,我们认为有可能为上地幔中间高导层  相似文献   

7.
The hourly data of nine geomagnetic observatories situated in Central Europe have been analyzed using the generalized magnetovariation (GMV) method designed recently for induction soundings of inhomogeneous media. In this method, impedance is one of transfer functions in the differential relation between spectra of the magnetic components and their derivatives. The peculiarity of this impedance is its correspondence to the magnetotelluric one estimated from the linear relations. Three transfer functions have been estimated simultaneously for data of geomagnetic observatories, using three different routines working in the period range from three hours up to two days. Noises in the source field components have been compared with noise in the estimated plane field divergence. The multivariate errors-in-variables method was used to extract spatially and temporally coherent geomagnetic field structure from the partially incoherent geomagnetic variations. This method allows estimating reliably impedances and gradient tippers for each observatory, taking into consideration the Earth’s sphericity. The obtained responses have been used for induction soundings and for detecting a deep inhomogeneity in the region.  相似文献   

8.
本文以理论公式证明地磁测深的电磁阻抗不可能在某一“穿透频率”附近发生不连续的突变。利用“穿透频率”的概念定出的佘山地区地幔电导率是不妥的。  相似文献   

9.
The magnetotelluric data for the southern part of Kamchatka Peninsula are interpreted in the mode of three-dimensional (3D) model fitting of the invariant characteristics of impedance and tipper matrices. The interpretation yielded the distribution of electric conductivity in the crust and mantle of the Earth. Conductive blocks are revealed in the junction zone of the Kamchatka depression and Pribrezhnyi horst, as well as beneath the Mutnovskii-Vilyuchik and Avacha-Koryak groups of volcanoes. These blocks are confined to the sublatitudinally trending regional faults and to the upper part of the asthenosphere. The locations of the conductive zones are correlated to the distributions of low-density and low-velocity domains and areas of high seismic and volcanic activity, which is probably due to the significant fluid saturation of these zones.  相似文献   

10.
From our interpretation of the Bouguer gravity and aeromagnetic anomalies in south-east Scotland, we conclude that a massive granite batholith underlies the greater part of the eastern Southern Uplands. The granite model which we computed earlier from gravity anomalies in the Tweeddale area fits the observed magnetic anomalies closely, if a normal magnetization of 0.095 A m–1 is assigned, similar to values found for exposed local granites. Further gravity modelling shows that, apart from the Tweeddale boss, the granite shallows to less than 1 km near Lammer Law in East Lothian and extends north of the Lammermuir Fault. A model for the East Lothian volcanics was computed from their aeromagnetic anomalies, then their gravitational effect was combined with that estimated for the Devonian and Carboniferous sediments and the result stripped off the observed gravity field. The residual gravity anomalies were used to generate a two-dimensional model for the granite north of the Lammermuir Fault. The expected tectonic consequences of a massive granite batholith in the eastern Southern Uplands are compared with the known development of faults and sedimentary basins around its margins.  相似文献   

11.
华北、西北一些地区地壳和上地幔内高导层   总被引:8,自引:1,他引:7       下载免费PDF全文
本文根据大地电磁测深方法的探测,发现地壳和上地幔内存在几—几十欧姆·米的低阻层(高导层)事实,探讨高导层的分布特点与大地构造特征,高导层与其它地球物理场,高导层的成因机制及其与大陆浅源地震之间的关系  相似文献   

12.
依据大地电磁测深所发现的上地幔高导层顶面深度可以给出大陆岩石圈-软流圈界面(LAB)的空间发育特征,为认识岩石圈结构及壳幔相互作用等提供重要信息.本文在1996年编制的中国大陆上地幔高导层顶面深度图的基础上,补充了1995—2010年大地电磁测深结果和大地热流数据,以1°×1°网度编制了新的中国大陆上地幔高导层顶面深度图.我国上地幔高导层顶面深度变化很大,具有南北分带,东西分块的特征,呈东浅、西深、北浅、南深的格局,从最浅的50~60km到最深的230km,平均深度为100~120km.据上地幔高导层顶面分布形态,全国共可划分出27个隆起区.通过与中国已知内生金属矿产和油气田的分布对比,发现我国大陆80%以上中生代内生金属矿床分布在上地幔高导层隆起带或其梯度带上方.中国大陆东部含油气盆地主体对应上地幔隆起区,油气田多位于隆起区上方或其边部的过渡带上;西部主体位于幔坳区,主要油气田对应盆地中心的幔坳向周边幔隆过渡的梯度带上;中部表现为仅盆地腹地对应幔坳,盆地周边对应规模较大的上地幔隆起带,主要油气田位于隆起带.总的来看内生金属矿床一般分布在上地幔隆起区靠近造山带一侧,而油气田一般分布在上地幔隆起区靠近盆地一侧.软流圈的不断上隆,造成岩石圈减薄、拉张,张性断裂的出现成为地球深部物质和热量向地壳上部运移的有利通道,为内生金属矿产的形成提供了成矿物质和能量保障,也为含油气盆地带来了生烃催化剂、热能和无机成因的石油与天然气.地球深部超临界流体的存在对上地幔高导层的形成、成矿物质运移可能发挥了重要作用.  相似文献   

13.
An interpretative experience from nine magnetotelluric soundings was accomplished in the central region of Argentina (32°S?C34°S; 63°W?C69°W), from the Andean region in the west to the platform zone in the east. To do this, magnetovariational information was used to improve the distortion diagnostics in magnetotelluric curves. Using Pilar Geomagnetic Observatory as a reference site, horizontal magnetic transfer functions were estimated, which were compared with the integrate conductivity at each location in field. As a result, a rather simple methodology is proposed to better approach the accurate positions of normal curves. Results suggest that, in this way, better formal interpretations of soundings may be reached. In addition, a more clear and comprehensible knowledge about the nature of lateral in-homogeneities is obtained; e.g., discovering 3-D effects no suspected from tectonic maps. This methodology seems to be particularly useful when-as in the present case-magnetotelluric soundings are far away each others; i.e., when effective volumes of soundings are not interpenetrated. Horizontal magnetovariational information suggests two elongate conductivity anomalies (about N25°?C30°E), possibly associated with deep seated faults belonging to the South American regmatic network. These anomalies would be produced by partial melting in lower crust and possibly in the asthenospheric zone next to Andean Range. Another elongate anomaly (possibly of graphitic nature) is shown in the study region. It seems to be a marginal fault following the border between The Sierras Pampeanas dynamic zone and the South American craton. Magnetotelluric results indicate the study region can be considered as divided in a dynamic belt next to Andean Range and a cratonic zone eastward. The dynamic zone presents a well developed lower crust, with conductances ranging 300?C4300 Siemens and depths of about 20?C30 km. An asthenosphere close to the Andes with 1000 Siemens of conductance at 74 km depth is also observable. Heat flows of 63?C70 mW/m2 are estimated next to Andes and 48 mW/m2, eastward, close to South American platform. The cratonic zone presents a first conductive layer with a conductance of 270 Siemens underneath BUL sounding site, but it does not seem to present lateral development. An intermediate conductive layer is also present in this region, but it does not have so much development. Therefore, this layer would not have asthenospheric character; so, the lithosphere would be tied to upper mantle. Heat flows ranging 40?C35 mW/m2 were estimated for this cratonic region.  相似文献   

14.
华南上地幔P波速度结构   总被引:1,自引:1,他引:1       下载免费PDF全文
通过拟合15°-30°内的长周期P波走时及波形资料,得到了华南地区上地幔P波速度结构模型SC.研究结果表明,在华南地区的上地幔内无低速层存在,在405km和660km深度处仃一级间断面存在,速度跳跃分别为5.7%和4.6%.通过与欧洲西部上地幔模型K8,欧洲西北部上地幔模型S8和西藏地区上地幔模型QX8比较,我们发现各个构造区P波速度的过渡区是一致,但间断面的绝对深度不一样.  相似文献   

15.
小江断裂带周边地区三维P波速度结构及其构造意义   总被引:18,自引:6,他引:12       下载免费PDF全文
作为青藏高原的东南边界,小江断裂带在高原物质的侧向逃逸中发挥着重要的作用.本文利用流动地震台阵及固定台站的走时观测资料,对小江断裂带及周边区域的壳幔三维P波速度结构进行了研究.结果表明,在中上地壳,小江断裂带内部主要为低速异常,其东侧主要为高速异常.在中下地壳,小江断裂带中部为低速异常,北部和南部主要为高速异常,其中北部的高速异常可延伸到地表附近,南部的高速异常可一直延伸到上地幔.我们推测,小江断裂带中部的低速异常与深部热作用有关;北部的高速异常可能是晚古生代地幔柱活动导致大量基性和超基性幔源物质侵入地壳引起的,它的存在对青藏高原物质向南逃逸起到了一定的阻挡作用,可能是导致川滇活动块体北部次级块体快速抬升的重要因素;南部顶界面向北倾斜的高速异常体对川滇活动块体向南滑移起到了进一步的阻挡作用,导致其上覆的中上地壳低速异常区发生较强的变形和强烈的地震活动,同时在上地幔深度范围起到了稳定的作用,使其南部区域的介质受青藏高原物质向南挤出的影响明显减小.  相似文献   

16.
Determination of impedances is necessary in order to eliminate some shortcoming of our knowledge about structures of the exciting source fields and their fickleness. The experimental impedances for induction soundings result from the impedance boundary conditions or heuristic models. The simplified models give just a rough idea of their domain of applicability. Impedances can depend on many factors, including the exciting field structures of several source types which are present in the period range of the mantle soundings (104−4×108 s). The problem in the mantle investigations arises if impedances measured by different methods have to be jointly inverted in order to essentially prolongate the analyzed period range and hence to increase the reliability and depth of induction soundings on land. The subject of our work is an analysis of the known magnetotelluric and magnetovariation impedances to suggest a physically substantiated approach for their joint inversions.  相似文献   

17.
A non-parametric method, the efficient linearization technique (ELT), is proposed for the inversion of induction soundings for a spherical Earth model with a radial conductivity distribution. The method is based on the fact that when linearizing the operator of the direct problem, the quantitative estimate of its non-linear term is taken into account, which makes the solution search procedure stable. At each iteration stage, the conductivity function correction is sought in the region where linearization is admissible. ELT makes it possible to evaluate the resolving power of the data and also the confidence interval for the conductivity function. Model examples illustrate the features of this method. The results of interpretation of magnetotelluric data are compared with nearby drill hole resistivity logs. A model of the conductivity distribution in the mantle based on global magnetovariational data available up to 1986, is constructed. This model is consistent with modern knowledge of physical processes occurring in the interior of the Earth.  相似文献   

18.
库尔勒—吉木萨尔剖面横跨塔里木盆地北缘、天山造山带和准噶尔盆地南缘.沿剖面完成了重磁联合反演,获得了岩石圈二维密度结构与二维磁性结构.结果发现,塔里木盆地与准噶尔盆地向天山造山带对冲.在地壳范围内,塔里木盆地北缘与准噶尔盆地南缘的平均密度较高,天山造山带的地壳平均密度较低.天山造山带具有较高的磁化强度,尤其表现在准噶尔盆地南缘至天山造山带中部的整个地壳范围内,预示着天山南北可能具有不同的构造演化历史、构造运动方式以及构造运动强度.在塔里木盆地与天山造山带以及准噶尔盆地与天山造山带的接触部位的上地幔顶部分别发现了低密度体,推测在塔里木盆地由南而北向天山造山带“层间插入与俯冲消减”,以及准噶尔盆地由北而南向天山造山带俯冲的过程中塔里木盆地北缘和准噶尔盆地南缘下地壳物质被带进天山造山带上地幔顶部.库尔勒—吉木萨尔剖面岩石圈二维密度结构与磁性结构为天山造山带的构造分段提供了岩石圈尺度的依据.  相似文献   

19.
准噶尔盆地北部基底结构与属性问题探讨   总被引:11,自引:3,他引:8       下载免费PDF全文
准噶尔盆地的基底结构与属性一直是地学界关注的焦点问题之一.横跨准噶尔盆地北部,走向近东西的克拉玛依—喀姆斯特地震剖面提供了该盆地北部详细的地壳与上地幔顶部的速度结构与构造,特别是基底顶界面的速度.沿剖面发现了数条走向近南北的“H”型超壳断裂,它们没有明显的断差,断裂处反射系数明显降低,介质的Q值减小,推测具“开裂”性质;利用盆地内1:20万重磁数据完成了重磁联合反演,获得了沿剖面的地壳与上地幔顶部的二维密度结构与二维磁性结构.根据在一定深度范围内介质的速度-密度-岩性之间的关系,确定了盆地北部基底岩性分布.结果表明,准噶尔盆地北部的基底多处为基性和超基性物质,推测为深部(上地幔)物质沿超壳断裂进入地壳内部并对地壳物质进行改造的结果.这一推断得到盆地内部高磁性、高重力异常的支持,也与盆地具有较高的地壳平均速度相一致.综合其他地球物理与地质资料综合分析,给出了综合地质解释剖面,建立了准噶尔盆地北部基底结构与属性的动力学模型.  相似文献   

20.
Deep magnetotelluric (MT) sounding data were collected and processed in the western part of the East European Craton (EEC). The MT sounding results correspond well with impedances obtained by magnetovariation (MV) sounding on the new geophysical observatory situated not far from the western border of Russia. Inversion based on combined data of both induction soundings let us evaluate geoelectrical structure of the Earth’s crust and upper and mid-mantle at depths up to 2000 km, taking into account the harmonics of 11-year variations. Results obtained by different authors and methods are compared with similar investigations on the EEC such as international projects CEMES in Central Europe and BEAR in Fennoscandia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号