首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the effect of a planet on an eccentric orbit on a two-dimensional low-mass gaseous disc. At a planet eccentricity above the planet's Hill radius divided by its semimajor axis, we find that the disc morphology differs from that exhibited by a disc containing a planet in a circular orbit. An eccentric gap is created with eccentricity that can exceed the planet's eccentricity and precesses with respect to the planet's orbit. We find that a more massive planet is required to open a gap when the planet is on an eccentric orbit. We attribute this behaviour to spiral density waves excited at corotation resonances by the eccentric planet. These act to increase the disc's eccentricity and exert a torque opposite in sign to that exerted by the Lindblad resonances. The reduced torque makes it more difficult for waves driven by the planet to overcome viscous inflow in the disc.  相似文献   

2.
A migrating planet can capture planetesimals into mean motion resonances. However, resonant trapping can be prevented when the drift or migration rate is sufficiently high. Using a simple Hamiltonian system for first- and second-order resonances, we explore how the capture probability depends on the order of the resonance, drift rate and initial particle eccentricity. We present scaling factors as a function of the planet mass and resonance strength to estimate the planetary migration rate above which the capture probability drops to less than half. Applying our framework to multiple extrasolar planetary systems that have two planets locked in resonance, we estimate lower limits for the outer planet's migration rate, allowing resonance capture of the inner planet.
Mean motion resonances are comprised of multiple resonant subterms. We find that the corotation subterm can reduce the probability of capture when the planet eccentricity is above a critical value. We present factors that can be used to estimate this critical planet eccentricity. Applying our framework to the migration of Neptune, we find that Neptune's eccentricity is near the critical value that would make its 2 : 1 resonance fail to capture twotinos. The capture probability is affected by the separation between resonant subterms and so is also a function of the precession rates of the longitudes of periapse of both planet and particle near resonance.  相似文献   

3.
We investigate the resonant rotation of co-orbital bodies in eccentric and planar orbits. We develop a simple analytical model to study the impact of the eccentricity and orbital perturbations on the spin dynamics. This model is relevant in the entire domain of horseshoe and tadpole orbit, for moderate eccentricities. We show that there are three different families of spin–orbit resonances, one depending on the eccentricity, one depending on the orbital libration frequency, and another depending on the pericenter’s dynamics. We can estimate the width and the location of the different resonant islands in the phase space, predicting which are the more likely to capture the spin of the rotating body. In some regions of the phase space the resonant islands may overlap, giving rise to chaotic rotation.  相似文献   

4.
We discuss the main mechanisms affecting the dynamical evolution of Near-Earth Asteroids (NEAs) by analyzing the results of three numerical integrations over 1 Myr of the NEA (4179) Toutatis. In the first integration the only perturbing planet is the Earth. So the evolution is dominated by close encounters and looks like a random walk in semimajor axis and a correlated random walk in eccentricity, keeping almost constant the perihelion distance and the Tisserand invariant. In the second integration Jupiter and Saturn are present instead of the Earth, and the 3/1 (mean motion) and v 6 (secular) resonances substantially change the eccentricity but not the semimajor axis. The third, most realistic, integration including all the three planets together shows a complex interplay of effects, with close encounters switching the orbit between different resonant states and no approximate conservation of the Tisserand invariant. This shows that simplified 3-body or 4-body models cannot be used to predict the typical evolution patterns and time scales of NEAs, and in particular that resonances provide some “fast-track” dynamical routes from low-eccentricity to very eccentric, planet-crossing orbits.  相似文献   

5.
Effect of stellar electromagnetic radiation on the motion of spherical dust particle in mean motion orbital resonances with a planet is investigated. Planar circular restricted three-body problem with the Poynting–Robertson (P–R) effect yields monotonic secular evolution of eccentricity when the particle is trapped in the resonance. Planar elliptic restricted three-body problem with the P–R effect enables nonmonotonous secular evolution of eccentricity and the evolution of eccentricity is qualitatively consistent with the published results for the complicated case of interaction of electromagnetic radiation with nonspherical dust grain. Thus, it is sufficient to allow either nonzero eccentricity of the planet or nonsphericity of the grain and the orbital evolutions in the resonances are qualitatively equal for the two cases. This holds both for exterior and interior mean motion orbital resonances. Evolutions of argument of perihelion in the planar circular and elliptical restricted three-body problems are shown. Numerical integrations show that an analytic expression for the secular time derivative of the particle’s argument of perihelion does not exist, if only dependence on semimajor axis, eccentricity and argument of perihelion is admitted. Connection between the shift of perihelion and oscillations in secular eccentricity is presented for the planar elliptic restricted three-body problem with the P–R effect. Period of the oscillations corresponds to the period of one revolution of perihelion. Change of optical properties of the spherical grain with the heliocentric distance is also considered. The change of the optical properties: (i) does not have any significant influence on the secular evolution of eccentricity, (ii) causes that the shift of perihelion is mainly in the same direction/orientation as the particle motion around the Sun. The statements hold both for circular and noncircular planetary orbits.  相似文献   

6.
We review here some relevant problems connected to the evolution of circumstellar dust grains, subjected to Poynting-Robertson (PR) drag, and perturbed by first-order resonances with a planet on a circular orbit. We show that only outer mean motion resonances are able to counteract the damping effect of PR drag. However, the high orbital eccentricities reached by the particle lead to orbit crossings with the planet. This is a serious difficulty for a permanent trapping to be achieved. In any case, we show that the time spent in the resonance is long enough for statistical effects (accumulation at the resonant radius) to be significant. We underline some difficulties associated with this problem, namely, the non-adiabaticity of motion in the resonance phase space and the existence of close encounters with the planet at high eccentricities.  相似文献   

7.
Most extrasolar planets discovered to date are more massive than Jupiter, in surprisingly small orbits (semimajor axes less than 3 AU). Many of these have significant orbital eccentricities. Such orbits may be the product of dynamical interactions in multiplanet systems. We examine outcomes of such evolution in systems of three Jupiter-mass planets around a solar-mass star by integration of their orbits in three dimensions. Such systems are unstable for a broad range of initial conditions, with mutual perturbations leading to crossing orbits and close encounters. The time scale for instability to develop depends on the initial orbital spacing; some configurations become chaotic after delays exceeding 108 y. The most common outcome of gravitational scattering by close encounters is hyperbolic ejection of one planet. Of the two survivors, one is moved closer to the star and the other is left in a distant orbit; for systems with equal-mass planets, there is no correlation between initial and final orbital positions. Both survivors may have significant eccentricities, and the mutual inclination of their orbits can be large. The inner survivor's semimajor axis is usually about half that of the innermost starting orbit. Gravitational scattering alone cannot produce the observed excess of “hot Jupiters” in close circular orbits. However, those scattered planets with large eccentricities and small periastron distances may become circularized if tidal dissipation is effective. Most stars with a massive planet in an eccentric orbit should have at least one additional planet of comparable mass in a more distant orbit.  相似文献   

8.
Possible configurations of the planetary systems of the binary stars α Cen A–BandEZAqr A–C are analyzed. The P-type orbits—circumbinary ones, i.e., the orbits around both stars of the binary, are studied. The choice of these systems is dictated by the fact that α Cen is closest to us in the Galaxy, while EZ Aqr is the closest system whose circumbinary planets, as it turns out, may reside in the “habitability zone.” The analysis has been performed within the framework of the planar restricted three-body problem. The stability diagrams of circumbinary motion have been constructed: on representative sets of initial data (in the pericentric distance–eccentricity plane), we have computed the Lyapunov spectra of planetary motion and identified the domains of regular and chaotic motion through their statistical analysis. Based on present views of the dynamics and architecture of circumbinary planetary systems, we have determined the most probable planetary orbits to be at the centers of the main resonance cells, at the boundary of the dynamical chaos domain around the parent binary star, which allows the semimajor axes of the orbits to be predicted. In the case of EZ Aqr, the orbit of the circumbinary planet is near the habitability zone and, given that the boundary of this zone is uncertain, may belong to it.  相似文献   

9.
We study orbits of planetary systems with two planets, for planar motion, at the 1/1 resonance. This means that the semimajor axes of the two planets are almost equal, but the eccentricities and the position of each planet on its orbit, at a certain epoch, take different values. We consider the general case of different planetary masses and, as a special case, we consider equal planetary masses. We start with the exact resonance, which we define as the 1/1 resonant periodic motion, in a rotating frame, and study the topology of the phase space and the long term evolution of the system in the vicinity of the exact resonance, by rotating the orbit of the outer planet, which implies that the resonance and the eccentricities are not affected, but the symmetry is destroyed. There exist, for each mass ratio of the planets, two families of symmetric periodic orbits, which differ in phase only. One is stable and the other is unstable. In the stable family the planetary orbits are in antialignment and in the unstable family the planetary orbits are in alignment. Along the stable resonant family there is a smooth transition from planetary orbits of the two planets, revolving around the Sun in eccentric orbits, to a close binary of the two planets, whose center of mass revolves around the Sun. Along the unstable family we start with a collinear Euler–Moulton central configuration solution and end to a planetary system where one planet has a circular orbit and the other a Keplerian rectilinear orbit, with unit eccentricity. It is conjectured that due to a migration process it could be possible to start with a 1/1 resonant periodic orbit of the planetary type and end up to a satellite-type orbit, or vice versa, moving along the stable family of periodic orbits.  相似文献   

10.
The chaotic orbital dynamics of the planet in the wide visual binary star system 16 Cyg is considered. The only planet in this system has a significant orbital eccentricity, e = 0.69. Previously, Holman et al. suggested the possibility of chaos in the orbital dynamics of the planet due to the proximity of 16 Cyg to the separatrix of the Lidov–Kozai resonance. We have calculated the Lyapunov characteristic exponents on the set of possible orbital parameters for the planet. In all cases, the dynamics of 16 Cyg is regular with a Lyapunov time of more than 30 000 yr. The dynamics is considered in detail for several possible models of the planetary orbit; the dependences of Lyapunov exponents on the time of their calculation and the time dependences of osculating orbital elements have been constructed. Phase space sections for the system dynamics near the Lidov–Kozai resonance have been constructed for all models. A chaotic behavior in the orbital motion of the planet in 16 Cyg is shown to be unlikely, because 16 Cyg in phase space is far from the separatrix of the Lidov–Kozai resonance at admissible orbital parameters, with the chaotic layer near the separatrix being very narrow.  相似文献   

11.
The past tidal evolution of the satellite Dysnomia of the dwarf planet Eris can be inferred from the current physical and orbital properties of the system. Preliminary considerations, which assumed a circular orbit for the satellite, suggested that the satellite formed close to the planet, perhaps as a result of a giant impact, and that it is thus unlikely that smaller satellites lie further out. However, if the satellite's orbit is eccentric, even if the eccentricity is very small, a qualitatively different past tidal evolution may be indicated. Early in the Solar System's history, the satellite may have been on a highly eccentric orbit much farther from the planet than it is now, suggestive of a capture origin. Additional satellites farther out cannot be ruled out.  相似文献   

12.
The effects of non-isotropic ejection of mass from either component of a binary system on the orbital elements are studied, for the case of a small initial eccentricity of the relative orbit, when all the ejected mass falls on the other component. The problem is transformed to an equivalent two-body problem with isotropic variation of mass, plus a perturbing force which is a function of the intial conditions of ejection of the particles and their final, positions and velocities when they fall on the surface of the other star. The variation of the orbital elements are derived. It is shown that, to first-order terms in the eccentricity, the secular change of the semimajor axis is equal to the one corresponding to the case of zero initial eccentricity. On the contrary, the secular change of the eccentricity is smaller and it depends on the variations of mass ejection due to the finite eccentricity.  相似文献   

13.
This study is concerned with the stability of motion of the circumbinary exoplanet Kepler-413b. The analysis is performed within the framework of a flat restricted three-body problem. The stability diagram is plotted in the plane of initial conditions “pericentric distance—eccentricity” using mass calculations of Lyapunov exponents. According to the diagram, the Kepler-413b planet is located in a stable resonance cell, confined by the mean-motion resonances 6: 1 and 7: 1 with a central binary star, which agrees with the conclusions of Kostov et al. (2014) based on calculations of the MEGNO parameter. It is shown that the value of the critical semimajor axis acquired from the empirical formula of Holman and Wiegert (1999) almost coincides with the value obtained directly from the stability diagram; at low and moderate eccentricities of the planetary orbit, the position of the calculated boundary of the chaos zone is in close agreement with the boundary predicted by Shevchenko’s theory (2015). If the planet were in the instability zone, its characteristic Lyapunov time would be only ~1 year. In accordance with the conclusions of Kostov et al. (2014), it has been shown that the planet Kepler-413b is outside the habitability zone of the system.  相似文献   

14.
Rodney S. Gomes 《Icarus》2011,215(2):661-668
Numerical integrations of the equations of motion of the giant planets and scattering particles show that there is a possible orbital itinerary that a particle may follow from a scattering mode up to a stable position near the orbit of 2004 XR190. This orbital evolution requires that the particle gets trapped in a mean motion resonance with Neptune coupled with the Kozai resonance. Imposing migration on Neptune while a particle is experiencing both resonances can entail an escape from resonance at a low particle’s eccentricity. This eccentricity and the associated inclination are always similar to those of 2004 XR190. I conclude that 2004 XR190 was most likely a scattered object that went through those resonance processes and was eventually deposited at its current position. By the same argument, it is expected that there must exist several other objects with similar semimajor axis, eccentricity and inclination as those of 2004 XR190.  相似文献   

15.
Jiang & Yeh proposed gas-drag-induced resonant capture as a mechanism able to explain the dominant 3:2 resonance observed in the trans-Neptunian belt. Using a model of a disc–star–planet system they concluded that gaseous drag in a protoplanetary disc can trap trans-Neptunian object (TNO) embryos into the 3:2 resonance rather easily although it could not trap objects into the 2:1 resonance. Here we further investigate this scenario using numerical simulations within the context of the planar restricted four-body problem by including both present-day Uranus and Neptune. Our results show that mean motion and corotation resonances are possible and trapping into both the 3:2 and 2:1 resonances as well as other resonances is observed. The associated corotation centres may easily form larger planetesimals from smaller ones. Corotation resonances evolve into pure Lindblad resonances in a time-scale of 0.5 Myr. The non-linear corotation and mean motion resonances produced are very size selective. The 3:2 resonance is dominant for submetric particles but for larger particles the 2:1 resonance is stronger. In summary, our calculations show that confined chaotic motion around the resonances not only increases trapping efficiency but also the orbital eccentricities of the trapped material, modifying the relative abundance of trapped particles in different resonances. If we assume a more compact planetary system, instead of using the present-day values of the orbital elements of Uranus and Neptune, our results remain largely unchanged.  相似文献   

16.
In the framework of the planar and circular restricted three-body problem, we consider an asteroid that orbits the Sun in quasi-satellite motion with a planet. A quasi-satellite trajectory is a heliocentric orbit in co-orbital resonance with the planet, characterized by a nonzero eccentricity and a resonant angle that librates around zero. Likewise, in the rotating frame with the planet, it describes the same trajectory as the one of a retrograde satellite even though the planet acts as a perturbator. In the last few years, the discoveries of asteroids in this type of motion made the term “quasi-satellite” more and more present in the literature. However, some authors rather use the term “retrograde satellite” when referring to this kind of motion in the studies of the restricted problem in the rotating frame. In this paper, we intend to clarify the terminology to use, in order to bridge the gap between the perturbative co-orbital point of view and the more general approach in the rotating frame. Through a numerical exploration of the co-orbital phase space, we describe the quasi-satellite domain and highlight that it is not reachable by low eccentricities by averaging process. We will show that the quasi-satellite domain is effectively included in the domain of the retrograde satellites and neatly defined in terms of frequencies. Eventually, we highlight a remarkable high eccentric quasi-satellite orbit corresponding to a frozen ellipse in the heliocentric frame. We extend this result to the eccentric case (planet on an eccentric motion) and show that two families of frozen ellipses originate from this remarkable orbit.  相似文献   

17.
The extrasolar planets discovered to date possess unexpected orbital elements. Most orbit their host stars with larger eccentricities and smaller semi-major axes than similarly sized planets in our own Solar System do. It is generally agreed that the interaction between giant planets and circumstellar disks (Type II migration) drives these planets inward to small radii, but the effect of these same disks on orbital eccentricity, ?, is controversial. Several recent analytic calculations suggest that disk-planet interactions can excite eccentricity, while numerical studies generally produce eccentricity damping. This paper addresses this controversy using a quasi-analytic approach, drawing on several preceding analytic studies. This work refines the current treatment of eccentricity evolution by removing several approximations from the calculation of disk torques. We encounter neither uniform damping nor uniform excitation of orbital eccentricity, but rather a function d?/dt that varies in both sign and magnitude depending on eccentricity and other Solar System properties. Most significantly, we find that for every combination of disk and planet properties investigated herein, corotation torques produce negative values of d?/dt for some range in ? within the interval [0.1, 0.5]. If corotation torques are saturated, this region of eccentricity damping disappears, and excitation occurs on a short timescale of less than 0.08 Myr. Thus, our study does not produce eccentricity excitation on a timescale of a few Myr—we obtain either eccentricity excitation on a short time scale, or eccentricity damping on a longer time scale. Finally, we discuss the implications of this result for producing the observed range in extrasolar planet eccentricity.  相似文献   

18.
Precision radial velocity measurements of the Sun-like dwarf 14 Herculis published by Naef et al., Butler et al. and Wittenmyer, Endl & Cochran reveal a Jovian planet in a 1760-d orbit and a trend indicating the second distant object. On the grounds of dynamical considerations, we test a hypothesis that the trend can be explained by the presence of an additional giant planet. We derive dynamical limits to the orbital parameters of the putative outer Jovian companion in an orbit within ∼13 au. In this case, the mutual interactions between the Jovian planets are important for the long-term stability of the system. The best self-consistent and stable Newtonian fit to an edge-on configuration of Jovian planets has the outer planet in 9-au orbit with a moderate eccentricity of ∼0.2 and confined to a zone spanned by the low-order mean motion resonances 5:1 and 6:1. This solution lies in a shallow minimum of (χ2ν)1/2 and persists over a wide range of the system inclination. Other stable configurations within 1σ confidence interval of the best fit are possible for the semimajor axis of the outer planet in the range of (6,13) au and the eccentricity in the range of (0, 0.3). The orbital inclination cannot yet be determined but when it decreases, both planetary masses approach ∼10 m J and for i ∼ 30° the hierarchy of the masses is reversed.  相似文献   

19.
In the present work, we study the stability of hypothetical satellites that are coorbital with Enceladus and Mimas. We performed numerical simulations of 50 particles around the triangular Lagrangian equilibrium points of Enceladus and Mimas taking into account the perturbation of Mimas, Enceladus, Tethys, Dione, Titan and the oblateness of Saturn. All particles remain on tadpole orbits after 10 000 yr of integration. Since in the past the orbit of Enceladus and Mimas expanded due to the tidal perturbation, we also simulated the system with Enceladus and Mimas at several different values of semimajor axes. The results show that in general the particles remain on tadpole orbits. The exceptions occur when Enceladus is at semimajor axes that correspond to 6:7, 5:6 and 4:5 resonances with Mimas. Therefore, if Enceladus and Mimas had satellites librating around their Lagrangian triangular points in the past, they would have been removed if Enceladus crossed one of these first-order resonances with Mimas.  相似文献   

20.
We study the interaction of a satellite and a nearby ringlet on eccentric and inclined orbits. Secular torques originate from mean motion resonances and the secular interaction potential which represents the m  = 1 global modes of the ring. The torques act on the relative eccentricity and inclination. The resonances damp the relative eccentricity. The inclination instability owing to the resonances is turned off by a finite differential eccentricity of the order of 0.27 for nearly coplanar systems. The secular potential torque damps the eccentricity and inclination and does not affect the relative semi-major axis; also, it suppresses the inclination instability that persists at small differential eccentricities. The damping of the relative eccentricity and inclination forces an initially circular and planar small mass ringlet to reach the eccentricity and inclination of the satellite. When the planet is oblate, the interaction of the satellite damps the proper precession of a small mass ringlet so that it precesses at the satellite's rate independently of their relative distance. The oblateness of the primary modifies the long-term eccentricity and inclination magnitudes and introduces a constant shift in the apsidal and nodal lines of the ringlet with respect to those of the satellite. These results are applied to Saturn's F-ring, which orbits between the moons Prometheus and Pandora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号