首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The problem of how to determine parameters of motion for an automated interplanetary probe (AIP) on a quasi-satellite orbit during flight to the small natural satellite of a planet is examined. The problem is solved by searching for an optimal state-space trajectory of automated interplanetary probe according to the least-squares criterion. The results of longitude and latitude measurements at several points are used as boundary conditions.  相似文献   

2.
Our investigation is motivated by the recent discovery of asteroids orbiting the Sun and simultaneously staying near one of the Solar System planets for a long time. This regime of motion is usually called the quasi-satellite regime, since even at the times of the closest approaches the distance between the asteroid and the planet is significantly larger than the region of space (the Hill’s sphere) in which the planet can hold its satellites. We explore the properties of the quasi-satellite regimes in the context of the spatial restricted circular three-body problem “Sun–planet–asteroid”. Via double numerical averaging, we construct evolutionary equations which describe the long-term behaviour of the orbital elements of an asteroid. Special attention is paid to possible transitions between the motion in a quasi-satellite orbit and the one in another type of orbits available in the 1:1 resonance. A rough classification of the corresponding evolutionary paths is given for an asteroid’s motion with a sufficiently small eccentricity and inclination.  相似文献   

3.
Applying the method of analytical continuation of periodic orbits, we study quasi-satellite motion in the framework of the three-body problem. In the simplest, yet not trivial model, namely the planar circular restricted problem, it is known that quasi-satellite motion is associated with a family of periodic solutions, called family f, which consists of 1:1 resonant retrograde orbits. In our study, we determine the critical orbits of family f that are continued both in the elliptic and in the spatial models and compute the corresponding families that are generated and consist the backbone of the quasi-satellite regime in the restricted model. Then, we show the continuation of these families in the general three-body problem, we verify and explain previous computations and show the existence of a new family of spatial orbits. The linear stability of periodic orbits is also studied. Stable periodic orbits unravel regimes of regular motion in phase space where 1:1 resonant angles librate. Such regimes, which exist even for high eccentricities and inclinations, may consist dynamical regions where long-lived asteroids or co-orbital exoplanets can be found.  相似文献   

4.
Stephen J. Kortenkamp 《Icarus》2005,175(2):409-418
Numerical simulations of the gravitational scattering of planetesimals by a protoplanet reveal that a significant fraction of scattered planetesimals can become trapped as so-called quasi-satellites in heliocentric 1:1 co-orbital resonance with the protoplanet. While trapped, these resonant planetesimals can have deep low-velocity encounters with the protoplanet that result in temporary or permanent capture onto highly eccentric prograde or retrograde circumplanetary orbits. The simulations include solar nebula gas drag and use planetesimals with diameters ranging from ∼1 to ∼1000 km. Initial protoplanet eccentricities range from ep=0 to 0.15 and protoplanet masses range from 300 Earth-masses (M) down to 0.1M. This mass range effectively covers the final masses of all planets currently thought to be in possession of captured satellites—Jupiter, Saturn, Neptune, Uranus, and Mars. For protoplanets on moderately eccentric orbits (ep?0.1) most simulations show from 5-20% of all scattered planetesimals becoming temporarily trapped in the quasi-satellite co-orbital resonance. Typically, 20-30% of the temporarily trapped quasi-satellites of all sizes came within half the Hill radius of the protoplanet while trapped in the resonance. The efficiency of the resonance trapping combined with the subsequent low-velocity circumplanetary capture suggests that this trapped-to-captured transition may be important not only for the origin of captured satellites but also for continued growth of protoplanets.  相似文献   

5.
Based on the motion of nearly parabolic comets, we have improved the position of planet X in its orbit obtained by Batygin and Brown (2016). By assuming that some of the comets discovered to date could have close encounters with this planet, we have determined the comets with a small minimum orbit intersection distance with the planet. Five comets having hyperbolic orbits before their entry into the inner Solar system have been separated out from the general list. By assuming that at least one of them had a close encounter with the planet, we have determined the planet’s possible position. The planet’s probable ephemeris positions at the present epoch have been obtained by assuming the planet to have prograde and retrograde motions. In the case of a prograde motion, the planet is currently at a distance Δ whose value belongs to the interval Δ ∈ (1110, 1120) AU and has a right ascension α and declination δ within the intervals α ∈ (83?, 90?) and δ ∈ (8?, 10?); the true anomaly υ belongs to the interval υ ∈ (176?, 184?). In the case of a retrograde motion: α ∈ (48?, 58?), δ ∈ (?12?, ?6?), Δ ∈ (790, 910) AU, and υ ∈ (212?, 223?). It should be noted that in the case of a retrograde motion of the planet, its ephemeris position obtained from the motion of comets agrees with the planet’s position obtained byHolman and Payne (2016) from highly accurate Cassini observations and is consistent with the results of Fienga et al. (2016).  相似文献   

6.
We consider a satellite in a circular orbit about a planet that, in turn, is in a circular orbit about the Sun; we further assume that the plane of the planetocentric orbit of the satellite is the same as that of the heliocentric orbit of the planet. The pair planet–satellite is encountered by a population of small bodies on planet-crossing, inclined orbits. With this setup, and using the extension of Öpik’s theory by Valsecchi et al. (Astron Astrophys 408:1179–1196, 2003), we analytically compute the velocity, the elongation from the apex and the impact point coordinates of the bodies impacting the satellite, as simple functions of the heliocentric orbital elements of the impactor and of the longitude of the satellite at impact. The relationships so derived are of interest for satellites in synchronous rotation, since they can shed light on the degree of apex–antapex cratering asymmetry that some of these satellites show. We test these relationships on two different subsets of the known population of Near Earth Asteroids.  相似文献   

7.
We develop a formalism of the non-singular evaluation of the disturbing function and its derivatives with respect to the canonical variables. We apply this formalism to the case of the perturbed motion of a massless body orbiting the central body (Sun) with a period equal to that of the perturbing (planetary) body. This situation is known as the co-orbital motion, or equivalently, as the 1/1 mean motion commensurability. Jupiter's Trojan asteroids, Earth's co-orbital asteroids (e.g., (3753) Cruithne, (3362) Khufu), Mars' co-orbital asteroids (e.g., (5261) Eureka), and some Jupiter-family comets are examples of the co-orbital bodies in our solar system. Other examples are known in the satellite systems of the giant planets. Unlike the classical expansions of the disturbing function, our formalism is valid for any values of eccentricities and inclinations of the perturbed and perturbing body. The perturbation theory is used to compute the main features of the co-orbital dynamics in three approximations of the general three-body model: the planar-circular, planar-elliptic, and spatial-circular models. We develop a new perturbation scheme, which allows us to treat cases where the classical perturbation treatment fails. We show how the families of the tadpole, horseshoe, retrograde satellite and compound orbits vary with the eccentricity and inclination of the small body, and compute them also for the eccentricity of the perturbing body corresponding to a largely eccentric exoplanet's orbit.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

8.
Relative motion improvements have traditionally focused on inserting additional force models into existing formulations to achieve greater fidelity, or complex expansions to admit eccentric orbits for propagation. A simpler approach may be numerically integrating the two satellite positions and then converting to a modified equidistant cylindrical frame for comparison in a Hill’s-like frame. Recent works have introduced some approaches for this transformation within the Hill’s construct, and examined the accuracy of the transformation. Still others have introduced transformations as they apply to covariance operations. Each of these has some orbital or force model limitations and defines an approximate circular reference dimension. We develop a precise transformation between the Cartesian and curvilinear frame along the actual satellite orbit and test the results for various orbital classes. The transformation has wide applicability.  相似文献   

9.
The relativistic equations of motion are derived for N self-gravitating, rotating finite bodies. These equations are then applied to the near-Earth satellite orbit determination problem. The apparent change of the shape of the Earth from the Earth centered frame to the Solar System barycentric frame changes the value of the Newtonian potential term in the metric. This in turn leads to a simplification of the equations of motion in the barycentric frame.  相似文献   

10.
An analytical expansion of the disturbing function arising from direct planetary perturbations on the motion of satellites is derived. As a Fourier series, it allows the investigation of the secular effects of these direct perturbations, as well as of every argument present in the perturbation. In particular, we construct an analytical model describing the evection resonance between the longitude of pericenter of the satellite orbit and the longitude of a planet, and study briefly its dynamic. The expansion developed in this paper is valid in the case of planar and circular planetary orbits, but not limited in eccentricity or inclination of the satellite orbit.  相似文献   

11.
The past tidal evolution of the satellite Dysnomia of the dwarf planet Eris can be inferred from the current physical and orbital properties of the system. Preliminary considerations, which assumed a circular orbit for the satellite, suggested that the satellite formed close to the planet, perhaps as a result of a giant impact, and that it is thus unlikely that smaller satellites lie further out. However, if the satellite's orbit is eccentric, even if the eccentricity is very small, a qualitatively different past tidal evolution may be indicated. Early in the Solar System's history, the satellite may have been on a highly eccentric orbit much farther from the planet than it is now, suggestive of a capture origin. Additional satellites farther out cannot be ruled out.  相似文献   

12.
G.P. Horedt  G. Neukum 《Icarus》1984,60(3):710-717
Equations have been derived for the asymmetries of crater frequency over the surface of a synchronously rotating satellite, when the orbital velocities of projectiles about the parent planet are always larger than the satellite's circular orbital velocity. If the projectiles orbit the planet in moderately eccentric ellipses, no marked apex-antapex asymmetries of crater frequency distribution are expected. Theoretical values of apex-antapex asymmetries are presented for the Earth, the Moon, and some Jovian and Saturnian satellites, and are compared with available observational and theoretical results.  相似文献   

13.
By using the method of separating rapid and slow subsystem, we obtain an analytical solution for a stable three-dimensional motion of a circumbinary planet around a binary star. We show that the motion of the planet is more complicated than it was obtained for this situation analytically by Farago and Laskar (2010). Namely, in addition to the precession of the orbital plane of the planet around the angular momentum of the binary (found by Farago and Laskar (2010)), there is simultaneously the precession of the orbital plane of the planet within the orbital plane. We show that the frequency of this additional precession is different from the frequency of the precession of the orbital plane around the angular momentum of the binary. We demonstrate that this problem is mathematically equivalent both to the problem of the motion of a satellite around an oblate planet and to the problem of a hydrogen Rydberg atom in the field of a high-frequency linearly-polarized laser radiation, thus discovering yet another connection between astrophysics and atomic physics. We point out that all of the above physical systems have a higher than geometrical symmetry, which is a counterintuitive result. In particular, it is manifested by the fact that, while the elliptical orbit of the circumbinary planet (around a binary star) or of the satellite (around an oblate planet) or of the Rydberg electron (in the laser field) undergoes simultaneously two types of the precession, the shape of the orbit does not change. The fact that a system, consisting of a circumbinary planet around a binary star, possesses the hidden symmetry should be of a general physical interest. Our analytical results could be used for benchmarking future simulations.  相似文献   

14.
We study orbits of planetary systems with two planets, for planar motion, at the 1/1 resonance. This means that the semimajor axes of the two planets are almost equal, but the eccentricities and the position of each planet on its orbit, at a certain epoch, take different values. We consider the general case of different planetary masses and, as a special case, we consider equal planetary masses. We start with the exact resonance, which we define as the 1/1 resonant periodic motion, in a rotating frame, and study the topology of the phase space and the long term evolution of the system in the vicinity of the exact resonance, by rotating the orbit of the outer planet, which implies that the resonance and the eccentricities are not affected, but the symmetry is destroyed. There exist, for each mass ratio of the planets, two families of symmetric periodic orbits, which differ in phase only. One is stable and the other is unstable. In the stable family the planetary orbits are in antialignment and in the unstable family the planetary orbits are in alignment. Along the stable resonant family there is a smooth transition from planetary orbits of the two planets, revolving around the Sun in eccentric orbits, to a close binary of the two planets, whose center of mass revolves around the Sun. Along the unstable family we start with a collinear Euler–Moulton central configuration solution and end to a planetary system where one planet has a circular orbit and the other a Keplerian rectilinear orbit, with unit eccentricity. It is conjectured that due to a migration process it could be possible to start with a 1/1 resonant periodic orbit of the planetary type and end up to a satellite-type orbit, or vice versa, moving along the stable family of periodic orbits.  相似文献   

15.
We develop an analytical Hamiltonian formalism adapted to the study of the motion of two planets in co-orbital resonance. The Hamiltonian, averaged over one of the planetary mean longitudes, is expanded in power series of eccentricities and inclinations. The model, which is valid in the entire co-orbital region, possesses an integrable approximation modeling the planar and quasi-circular motions. First, focusing on the fixed points of this approximation, we highlight relations linking the eigenvectors of the associated linearized differential system and the existence of certain remarkable orbits like the elliptic Eulerian Lagrangian configurations, the anti-Lagrange (Giuppone et al. in MNRAS 407:390–398, 2010) orbits and some second sort orbits discovered by Poincaré. Then, the variational equation is studied in the vicinity of any quasi-circular periodic solution. The fundamental frequencies of the trajectory are deduced and possible occurrence of low order resonances are discussed. Finally, with the help of the construction of a Birkhoff normal form, we prove that the elliptic Lagrangian equilateral configurations and the anti-Lagrange orbits bifurcate from the same fixed point $L_4$ L 4 .  相似文献   

16.
We consider sets of natural vectorial orbital elements of the Milankovitch type for perturbed Keplerian motion. These elements are closely related to the two vectorial first integrals of the unperturbed two-body problem; namely, the angular momentum vector and the Laplace–Runge–Lenz vector. After a detailed historical discussion of the origin and development of such elements, nonsingular equations for the time variations of these sets of elements under perturbations are established, both in Lagrangian and Gaussian form. After averaging, a compact, elegant, and symmetrical form of secular Milankovitch-like equations is obtained, which reminds of the structure of canonical systems of equations in Hamiltonian mechanics. As an application of this vectorial formulation, we analyze the motion of an object orbiting about a planet (idealized as a point mass moving in a heliocentric elliptical orbit) and subject to solar radiation pressure acceleration (obeying an inverse-square law). We show that the corresponding secular problem is integrable and we give an explicit closed-form solution.  相似文献   

17.
We investigate the resonant rotation of co-orbital bodies in eccentric and planar orbits. We develop a simple analytical model to study the impact of the eccentricity and orbital perturbations on the spin dynamics. This model is relevant in the entire domain of horseshoe and tadpole orbit, for moderate eccentricities. We show that there are three different families of spin–orbit resonances, one depending on the eccentricity, one depending on the orbital libration frequency, and another depending on the pericenter’s dynamics. We can estimate the width and the location of the different resonant islands in the phase space, predicting which are the more likely to capture the spin of the rotating body. In some regions of the phase space the resonant islands may overlap, giving rise to chaotic rotation.  相似文献   

18.
We consider particles with low free or proper eccentricity that are orbiting near planets on eccentric orbits. Through collisionless particle integration, we numerically find the location of the boundary of the chaotic zone in the planet's corotation region. We find that the distance in semimajor axis between the planet and boundary depends on the planet mass to the 2/7 power and is independent of the planet eccentricity, at least for planet eccentricities below 0.3. Our integrations reveal a similarity between the dynamics of particles at zero eccentricity near a planet in a circular orbit and with zero free eccentricity particles near an eccentric planet. The 2/7th law has been previously explained by estimating the semimajor at which the first-order mean motion resonances are large enough to overlap. Orbital dynamics near an eccentric planet could differ due to first-order corotation resonances that have strength proportional to the planet's eccentricity. However, we find that the corotation resonance width at low free eccentricity is small; also the first-order resonance width at zero free eccentricity is the same as that for a zero-eccentricity particle near a planet in a circular orbit. This accounts for insensitivity of the chaotic zone width to planet eccentricity. Particles at zero free eccentricity near an eccentric planet have similar dynamics to those at zero eccentricity near a planet in a circular orbit.  相似文献   

19.
The analysis of relative motion of two spacecraft in Earth-bound orbits is usually carried out on the basis of simplifying assumptions. In particular, the reference spacecraft is assumed to follow a circular orbit, in which case the equations of relative motion are governed by the well-known Hill–Clohessy–Wiltshire equations. Circular motion is not, however, a solution when the Earth’s flattening is accounted for, except for equatorial orbits, where in any case the acceleration term is not Newtonian. Several attempts have been made to account for the \(J_2\) effects, either by ingeniously taking advantage of their differential effects, or by cleverly introducing ad-hoc terms in the equations of motion on the basis of geometrical analysis of the \(J_2\) perturbing effects. Analysis of relative motion about an unperturbed elliptical orbit is the next step in complexity. Relative motion about a \(J_2\)-perturbed elliptic reference trajectory is clearly a challenging problem, which has received little attention. All these problems are based on either the Hill–Clohessy–Wiltshire equations for circular reference motion, or the de Vries/Tschauner–Hempel equations for elliptical reference motion, which are both approximate versions of the exact equations of relative motion. The main difference between the exact and approximate forms of these equations consists in the expression for the angular velocity and the angular acceleration of the rotating reference frame with respect to an inertial reference frame. The rotating reference frame is invariably taken as the local orbital frame, i.e., the RTN frame generated by the radial, the transverse, and the normal directions along the primary spacecraft orbit. Some authors have tried to account for the non-constant nature of the angular velocity vector, but have limited their correction to a mean motion value consistent with the \(J_2\) perturbation terms. However, the angular velocity vector is also affected in direction, which causes precession of the node and the argument of perigee, i.e., of the entire orbital plane. Here we provide a derivation of the exact equations of relative motion by expressing the angular velocity of the RTN frame in terms of the state vector of the reference spacecraft. As such, these equations are completely general, in the sense that the orbit of the reference spacecraft need only be known through its ephemeris, and therefore subject to any force field whatever. It is also shown that these equations reduce to either the Hill–Clohessy–Wiltshire, or the Tschauner–Hempel equations, depending on the level of approximation. The explicit form of the equations of relative motion with respect to a \(J_2\)-perturbed reference orbit is also introduced.  相似文献   

20.
We suggest a new method for predicting the phenomena observed in Jovian system of Galilean satellites that takes into account the planet’s phase effect. The method allows one to determine the geocentric times of the contacts of the satellite and its shadow with the illuminated part of the planet’s visible disk that occur near its inferior geocentric and inferior heliocentric conjunctions, respectively. The calculation is performed in the orthographic approximation for the geometric center of the satellite and its shadow by taking into account the curvature of the satellite’s orbit and the visible flattening of Jovian disk. The correction for the phase to the satellite’s contact time is determined from the phase shift of the center of the planet’s disk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号