首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
天山地区碰撞后构造与盆山演化   总被引:48,自引:0,他引:48  
研究表明,近东西向的天山造山带基本格架在古生代晚期已经初步形成;平行造山带广泛分布的二叠纪红色磨拉石证明当时造山隆升作用非常强烈,导致前陆盆地普遍发育。三叠纪,天山造山带遭受区域剥蚀夷平,盆山高差缩小,盆地规模进一步扩大。侏罗纪—古近纪,由于板内伸展作用,在准平原化的天山地区形成了一系列伸展盆地,呈近东西向分布。新近纪以来,受南面印度—欧亚陆—陆碰撞的影响,天山地区发生强烈陆内变形,以逆冲推覆和褶皱堆叠为特征;节理统计表明新生代的主压应力为南北方向。晚新生代,由印度和欧亚大陆碰撞产生的强烈挤压作用对大陆腹地的天山地区影响很大:前中生代块体发生剧烈隆升和褶皱,伴随大规模新生代坳陷的形成,导致盆山高差急剧增大;脆性剪切与挤压变形构造叠加在韧性变形的古生代岩层之上。同时,中生代拉伸盆地发生构造反转,形成新生代挤压盆地,盆山交接带变形以台阶状逆断层和断层相关褶皱为特征。由于盆地朝造山带的下插作用,使古生代的岩层呈构造岩片方式逆冲推覆在盆地边缘的中新生代岩层之上,当穿越不同地质构造单元时表现出不同的运动学特征。强烈挤压褶皱冲断是晚新生代盆山交接带的基本特征和最普遍的盆-山耦合方式,局部伴有小规模近东西向的走滑断层。中生代沉积岩的褶皱与断裂、侏罗纪煤层自燃及烧结岩的形成、强烈地震与断层活动、以及新疆独特的镶嵌状盆山格局,都是新近纪以来构造作用的产物。  相似文献   

2.
The Mesozoic to Cenozoic mountain uplift, exhumation, and deformation of the SW Tianshan Mountains (Kyrgyzstan and Northwest China) offer an important window to understand the intra-continental rejuvenation mechanism of the Central Asian Orogenic Belt (CAOB), as response to the far-field effects of the India-Asia collision. This article presents new observation and data for the planation surface and sedimentation and deformation features of the regional intermountain basins to rebuild the orogenic history in Mesozoic to Cenozoic. Three planation surfaces were recognized by field observation, showing that the mountain may have experienced lengthy erosion since the end Cretaceous, and a continuous planation surface may have formed at the Eocene to Oligocene. The filling sequences and deformation character revealed that the orogenic disintegrate and intermountain basin formation likely began in the end of Oligocene. Subsequently, the uniform planation surface in Western Tianshan may have begun to disintegrate, leading to the basin-and-range landform formation. Folds and nappes in the Cenozoic basins, large-scale thrusting of Palaeozoic rocks over Cenozoic sediments at the basin margin associated with the rapid mountain uplift may have occurred at the end of Early Pleistocene, suggesting a tectonic inversion. The Mesozoic–Cenozoic Tianshan uplift and deformation were likely induced by the collision/accretion along the southern margin of Eurasia. Both the northward propagation of the Parmir syntaxis to the SW Tianshan and the oblique dextral faulting of the Talas–Fergana fault have likely played an important role on the formation and deformation of the Cenozoic basins in the SW Tianshan.  相似文献   

3.
天山东段推覆构造研究   总被引:16,自引:1,他引:16       下载免费PDF全文
舒良树  孙家齐 《地质科学》1997,32(3):337-350
本文概括性总结了天山东段大型推覆构造的基本特征。根据地质证据和同位素年龄,东天山存在早古生代末,晚古生代晚期和新生代三期推覆构造;根据推覆构造分布规律及构造背景,在平面上划分为五大推覆带、9个大型韧剪带;根据出露岩石的矿物变形相将东天山推覆构造划分为深、中深和浅三个深度层次;通过韧剪变形组构的观察分析,确定了多期韧性变形性质与运动方向。糜棱岩中超微构造、古应力及小构造变形缩短率测量统计,证明东天山推覆变形具有显著的地壳缩短增厚作用。新生代板块碰撞导致本区中新生代盆地基底向造山带A型俯冲,造山带向盆地推覆,其结果就构成了今日看到的镶嵌状盆地-山脉构造地貌景观。  相似文献   

4.
中、新生代天山隆升过程及其与准噶尔、阿尔泰山比较研究   总被引:45,自引:4,他引:45  
根据穿越天山地质剖面观察、系统裂变径迹(FT)测年年龄与热演化模拟结果分析,并综合前人研究结果,天山陆内造山带中、新生代主要经历2次明显的隆升事件,分别为晚侏罗世—早白垩世和中新世以来(25~0Ma)。从天山地区磷灰石FT年龄结果来看,主要记录了早期隆升年龄,但热演化模拟结果显示普遍经历了中新世以来的快速隆升。在天山北缘从盆山边缘的近25Ma开始隆升到前缘带的现今活动,表明天山陆内造山带在隆升的同时还逐渐“增生”扩展。系统研究和分析表明,东西准噶尔和阿尔泰地区则主要记录了晚中生代以来的持续隆升过程,新生代构造活动不明显或强度相对天山要弱。上述事实表明,天山及其中亚地区新生代的陆内活动是受喜马拉雅碰撞与青藏高原隆升的影响,具有向北渐弱的特征。  相似文献   

5.
天山南麓库车晚新生代褶皱-冲断带   总被引:2,自引:1,他引:1  
库车褶皱冲断带位于天山南麓,由近东西走向的多条构造带组成。三叠系暗色泥岩、侏罗系煤层、古近系库姆格列木组膏盐层和新近系吉迪克组膏盐层构成库车褶皱冲断带的区域性主滑脱面。褶皱冲断带底面由北向南逐渐抬高。褶皱冲断带主体发育盖层滑脱-冲断构造(薄皮构造),基底卷入型冲断构造(厚皮构造)见于北缘的根带。新生界膏盐层之上构造变形以滑脱褶皱为特色,之下以冲断构造为特色。库车褶皱冲断带是印度-亚洲碰撞远程效应下,(南)天山晚新生代造山过程的产物。褶皱冲断带构造变形的动力来源主要是造山楔向塔里木盆地推进所形成的挤压构造应力。褶皱冲断带构造变形的起始时间为约23Ma,构造变形具有阶段式加速的特点,已经识别出约23Ma、约10Ma、5~2Ma和1~0Ma共4个变形加速期。褶皱冲断带的演化过程为前展式,褶皱冲断带前锋向南推进的同时,后缘持续变形。  相似文献   

6.
南天山位于中亚造山带的南缘,是一条增生—碰撞型造山带。其碰撞造山的时间,是中亚造山带研究的一个关键构造问题,引起广泛的关注。以往关于碰撞造山的时间证据,基本上都来自造山带自身,即南天山前新生界露头区。前陆区广泛覆盖着巨厚的新生界,无法直接考察,很少从前陆区碰撞相关构造的角度研究南天山碰撞造山的时间。塔里木盆地北部是南天山碰撞造山带的前陆区。经认真系统地解释这里的地震资料,发现了南天山碰撞造山带的同碰撞构造和碰撞后构造。同碰撞造构造由二叠纪末—三叠纪冲断层及其相关褶皱组成。三叠系/二叠系和侏罗系/三叠系两个不整合给出了二叠纪末—三叠纪初和三叠纪末—侏罗纪初两期挤压冲断的时间。造山后构造为侏罗纪—白垩纪正断层组成。正断层活动起始于三叠纪末—侏罗纪初,持续至白垩纪中期。根据同碰撞构造和碰撞后构造的形成时间推论,南天山碰撞造山作用起始于二叠纪末,结束于三叠纪末;侏罗纪—白垩纪中期为造山后应力松弛构造演化阶段。  相似文献   

7.
TECTONIC STYLES IN THE SOUTHWEST QINLING AND RELATIONS WITH DYNAMICS OF QINGHAI—TIBET PLATEAU  相似文献   

8.
华北燕山造山带结构要素组合   总被引:19,自引:0,他引:19  
采用造山带结构要素组合的概念,对华北燕山造山带进行了研究。燕山造山带各演化阶段的结构要素组合特征如下:前造山和初始造山幕(J1),早侏罗世早期为前造山伸展构造,结构要素组合有:三又式裂谷带、板内型玄武岩、含煤建造;早侏罗世晚期为初始造山收缩构造,结构要素组合有:向北倾伏的褶曲与逆冲、九龙山组类磨拉石建造,硬绿泥石一十字石一蓝晶石为标志的低温、中一高压变质带。早期造山幕(J2),中侏罗世早期为同造山伸展构造,结构要素组合有:岩石圈上隆伸展有关的火山盆地及可能的同期侵入岩,火山岩线型分布;中侏罗世晚期为收缩构造,有关的结构要素组合为:逆冲推覆和褶曲变形、磨拉石建造、同构造侵入体和角闪岩相变质岩。峰期造山幕(J3),晚侏罗世早期同构造伸展构造,结构要素组合有:岩石圈上隆伸展有关的火山盆地与同期侵入岩,火山岩面型分布,火成岩组合中出现高压粗面岩类,较大量的流纹岩;晚侏罗世晚期收缩构造有关结构要素组合为:逆冲推覆和褶曲变形、磨拉石建造、同构造侵入体和角闪岩相变质岩,侵入岩中出现高压正长岩类。早白垩世早期(K1^1)晚造山幕有关的结构要素组合为:收缩变形分布较局限,湖相沉积建造替代磨拉石建造,侵入岩组合中出现过碱性石英正长岩,大晶洞构造的花岗岩及科马提质辉长岩等。早白垩世晚期(K1^2)后造山幕伸展有关的结构要素组合为:正断层、变质核杂岩、双峰式岩墙辟、典型的过碱性花岗岩和含煤建造。  相似文献   

9.
陶明信 《沉积学报》1994,12(4):40-50
学术界普遍认为吐-哈盆地为板块碰撞作用所形成的压(扭)性盆地。本文研究发现,吐-哈盆地在沉积演化、构造变形、盆地结构、地球物理场及其所反映的壳幔结构等方面都与中国东部张性伸展盆地具有相似的特征;盆地自晚二叠世发育起,经历了两次(P-J,K-R)持续稳定而漫长的伸(扩)展演化,其间在侏罗纪末期和第四纪早期,盆地伸展与沉积受到两次短暂挤压作用的遏制而中断,同时改造了盆地长期形成的伸展构造。盆地伸展是由于“地幔底辟”作用,而两次挤压作用(火焰山运动和西域运动)则是由于盆地伸展,使其南、北邻区遭受挤压变形而长期积累应力,以至于在短时间内发生断裂作用并释放应力而反作用于盆地的结果。从而本文提出吐-哈盆地为张性伸展盆地这一新的观点;结合有关模拟实验结果,同时提出“地幔底辟-盆地伸展-两侧挤压变形与应力积累-应力释放-伸展与沉积中断”的大陆板内地球动力学与运动学模式。  相似文献   

10.
PALAEOSHORELINES AS INDICATOR OF LATE CENOZOIC CLIMO-TECTONIC CHANGES IN LADAKH TRANS HIMALAYA:AN ILLUSTRATION FROM TSO KAR LAKE1 BhattacharyyaA .Vegetationandclimateduringthelast 30 0 0 0 yearsinLadakh [J] .Palaeogeogr,Palaeoclimatol,Palaeoecol,1989,73:2 5~ 38. 2 CerlingTE .LateCenozoicvegetationchange,atmosphericCO2 andtectonics[A] .Ruddiman ,W .F .,ed .Tectonicupliftandclimatechange[M] .NewYork:PlenumPress,1998.313~ 2 2 7. …  相似文献   

11.
西秦岭北缘构造带是青藏高原东北缘的主要构造边界之一,北缘断层及其所控制的新生代沉积盆地是青藏高原东北缘新生代盆—山格局演化、高原扩展隆升与变形的地质记录。因此,西秦岭北缘构造带的断裂构造和断裂控制的沉积盆地研究对于理解青藏高原构造系统形成和高原隆升过程都具有重要的科学意义。本文通过对西秦岭北缘新生代盆地的南部边界断层F1断层结构分带、断层岩类型、几何学—运动学特征分析,获得如下认识:1)F1断层总体走向为290°~300°,倾向北北东,倾角60°~80°,发育近百米宽的由韧性、韧脆性和脆性断层岩等组成的结构复杂的断层带;2)构造分析揭示了F1断层至少经历了 3期构造变形事件,第一期为韧性—韧脆性伸展正断层作用,第二期为脆性高角度挤压逆冲断层作用,第三期为近直立的脆性斜向左旋走滑作用;3)该断层近百米宽的断层带内形成于不同构造层次的韧性、韧脆性、脆性等变形现象叠加交织出现在现今地壳浅表层次,说明该断层带经历了从早期较深层次韧性变形域逐渐抬升而进入晚期较浅层次的脆韧性变形域到现今的脆性变形域的韧—脆性变形机制转换;4)根据F1断层对西秦岭北缘渐新统—中新统漳县含盐红层盆地的空间构造配置、控制和改造以及新生代区域构造变形演化历史分析,认为第一期韧性—韧脆性伸展正断层作用与渐新世—中新世断陷盆地形成相匹配,活动时代为晚渐新世—晚中新世;第二期脆性高角度挤压逆冲作用与渐新世—中新世地层翘起、褶皱和底部抬升剥蚀及上新世磨拉石盆地充填相对应,活动时代应该始于中新世末期或上新世早期,持续至第四纪早期;第三期斜向左旋走滑则与西秦岭北缘断层带第四纪以来广泛发育的左旋走滑作用相对应。综上所述,西秦岭北缘新生代漳县盆地南部边界断层F1,虽然仅是北缘构造带中一条断层,但作为构造敏感带,其多期变形历史应该代表了青藏高原东北缘新生代以来的构造变形演化及构造体制转换过程。如果这一新生代沉积盆地边界断层F1在渐新世—中新世一直处于伸展正断作用,那么西秦岭北缘在这个阶段应该处于地壳伸展拉张状态,渐新世—中新世漳县盆地只能是伸展断陷盆地而不可能是挤压挠曲前陆盆地或压陷盆地。因此,我们认为印度—欧亚板块碰撞汇聚产生的构造挤压缩短和地壳隆升效应在中新世尚未波及到西秦岭北缘区域。F1断层在中新世末—上新世初的构造反转挤压冲断和上新世具有再生前陆磨拉石堆积出现才标志着西秦岭北缘卷入青藏高原挤压构造动力学系统。  相似文献   

12.
介于复活的天山造山带与稳定的准噶尔克拉通之间的准噶尔盆地南缘前陆冲断带,是印度板块与欧亚大陆碰撞的远距离效应产物,也是新近纪以来青藏高原隆升并向北推挤的直接结果。前陆冲断带吸收了来自造山带的水平缩短构造位移量后,克拉通一侧构造趋于稳定。准噶尔盆地南缘与世界上多数前陆冲断带构造地质特征相似,通过区域地震剖面的精细构造几何学和运动学解析,发现其中的楔形构造非常典型,是前陆冲断带内部冲断构造位移量消减的主要方式之一,控制着前陆冲断带分布范围和变形方式。准噶尔盆地南缘构造变形主要由南侧的天山造山带向北逆掩冲断,但是大部分冲断构造位移量是通过楔形构造反向传递后消减。紧邻天山北麓的齐古-喀拉扎-昌吉等构造带,山前深部的楔形体沿侏罗系西山窑组煤层向北扩展过程中,部分位移量沿构造楔顶部的反冲断层向南消减,并切割上覆地层形成第一排背斜带,另一部分位移量则继续向北传递,在断坡位置引发褶皱变形,形成霍-玛-吐第二排构造带和安集海-呼图壁第三排背斜带。准噶尔盆地南缘第二、三排构造带中-新生界内部发育多个小型的构造楔型体,这些互相叠置的楔型构造横向延伸不大,加大了构造变形的复杂性和构造圈闭识别的难度。  相似文献   

13.
造山带隆起剥蚀过程与沉积记录   总被引:1,自引:0,他引:1       下载免费PDF全文
大别山造山带是中生代碰撞造山作用的产物,其隆起过程中形成了合肥盆地。本文对合肥盆地侏罗系碎屑岩进行了成分分析,发现砾岩中有两类榴辉岩,一类为高压变质榴辉岩,另一类为超高压变质榴辉岩。对砂岩中碎屑白云母的成分分析表明,指示高压变质作用的多硅白云母在较低层位已大量出现。重建的碎屑物注入顺序为:非超高压变质岩—高压变质岩—超高压变质岩。结合变质岩石学研究和地球物理观测资料重建的大别山造山带内部结构,可进一步重建大别山的剥蚀历史:大别山造山带最先(三尖铺组沉积初期)受到剥蚀的是非超高压变质的片岩、片麻岩及大理岩,高压变质岩折返到地表受到剥蚀不晚于中侏罗世初期(三尖铺组沉积早期),而超高压变质岩折返到地表经受剥蚀的时间稍早于中侏罗世中期(凤凰台组沉积初期)。天山是典型的陆内造山带,其隆起是新生代以来印度板块与欧亚板块碰撞的一种远程效应。本文对天山发育的花岗岩磷灰石裂变径迹分析,并对南侧的塔里木盆地北部古近系及新近系沉积岩进行了碎屑岩物源分析,在新的磁性地层学格架中讨论了天山的隆起剥蚀历史。砾石组分的突然变化发生在75~35 Ma,26~17 Ma和12~8 Ma间,从中天山物源区逐渐变为南天山物源区,12 Ma后变为以南天山为主要物源区。砂岩及重矿物组分变化表明,物源在124 Ma、26(~24)Ma及15(~12)Ma时发生过变化。磷灰石裂变径迹则进一步揭示了天山的3阶段差异性隆起历史:天山的早期隆起发生在124~80 Ma间,从中天山和南天山的交界处开始并向南扩展;第二次隆起发生在大约100~60 Ma间,从中天山开始向南扩展;第三次隆起从大约50 Ma开始,并向北南两侧扩展,至大约30 Ma时扩展到北天山,约20 Ma时扩展至南天山;其后,南天山在15(~12)Ma时发生了独立的隆起事件。本文的两个研究实例表明,盆地的充填符合计算机数据结构的堆栈过程,但造山带的隆起剥蚀却会出现明显的差异性。不能简单地说造山带的剥蚀和盆地的充填具镜像对称关系,这有可能导致错误的认识,一定要具体事例具体分析。  相似文献   

14.
塔里木盆地塔北隆起中-新生界伸展构造及其成因探讨   总被引:5,自引:2,他引:3  
中-新生代伸展构造一直是中亚地区地质研究的薄弱环节.作为中亚地区的一个重要的中新生代沉积盆地,塔里木盆地也不例外.精细的地震资料解释发现,塔里木盆地塔北隆起发育大量中-新生代伸展构造.这些伸展构造由一系列规模不大的正断层组成.这些小型正断层往往构成左阶或右阶式雁列束,平面上,组成多条张扭性正断层带;剖面组合形态则是小型堑-垒构造或阶梯状正断层束.根据伸展构造的空间展布、构造样式、组合关系、形成演化时间和成因分析,可以划分出侏罗纪-白垩纪早期和白垩纪晚期-新近纪两期伸展构造.前者是南天山碰撞造山后应力松弛阶段的产物,后者的成因是喜马拉雅碰撞造山作用远程效应引起的塔里木相对于南天山向东偏南方向的构造逃逸.  相似文献   

15.
The Zone of Samedan is part of a fossil, early Mesozoic rift system originally situated in the distal, Lower Austro-Alpine domain of the Adriatic passive continental margin. An early Mesozoic configuration of asymmetrical rift basins bounded by relative structural highs compartmentalized Late Cretaceous active margin tectonics; Jurassic half-grabens were folded into arcuate synclines, whereas relative structural highs engendered thin, imbricated thrust sheets. West-directed thrusting and folding initiated at the surface and continued to depths favoring mylonitization under lower greenschist-facies conditions. At this time Liguria-Piemontese ophiolites were accreted to Lower Austro-Alpine units directly underlying the Zone of Samedan. Late Cretaceous orogenic collapse of the Adriatic active margin involved the reactivation of west-directed thrusts as low-angle, top-to-the-east, normal faults. These faults accommodated extensional uplift of Liguria-Piemontese ophiolites and Lower Austro-Alpine units beneath and within the Zone of Samedan. During Paleogene collision, some Late Cretaceous faults in the Zone of Samedan were reactivated under lower anchizonal conditions as north-directed thrusts. The latter stages of this early Tertiary thickening were transitional to brittle, high-angle normal faulting associated with top-to-the-east extension and spreading above the warm, uplifting Lepontine dome.  相似文献   

16.
In order to better understand the Mesozoic tectonic evolution of Southeast China Block (SECB in short), this paper describes geological features of Mesozoic basins that are widely distributed in the SECB. The analyzed data are derived from a regional geological investigation on various Mesozoic basins and a recently compiled 1:1,500,000 geological map of Mesozoic–Cenozoic basins. Two types of basin are distinguished according to their tectonic settings, namely, the post-orogenic basin (Type I) and the intracontinental extensional basin (Type II); the latter includes the graben and the half-graben or faulted-depression basins. Our studies suggest that the formation of these basins connects with the evolution of geotectonics of the SECB. The post-orogenic basin (Type I) was formed in areas from the piedmont to the intraland during the interval from Late Triassic to Early Jurassic; and the formation of the intracontinental extensional basin (Type II) connects with an intracontinental crustal thinning setting in the Late Mesozoic. The graben basin was generated during the Middle Jurassic and is associated with a bimodal volcanic eruption; and the half-graben or faulted-depression basin, filled mainly by the rhyolite, tuff and sedimentary rocks during Early Cretaceous, is occupied by the Late Cretaceous–Paleogene red-colored terrestrial clastic rocks. We noticed that the modern outcrops of numerous granites and basins occur in a similar level, and the Mesozoic granitic bodies contact with the adjacent basins by large normal faults, suggesting that the modern landforms between granites and basins were yielded by the late crustal movement. The modern basin and range framework was settled down in the Cretaceous. Abundant sedimentary structures are found in the various basins, from that the deposited environments and paleo-currents are concluded; during the Late Triassic–Early Jurassic time, the source areas were situated to the north and northeast sides of the outcrop region. In this paper, we present the study results on one geological and geographical separating unit and two separating fault zones. The Wuyi orogenic belt is a Late Mesozoic paleo-geographically separating unit, the Ganjiang fault zone behaves as the western boundary of Early Cretaceous volcanic rocks, and the Zhenghe–Dapu fault zone separates the SE-China Coastal Late Mesozoic volcanic-sedimentary basins and the Wuyi orogenic belt. Finally, we discuss the geodynamic mechanisms forming various basins, proposing a three-stage model of the Mesozoic sedimentary evolution.  相似文献   

17.
印度-亚洲碰撞大地构造   总被引:90,自引:3,他引:87  
印度-亚洲碰撞是新生代地球上最为壮观的重大地质事件.碰撞及碰撞以来,青藏高原的广大地域发生了与碰撞前截然不同的变形,地貌、环境及其深部结构都发生了深刻地变化.根据青藏高原形成、周缘造山带崛起以及大量物质侧向逃逸的基本格局,作者从大陆动力学视角出发,将"印度-亚洲碰撞大地构造" 与"前碰撞大地构造"区别开来进行研究,将印...  相似文献   

18.
西南天山造山带与前陆盆地系统   总被引:8,自引:0,他引:8  
周宗良  高树海 《现代地质》1999,13(3):275-280
对比了前陆盆地与前陆盆地系统两个概念, 阐述了前陆盆地系统的基本含义, 引用这一概念分析和对比了库车前陆盆地与西南天山造山带及造山带内“卫星式”盆地的沉积、构造等特征。认为前陆盆地、造山带及造山带内“卫星式”沉积盆地三者之间是相关联的,造山带内的“卫星式”沉积盆地是前陆盆地系统楔顶的延伸部分, 受造山带的影响, 造山楔内不同部位沉积的楔顶存在明显的差异, 针对南天山“卫星式”沉积盆地而言, 尤尔都斯盆地的构造、沉积特征明显不同于焉耆盆地  相似文献   

19.
The Vendian (Baikalian), Late Devonian (Ellesmerian), and Mid-Cretaceous (Brookian) orogenies were three cardinal events in the history of formation and transformation of the continental crust in the eastern Arctic region. The epi-Baikalian Hyperborean Craton was formed by the end of the Vendian (660–550 Ma), when the Archean-Proterozoic Hyperborean continental block was built up by the Baikalian orogenic belt and concomitant collision granitoids. As judged from the localization of deepwater facies, the Early Paleozoic ocean occupied the western part of the Canadian Arctic Archipelago, western Alaska, and the southern framework of the Canada and Podvodnikov basins and was connected with the Iapetus ocean. The closure of the Early Paleozoic Arctic basins is recorded in two surfaces of structural unconformities corresponding to the pre-Middle Devonian Scandian orogenic phase and the Late Devonian Ellesmerian Orogeny; each tectonic phase was accompanied by dislocations and metamorphism. The Ellesmerian collision was crucial in the Caledonian tectogenesis. The widespread Late Devonian-Mississippian rifting probably was a reflection of postorogenic relaxation. As a result, the vast epi-Caledonian continental plate named Euramerica, or Laurussia, was formed at the Devonian-Carboniferous boundary. The East Arctic segment of this plate is considered in this paper. In the Devonian, the Angayucham ocean, which was connected with the Paleoasian and Uralian oceans [62], separated this plate from the Siberian continent. The South Anyui Basin most likely was a part of this Paleozoic oceanic space. The shelf sedimentation on the epi-Caledonian plate in the Carboniferous and Permian was followed by subsidence and initial rifting in the Triassic and Jurassic, which further gave way to the late Neocomian-early Albian spreading in the Canada Basin that detached the Chukchi Peninsula-Alaska microplate from the continental plate [25]. The collision of this microplate with the Siberian continent led to the closure of the South Anyui-Angayucham ocean and the development of the Mid-Cretaceous New Siberian-Chukchi-Brooks Orogenic System that comprised the back Chukchi Zone as a hinterland and the frontal New Siberian-Wrangel-Herald-Lisburne-Brooks Thrust Zone as a foreland; the basins coeval with thrusting adjoined the foreland. Collision started in the Late Jurassic; however, the peak of the orogenic stage fell on the interval 125–112 Ma, when ophiolites had been obducted on the margin of the Chukchi Peninsula-Alaska microplate along with folding and thrusting accompanied by an increase in the crust’s thickness, amphibolite-facies metamorphism, and growth of granite-gneiss domes. The magmatic diapir of the De Long Arch that grew within the continental plate in the Mid-Cretaceous reflected a global pulse of the lower mantle upwelling that coincided with the maximum opening of the Canada Basin. The present-day appearance of the eastern Arctic region arose in the Late Mesozoic and Cenozoic owing to the opening of the Amerasia and Eurasia oceans. Sedimentary basins of various ages and origins—including the Late Devonian-Early Carboniferous grabens, the spatially coinciding Late Jurassic-Early Cretaceous rifts related to the opening of the Canada Basin, the syncollision basins in front of the growing orogen, and the Cretaceous-Cenozoic basins coeval with strike-slip faulting and rifting at the final stages of orogenic compression and during the opening of the Eurasia ocean were telescoped on sea shelves.  相似文献   

20.
高小芬  林晓  徐亚东  乐明亮 《地球科学》2014,39(8):1119-1128
南天山位于塔里木—卡拉库姆板块和伊犁-哈萨克斯坦板块的碰撞造山带.前人研究表明, 该区在古生代经历了洋盆的扩张、俯冲消减和碰撞造山; 中生代则进入到陆内发展阶段.但由于该区特殊的地理位置和复杂的构造背景, 洋盆的闭合时间及盆地演化的阶段依然存在诸多争论.在广泛收集地质资料的基础上, 对我国境内南天山地层大区进行了地层分区, 并对每个分区的古生代-中生代盆地沉积序列进行了详细分析, 最终划分出5个演化阶段: 寒武纪-奥陶纪, 南天山洋从有限洋盆发展为成熟洋盆, 洋盆性质为弧后盆地; 早志留世, 南天山洋盆开始俯冲消减, 东部红柳河段洋盆在早泥盆世闭合, 而西部的俯冲消减则延续至泥盆纪晚期; 石炭纪-早二叠世, 西部仍存在残余海盆.中二叠世, 残余海盆消失, 南天山西部碰撞造山, 南天山造山带最终形成; 中生代, 该区进入陆内发展阶段, 在三叠纪接受剥蚀夷平; 侏罗纪, 西部发展成为断陷盆地, 东部继续接受剥蚀夷平; 白垩纪, 西部延续侏罗纪断陷盆地特征, 东部则发育成拉分盆地. 关键字: 南天山; 古生代; 中生代; 沉积; 构造; 盆地演化.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号