首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this paper is to use an economic framework to derive decision making rules for river basin management with a focus on groundwater resources. Using an example from northern Nigeria, the paper provides an example of how decision making for sustainable water resources management may be facilitated by comparing net benefits and costs across a river basin. It is argued that economic tools can be used to assess the value of water resources in different uses, identify and analyze management scenarios, and provide decision rules for the sustainable use and management of surface and ground water resources in the region.
Gayatri AcharyaEmail:
  相似文献   

2.
A modeling study of seawater intrusion in Alabama Gulf Coast,USA   总被引:4,自引:0,他引:4  
A numerical model of variable-density groundwater flow and miscible salt transport is developed to investigate the extent of seawater intrusion in the Gulf coast aquifers of Alabama, USA. The SEAWAT code is used to solve the density-dependent groundwater flow and solute transport governing equations. The numerical model is calibrated against the observed hydraulic heads measured in 1996 by adjusting the zonation and values of hydraulic conductivity and recharge rate. Using the calibrated model and assuming all the hydrogeologic conditions remain the same as those in 1996, a predictive 40-year simulation run indicates that further seawater intrusion into the coastal aquifers can occur in the study area. Moreover, the predicted intrusion may be more significant in the deeper aquifer than the shallower ones. As the population continues to grow and the demand for groundwater pumping intensifies beyond the 1996 level, it can be expected that the actual extent of seawater intrusion in the future would be more severe than the model prediction. Better strategies for groundwater development and management will be necessary to protect the freshwater aquifers from contamination by seawater intrusion.
Jin LinEmail:
  相似文献   

3.
Over the last several decades, water users in the western United States have increasingly turned to groundwater resources to support economic development, but few institutional arrangements were in place to govern groundwater use. Over time, numerous groundwater problems have emerged. Two closely related explanations for this are explored. Surface water sources were the first to be developed, and institutional arrangements to allocate surface water were the first to be devised. These arrangements are not particularly well suited for governing groundwater. Furthermore, the physical differences between rivers and aquifers lead to differences in the development of each type of water, and in production and organization costs. Groundwater development involves low upfront production costs, which individual water users can cover. Once groundwater users have individually invested in productive activities problems emerge, such as declining water tables. Thus, unlike surface water users, groundwater users are faced with devising institutional arrangements to coordinate their water uses after they have invested in and developed productive economic activities. Most western states regulate pumping, although groundwater users, in general, resist pumping limits. The discussion concludes with proposals for modifying the prior appropriation doctrine to better accommodate the active management of groundwater basins for long-term sustainability.
Edella SchlagerEmail: Phone: 520-621-5840
  相似文献   

4.
An integrated approach to assessing the regional impacts of climate and socio-economic change on groundwater recharge is described from East Anglia, UK. Many factors affect future groundwater recharge including changed precipitation and temperature regimes, coastal flooding, urbanization, woodland establishment, and changes in cropping and rotations.Important sources of uncertainty and shortcomings in recharge estimation are discussed in the light of the results. The uncertainty in, and importance of, socio-economic scenarios in exploring the consequences of unknown future changes are highlighted. Changes to soil properties are occurring over a range of time scales, such that the soils of the future may not have the same infiltration properties as existing soils. The potential implications involved in assuming unchanging soil properties are described.To focus on the direct impacts of climate change is to neglect the potentially important role of policy, societal values and economic processes in shaping the landscape above aquifers. If the likely consequences of future changes of groundwater recharge, resulting from both climate and socio-economic change, are to be assessed, hydrogeologists must increasingly work with researchers from other disciplines, such as socio-economists, agricultural modellers and soil scientists.
I. P. HolmanEmail: Phone: +44-(0)1525-863000Fax: +44-(0)1525-863344
  相似文献   

5.
Self-regulation of groundwater users offers tremendous potential for effective groundwater management. The attributes of higher-level authorities that are more likely to facilitate the beneficial management of groundwater in economic, social and environmental terms are discussed. For this purpose, eight groundwater user associations in Spain have been compared. Factors that support institutional change were analyzed, namely: salience, common understanding, trust and reciprocity, autonomy, prior organizational experience and local leadership. These factors are complemented by features that strengthen actions by higher-level authorities that oversee self-regulation by water users (clear boundaries, legitimate recognition of appropriators, facilitating roles, trust in cross-scale linkages, clear division of responsibilities, institutional culture and co-management model choices). Self-regulation includes the creation of reflexive organizations that are capable of learning, provided first, the administration itself is modernized to meet the challenges of self-regulation, and second, that ‘regulatory capture’ is avoided by external organizations, ensuring that the regulator and the regulated are not so close in their relationship as to be detrimental to effectiveness.
E. Lopez-GunnEmail:
  相似文献   

6.
A groundwater/surface-water interaction model was developed for the shallow alluvial aquifer of the Choele Choel Island in Patagonia, Argentina. In this semiarid climate, agriculture is sustained by an irrigation/drainage system. During the irrigation season, seepage losses through unlined distribution canals in irrigated fields contribute to elevated groundwater levels, jeopardizing fruit productivity in some areas. Moreover, high stream stages during the irrigation season interfere with groundwater drainage. The model utilized MODFLOW and its stream package, and was successfully calibrated for a historical irrigation season. Modeling results indicate that drainage through streams is significantly higher than drainage through artificial drains. The stream/aquifer relationship proved very responsive to water table rises caused by irrigation. This response manifested as changes in the gaining/losing character of stream reaches. A synthetic run aimed at isolating the effect of streamflow changes on groundwater levels showed that the effect of higher streamflows dissipates toward the interior of the island, disappearing completely at the island center. Even though some results were qualitative, the model helped to provide a better understanding of the coupled system to elucidate some of the causes of a rising water table on the island.
Leticia B. RodríguezEmail:
  相似文献   

7.
Historically, rights in water originated as public property and only later became individualized rights to utilize the public resource, in a manner consistent with the public welfare needs of society, but protected by principles of property law. Five basic regulatory systems for rights in groundwater in the United States have evolved to date. The problems raised by the hydrologic differences between groundwater hydraulically connected to stream systems and groundwater in non-replenished aquifers have been resolved to some extent by a couple of leading court cases. Numerical modeling and other technical methodologies have also evolved to evaluate the scientific issues raised by the different hydrologic conditions, but these are not immune from criticism. The current role of aquifers is evolving into that of storage facilities for recycled water, and their utilization in this manner may be expanded even further in the future. The policy implications of the choices relating to joint management of ground and surface water cannot be overstated. As this paper demonstrates, proactive administration of future groundwater depletions that affect stream systems is essential to the ultimate ability to plan for exploitation, management and utilization of water resources in a rational way that coordinates present and future demand with the reality of scarcity of supply. The examples utilized in this paper demonstrate the need for capacity building, not just to develop good measurement techniques, or to train talented lawyers and judges to write good laws, but also for practical professional water managers to keep the process on a rational course, avoiding limitless exploitation of the resource as well as conservative protectionism that forever precludes its use.
Charles T. DuMarsEmail: Phone: +1-505-3460998Fax: +1-505-3460997
  相似文献   

8.
Finding the location of groundwater dependent ecosystems (GDEs) is important in determining the extent of restrictions that need to be placed upon the abstraction of groundwater. Remote sensing was combined with geographical information system (GIS) modelling to produce a GDE probability rating map for the Sandveld region, South Africa. Landsat TM imagery identified the areas indicating the probable presence of GDEs and GIS assisted in their delineation. Three GIS models were generated: a GIS model predicting landscape wetness potential (LWP model) based on terrain morphological features; the LWP model was modified to highlight groundwater generated landscape wetness potential (the resulting GglWP model); and a groundwater elevation model was interpolated, combining groundwater level measurements in boreholes in the region with digital elevation model data. Biomass indicators generated from Landsat were classified and combined with the GIS models, followed by field verification of riverine and wetland GDEs. The LWP model provided the most accurate results of the three models tested for GDEs in this region.
Zahn MünchEmail:
  相似文献   

9.
Recharge to a saline, unconfined shallow-water-table aquifer is normally considered as an irrecoverable loss of water, but such thinking could be reviewed empirically. The use of an appropriate groundwater harvesting system does not only provide an opportunity to recover this lost water, but can also help in catchment salinity management and improvement. Agricultural-based land-drainage systems such as those that use serial biological concentration (SBC) of salts, provide examples of such harvesting methods. The impact of groundwater harvesting has been assessed on the hydro-salinity of a saline catchment in southeastern Australia through modeling. For both the below average rainfall and very wet years, the “do nothing” scenario resulted in increasing salinization in the catchment. However, after introducing a SBC system, groundwater salinity showed a decreasing trend while hydraulic heads tended to stabilize around the depth of subsurface collector wells. However, for a successful groundwater harvesting system, proper understanding of the groundwater flows and salt mobilization associated with a catchment is necessary. The outcomes of this modelling study have the potential to address similar issues (salinization) and/or needs (water harvesting) existing elsewhere in the world, particularly in semi-arid regions.
Muhammad Nadeem AsgharEmail:
  相似文献   

10.
Substantial progress has been made within central Arizona in moving towards a more sustainable water future, particularly in transitioning the urban demand from a primarily nonrenewable groundwater-based supply to increasing dependence on the Colorado River, Salt River and effluent. Management efforts include a wide range of regulatory and voluntary programs which have had mixed success. The Department of Water Resources has learned a number of key lessons throughout the years, and this paper attempts to establish the water management context and identify those lessons for the benefit of others who may want to evaluate alternative approaches to groundwater management. Themes to be discussed include evaluating water management approaches in a public policy context, the effectiveness of alternative management approaches and the relative merits of regulatory vs. nonregulatory efforts, and the importance of high-quality data in making management decisions.
James M. HolwayEmail:
  相似文献   

11.
This study takes the groundwater of the Moroccan limestone aquifer of Oum Er-Rabia as an example of statistical and cartographical approaches in water resources management. Statistical analyses based on frequency distribution and PCA methods revealed the homogeneity of waters with the existence of abnormal points and have helped to assess correlations between the studied variables. The mapping approach illustrated that waters are influenced by the lithology of the surrounding rocks and are of Ca–Mg–HCO3, Ca–Mg–Cl–SO4, and mixed types according to the Piper classification. The quality of water is of high to medium, north of the basin, but it is of medium to bad, NE and south, due to excessive contents of chloride, sulfate and nitrate. According to the US Salinity Laboratory classification, water used for irrigation in the eastern and the southern parts of the basin should take into consideration the drainage conditions, the nature of plants and the addition of gypsum doses.
Said EttazariniEmail: Phone: +212-66-407610
  相似文献   

12.
The present and predicted increase in groundwater’s share of human freshwater withdrawals, its unprecedented importance for human activities globally, and the emerging threats from escalated and unplanned use and degradation, especially in the developing countries, point to the need for intensified efforts to cope with the imbalances. Despite these facts, there is little intervention by governments in developing countries. Sufficient knowledge, awareness and understanding of the groundwater resources and their proper management are missing in these countries, as well as in the international community. Links and trends are described, which highlight problem areas, such as water contamination, urbanization, and socio-economic factors related to groundwater management practices. Globalization provides novel opportunities for facilitating the process of acquiring and applying the necessary knowledge and can, and should, be further explored and developed. The likely benefits of this are: increase in convergence of understanding and approaches; the sharing of knowledge; and potentially wide-reaching, lasting, and scale-crossing networks. The international development and research community is in a particularly fortunate position to promote and facilitate such a process, which should go hand in hand with well focused and coordinated “on the ground” tasks, such as local networking, field investigations, capacity building, and advocacy activities.
Karen G. VillholthEmail: Phone: +94-11-278-7404Fax: +94-11-278-6854
  相似文献   

13.
Groundwater is crucial for the livelihoods and food security of millions of people, and yet, knowledge formation in the field of groundwater has remained asymmetrical. While, scientific knowledge in the discipline (hydrology and hydrogeology) has advanced remarkably, relatively little is known about the socio-economic impacts and institutions that govern groundwater use. This paper therefore has two objectives. The first is to provide a balanced view of the plus and the down side of groundwater use, especially in agriculture. In doing so, examples are drawn from countries such as India, Pakistan, Bangladesh, China, Spain and Mexico—all of which make very intensive use of groundwater. Second, institutions and policies that influence groundwater use are analyzed in order to understand how groundwater is governed in these countries and whether successful models of governance could be replicated elsewhere. Finally, the authors argue that there is a need for a paradigm shift in the way groundwater is presently perceived and managed—from management to governance mode. In this attempt, a number of instruments such as direct regulation, indirect policy levers, livelihood adaptation and peoples participation will have to be deployed simultaneously in a quest for better governance.
Tushaar ShahEmail:
  相似文献   

14.
Drilling-intensive aquifer characterization techniques have been used to obtain depth-discrete water samples from a thick, hydrogeologically continuous unconfined aquifer system; groundwater results indicate that carbon tetrachloride contamination is widespread and extends deeper and at concentrations much higher than detected in monitoring networks at the water table. Carbon tetrachloride, a legacy waste, was used in the plutonium extraction process at the Hanford site in south-central Washington State. Vertical, depth-discrete groundwater samples were collected during well drilling throughout a 28-km2 region to determine the concentration of carbon tetrachloride present as a dissolved phase in the aquifer. Results indicate that high concentrations of carbon tetrachloride, three orders of magnitude above the allowable regulatory limit, are present at depths greater than 25 m beneath the water table. In support of future efforts to remediate the carbon tetrachloride contamination, it is imperative to locate the remaining chemical inventory, determine the vertical as well as the lateral distribution of this contaminant and its physical form. Depth-discrete aquifer characterization throughout the uppermost-unconfined aquifer system is providing this information and improving the understanding of the contaminant distribution and the hydrogeologic framework through which it moves.
Bruce A. WilliamsEmail:
  相似文献   

15.
Contamination of groundwater by arsenic from natural geochemical sources is at present a most serious challenge in the planning of large-scale use of groundwater for drinking and other purposes. Recent improvements in detection limits of analytical instruments are allowing the correlation of health impacts such as cancer with large concentrations of arsenic in groundwater. However, there are at present no known large-scale technological solutions for the millions of people—mostly rural—who are potentially affected in developing countries. An overall framework of combating natural resource degradation is combined with case studies from Chile, Mexico, Bangladesh and elsewhere to arrive at a set of strategic recommendations for the global, national and local dimensions of the arsenic crisis. The main recommendations include: the need for flexibility in the elaboration of any arsenic mitigation strategy, the improvement and large-scale use of low-cost and participatory groundwater quality testing techniques, the need to maintain consistent use of key lessons learned worldwide in water supply and sanitation and to integrate arsenic as just one other factor in providing a sustainable water supply, and the following of distinct but communicable tracks between arsenic-related developments and enhanced, long-term, sustainable water supplies.
Guy J. AlaertsEmail: Phone: +1-202-4588911
  相似文献   

16.
The rapid expansion in agricultural groundwater use in the last few decades has transformed rural economies in large parts of the developing world, in particular South Asia and North China. There has been no such “Groundwater Revolution” in most of sub-Saharan Africa and little is known about the actual role of groundwater use in supporting agricultural livelihoods in the region or opportunities to expand this role in the future. Published literature has been reviewed to paint a preliminary, region-wide picture of the contribution groundwater makes to agriculture, and in turn to rural livelihoods, within sub-Saharan Africa. The findings indicate that groundwater is used on only 1–2 million hectares of cropped area, directly contributing to the livelihoods of 1.5–3% of the rural population. Groundwater also plays a critical role in the vital livestock sector as well as an important indirect role in the supply of domestic water to agricultural households. While data are lacking, these latter two roles likely surpass the direct importance of groundwater to crop production. This suggests that an understanding of the value of agricultural groundwater use in support of rural livelihoods in sub-Saharan Africa should be based on different models than have typically been applied in Asia.
Mark GiordanoEmail: Phone: +94-11-2787404Fax: +94-11-2786854
  相似文献   

17.
Hydrology of the coastal sabkhas of Abu Dhabi, United Arab Emirates   总被引:2,自引:0,他引:2  
Water fluxes were estimated and a water budget developed for the land surface and a surficial 10-m-deep section of the coastal sabkhas that extend from the city of Abu Dhabi, United Arab Emirates, west to the border with Saudi Arabia. The fluxes were estimated on the basis of water levels and hydraulic conductivities measured in wells and evaporation rates measured with a humidity chamber. In contrast with conceptual models proposed in earlier studies, groundwater inflow is estimated to be small, whereas the largest components of the water budget are recharge from rainfall and evaporation from the water table. Estimates within a rectilinear volume of sabkha, defined as 1 m wide by 10 km long by 10 m deep, indicate that about 1 m3/year of water enters and exits by lateral groundwater flow; 40–50 m3/year enters by upward leakage; and 640 m3/year enters by recharge from rainfall. Based on the water and solute fluxes estimated for the upward leakage into the sabkha, 7–8 pore volumes of brine have entered the sabkha from below since the time the sabkha became saturated (7,000 years ago) as a result of the last global sea-level rise.
Ward E. SanfordEmail:
  相似文献   

18.
Three apparently disparate themes (groundwater, farmers and politics) interweave in this account of how groundwater-related policies in India have very little to do with the scarcity, depletion or quality of groundwater, and more to do with rural politics manifested, among other things, in terms of the presence or absence of farmer lobbies. Examples from two states of India, the water-abundant state of West Bengal and water-scarce state of Gujarat, were investigated using readily available data, analysis of the literature, interviews and fieldwork. In the case of West Bengal, although there is no pressing groundwater crisis, the government of West Bengal (GOWB) was able to successfully implement strict groundwater regulations along with a drastic increase in electricity tariff. More importantly, GOWB was able to implement these without any form of visible farmer protest, though these measures negatively affected farmer incomes. On the other hand, in Gujarat, where there is a real and grave groundwater crisis, the government of Gujarat has neither been able to implement strict groundwater regulations, nor has it been able to increase electricity tariff substantially. Thus, through the lens of ‘political ecology’ the contrasting case of these two Indian states is explained.
Aditi Mukherji (PhD Student)Email: Phone: +44-1223-477186
  相似文献   

19.
Hangzhou-Jiaxing-Huzhou Plain in northern Zhejiang Province, located between the Yangtze and Qiantang Rivers, is one of the regions where economic development is most rapid in China. Geological and hydrogeological surveys reveal a multi-layered aquifer system beneath the plain, which includes Holocene phreatic water layers and Pleistocene confined aquifers. Based on the historical records of groundwater extraction, groundwater levels, and ground settlement from 1964 to 2000, it is shown that ground subsidence has resulted from the continuously increasing extraction of groundwater from deep confined aquifers, and that the evolution of land subsidence can be characterized by a multifractal model. Based on this model, a set of empirical power-law relations have been established between: the land subsidence velocity and the annual groundwater extraction; groundwater drawdown and the annual land subsidence velocity; and the amount of land subsidence and the associated area of land. A set of indices are proposed for evaluating dynamic evolution of groundwater exploitation and land subsidence for the Hang-Jia-Hu Plain, from which the critical degree of evolution of land subsidence in the near future can be estimated using data on groundwater exploitation and water level changes.
Changjiang LiEmail: Phone: +86-571-85116129Fax: +86-571-87057826
  相似文献   

20.
This paper describes an application of the geographic information system (GIS) technology to a ground stability assessment in the karst area of Dzerzhinsk, Russia. In the stability analysis, the groundwater level changes in the karst aquifer could cause suffosion sinkholes when the gravitational force was greater than the soil strength. The GIS technology was used to combine various data and to delineate the zones of potential gravitational collapse and suffosion collapse in the area.
V. V. TolmachevEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号