首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
众所周知,广东大陆前汛期的大降水,主要是副高西北边缘的SW暖湿气流与自北南下的干冷气团在江南交汇,形成强烈的辐合上升运动而产生的。由于副高的位置所致,1995年前汛期有好几次典型的锋面低槽形势,因缺乏暖湿气流的必要条件而未产生大的降水。因此江门各站前汛期雨量明显偏少,4~6月江门市区雨量只有285.3mm(平均为715.smm),不足常年的4成,其它各站也仅5成左右。各地出现了不同程度的干旱。7月下旬,江门地区出现了连续性的暴雨~大暴雨。雨量分布极不均匀,过程雨量(见表1)鹤山是恩平的近7倍。本文对此次强降水从天气形势…  相似文献   

2.
2018年主汛期我国平均降水量为652.0 mm,较常年同期偏少95.0 mm。空间分布上呈现出北方降水偏多,南方降水偏少的总体特征。其中华南地区前汛期降水量较常年偏少5—8成, 江淮地区梅雨季降水量较常年偏少4—8成,华北地区降水量较常年偏多2—8成,局地偏多2倍以上。除华北雨季开始时间较常年偏早外,华南前汛期、江淮梅雨期开始时间均较常年偏晚。2018年主汛期全国平均降水日数71.29d,较常年偏少12.67d。共出现暴雨5229 站日,较常年偏少280站日。华南前汛期降水阶段性明显,中前期冷空气较弱,副高异常偏强是降水偏少的重要原因,后期南海季风爆发,水汽条件明显改善,中高纬度环流经向度增大,降水明显增强;江淮梅雨期间,长江中下游地区高层辐散抽吸的动力条件以及低层水汽辐合均较常年同期偏弱,是梅雨期降雨强度整体偏弱、梅期偏短的重要原因。华北雨季期间,东北亚稳定维持着一个异常反气旋环流,在中纬度地区形成东高西低的环流形势,是华北地区出现强降水的重要原因之一。2018年汛期全国共出现34次区域性暴雨过程,区域性暴雨过程的次数与常年同期基本持平或略偏少,全国暴雨站日也较常年同期略偏少。  相似文献   

3.
2018年主汛期我国平均降水量为652.0 mm,较常年同期偏少95.0 mm。空间分布上呈现出北方降水偏多,南方降水偏少的总体特征。其中华南地区前汛期降水量较常年偏少5~8成,江淮地区梅雨季降水量较常年偏少4~8成,华北地区降水量较常年偏多2~8成,局地偏多2倍以上。除华北雨季开始时间较常年偏早外,华南前汛期、江淮梅雨期开始时间均较常年偏晚。2018年主汛期全国平均降水日数71.29 d,较常年偏少12.67 d。共出现暴雨5229站日,较常年偏少280站日。华南前汛期降水阶段性明显,中前期冷空气较弱,副高异常偏强是降水偏少的重要原因,后期南海季风爆发,水汽条件明显改善,中高纬度环流经向度增大,降水明显增强。江淮梅雨期间,长江中下游地区高层辐散抽吸的动力条件以及低层水汽辐合均较常年同期偏弱,是梅雨期降雨强度整体偏弱、梅期偏短的重要原因。华北雨季期间,东北亚稳定维持着一个异常反气旋环流,在中纬度地区形成东高西低的环流形势,是华北地区出现强降水的重要原因之一。2018年汛期全国共出现34次区域性暴雨过程,区域性暴雨过程的次数与常年同期基本持平或略偏少,全国暴雨站日也较常年同期略偏少。  相似文献   

4.
应用1958-2012年河北21个基准站和基本站逐日降水观测资料,分析了河北汛期暴雨的气候分布特征、年际、年代际变化以及趋势变化特征。结果表明,汛期暴雨分布呈现东部、南部多,向西北部递减的特征。最大暴雨量中心在河北东部、燕山南麓的唐山、秦皇岛地区。从年际和年代际尺度分析,暴雨量、频次、强度都存在2-3 a的年际变化周期信号,暴雨量和频次在20世纪80年代以后存在15-20 a的年代际周期信号。汛期暴雨量、暴雨频次时间序列整体呈现下降趋势,特别是21世纪以来,河北暴雨量和暴雨频次下降趋势更为明显,暴雨强度在近50 a变化幅度不大。在空间分布上,暴雨量、暴雨频次和暴雨强度三个特征量在年代际变化中整体都呈现东退南缩的特征。从趋势分析看来,大部分站点汛期暴雨量、频次、强度都呈现下降趋势。  相似文献   

5.
2019年中国气候主要特征及主要天气气候事件   总被引:3,自引:0,他引:3  
2019年我国气候总体呈现暖湿特征。全国年平均气温较常年同期偏高0.79℃,为1951年以来连续第五暖年,四季气温均偏高,春、秋季明显偏暖;年降水量为645.5 mm,较常年同期偏多2.5%,冬、春、夏季降水偏多,秋季偏少。华南前汛期开始早、结束晚,为1961年以来最长前汛期,雨量为1961年以来次多;西南雨季开始和结束均偏晚,雨量偏少;入梅晚、出梅早,梅雨量偏少;华北雨季开始晚,结束与常年一致,雨量偏少;东北雨季开始早、结束晚,雨量偏多;华西秋雨开始早、结束晚,雨量偏多。2019年,台风生成多,登陆强度总体偏弱,仅台风利奇马灾损重;暴雨洪涝、干旱、强对流、低温冷冻害和雪灾、沙尘暴等气象灾害均偏轻。  相似文献   

6.
江西省 2001年 4~ 6月总的气候特点是:汛期不汛,气温正常,汛期结束偏早,日照大部偏少。 2001年 4~ 6月全省除武夷山西麓的南丰──瑞金一线降水偏多 1~ 4成、莲花县偏多 2.7成、吉安偏多不足 1成外,大部分地区降水偏少。以南昌和九江沿江地区偏少最为明显。赣北、赣中、赣南的平均雨量分别是 595、 747、 743 mm。赣北较常年偏少 2.3成,赣中、赣南基本与多年平均值持平。 4~ 6月超过 1 000 mm雨量的仅有南丰( 1 072 mm)、广昌( 1 069 mm)和石城( 1 029 mm) 3个站。总雨量最少的是彭泽,仅 352 mm,比常年偏少 4~ 5成。另…  相似文献   

7.
淮河流域汛期暴雨与西太平洋海温关系   总被引:1,自引:0,他引:1  
利用淮河流域172测站1960—2009年逐日气象资料和全球海温资料,通过对淮河流域汛期暴雨与前期西太平洋海温的相关分析来研究海温的变化对淮河流域汛期暴雨的影响。选取西太平洋海域(158°~170°E,8°~14°N)作为关键海区,前一年5—6月作为关键时段,通过分析发现海温偏低(高)年,淮河流域的绝大部分地区的暴雨量减少(增加),淮河流域东北部呈现与其他地区反相的变化特征;在暴雨偏多(少)年,对应的前一年5—6月关键海区正好是海温偏高(低)。正是由于西太平洋关键海区持续的海温异常引起了次年汛期大气环流的异常,导致了淮河流域汛期暴雨的异常,这正是海温与暴雨具有很好相关的内在原因。  相似文献   

8.
利用潮州1957—2007年逐日降水资料,统计分析其年、季降水气候特征及暴雨气候特征;应用MHF小波方法分析年降水量及暴雨日数的多时间尺度特征。结果表明:(1)潮州年降水量总体呈上升趋势,前汛期降水量对全年雨量的贡献逐渐下降,后汛期则相反;汛期开始月份及汛期降水强弱的年际变化明显,汛期结束月份年际变化不显著;降水偏多异常,各月差别不大,偏少异常,各月差别很大;4—8月最易发生降水异常。(2)暴雨主要发生在4—9月,暴雨气候事件初发时间有提前趋势,但近51 a暴雨日数总体上无明显增加。(3)年降水量存在3.5 a、18.4 a的主要时间尺度;暴雨日数存在4.6 a、12.1 a主要时间尺度。(4)整个时间域上,降水量和暴雨日数均存在较好的对应关系,不同尺度和时期这种对应特征略有不同。  相似文献   

9.
利用连州市1961-2010年逐日降水资料,采用统计分析、突变检验和小波分析等方法,对连州市暴雨日数的年际变化和逐月分布特征进行统计,结果表明:连州市暴雨日的年际变化差异大,最多的年份达12 d,最少的年份则全年无暴雨日,主要集中在3-9月;暴雨日数呈单峰型,峰值出现在5月;大暴雨日数呈多峰型,7月份最多,4、6月份次之,且非汛期的3、10月份亦可能出现大暴雨;年平均暴雨日为4.6 d,暴雨的平均强度为73.3 mm/d,暴雨日数与暴雨雨量、年降水量呈很好的相关性。暴雨日数及暴雨雨量增加的突变点是1991年。暴雨频次存在准15 a和准27 a的周期震荡。  相似文献   

10.
长江下游地区汛期暴雨气候特征分析   总被引:10,自引:1,他引:9  
IPCC(1995)第二次科学评估报告指出了极端气象事件变化研究的重要意义[1].长江下游地区地势低平,往往是我国暴雨洪涝的多发区域,造成严重灾害,因此,研究长江下游地区暴雨的规律具有极其重要的意义.选取了长江下游地区52站1960~2003年逐日降水资料,运用EOF分析将其分为3个分区,采用小波分析,Mann-kendall非参数检验法及趋势系数法等分析方法研究各分区汛期暴雨降水的气候统计特征.结果表明:虽然汛期同为暴雨降水的集中时期,但各分区暴雨降水在汛期降水中所占比重略有差异,暴雨降水量、频次所占比例的空间分布为西区较大、东区和北区略小,暴雨平均强度则西区和北区东部强、其他区域小.同一区域中降水量与频次具有显著的正相关,不同区域间仅暴雨降水量的相关性较好.暴雨降水量44 a中呈现了增加的趋势.各区汛期暴雨具有多重时间尺度的周期变化,暴雨降水量和频次的周期在西区与全区的较为一致,主要是6~9 a的周期振荡.东区和北区有着不同尺度的振荡周期.各区的暴雨降水强度都不同程度地存在着3 a的周期振荡.长江下游地区汛期暴雨降水量除北区外,全区及其他分区的突变时刻均发生在1980年代末~1990年代初这一时期,暴雨降水量在1980年代中期~20世纪末出现了一个增长的过程,北区趋势并不显著.全区暴雨平均强度在突变时刻之后有一个减弱的过程,而西区和北区的暴雨平均强度变化并不显著.  相似文献   

11.
基于水务部门排水管理中心的内涝灾情信息,运用统计学等研究方法,分析广州市城市内涝分布特征,结果表明:广州全市内涝点最多的是中心城区天河,最少的是郊区的从化.全年发生内涝次数最多的月份是5、6月,最少的月份是2、12月;全天最容易发生内涝的时间是08:00、13:00和19:00.内涝发生时对应的最大小时雨量主要集中在5...  相似文献   

12.
根据广州国家基本气象站1951—2020年的逐日气温资料,采用线性趋势法、距平及累积距平法和Mann-Kendall检验法,对WMO推荐的16种极端气温指数中的13种以及2种结合本地实际的新的极端气温指数共计15种指数进行计算,从月尺度和年尺度分析广州地区各极端气温指数随时间变化的趋势和突变年份,并对以往研究中较少探究的基期的选择对相对极端气温指数的结果影响进行了对比分析。(1) 从年尺度看,广州地区近70 a的夏日日数SU25、酷热日数SU35、热夜日数TR20、非常热夜日数TR26、最高气温TXx、最低气温TNn、最低气温最大值TNx、相对暖夜日数TN90p、暖昼日数TX90p、显著偏暖持续指数WSDI均呈现明显的上升趋势,相对冷夜日数TN10p、冷昼日数TX10p和偏冷持续指数CSDI呈现下降趋势,气温日较差DTR和最高气温最小值TXn变化趋势不明显;(2) 新的极端气温指数SU35和TR26的上升速率明显大于SU25和TR20的上升速率,能更好地反映近70 a昼夜体感炎热日数呈现极显著的上升趋势,更加符合评估气候变化对当地生产生活的影响;(3) 从月尺度来看近70 a广州地区的暖系列极值气温指数TXx和TNx在夏季出现了明显的上升;相对极端气温指数TX90p在广州地区气候学意义的夏季(4—10月)的上升趋势除了5月以外均达到极显著水平;广州地区夏季相对暖(热)昼的上升是导致全年相对暖(热)昼上升的主要因素, 这与国内大部分地区冬季升温较为明显的结论有所不同;(4) 以三个不同基期(1961—1990年/1971—2000年/1981—2010年)的选择对相对极端气温指数的计算结果影响发现,基期的不同选择对相对极端气温指数的计算结果有一定影响,但不影响其变化趋势;(5) 突变分析显示广州地区近70 a的SU25、SU35、TMAXmean(平均最高气温)、TXx和TX90p的突变发生在1997年前后;TR20、TR26、TMINmean(平均最低气温)、TNn、TNx、TN10p、TX10p和TN90p的突变发生在1985年前后;结果符合全球气候变化的大趋势,可以为广州地区应对气候变化和预防极端天气灾害提供科学的理论依据和参考。   相似文献   

13.
北半球大气质量的平均月际变化   总被引:6,自引:1,他引:6  
杨鉴初 《气象学报》1956,27(1):37-59
本文根据1930-1939年间北半球逐月海平面平均气压图,计算逐月之间南北两半球大气质量的输送,以及北半球海洋区与大陆区之间的大气质量输送。本文获得以下几点主要的认识: (1)每年自1月至7月北半球的大气质量逐渐减少,自7月至1月则逐渐增加,半年增减的总质量约为10.3×10~(18)克,但半年增加与半年减少期中增减的速度并不一致。 (2)5—6月与10—11月两半球之间的大气质量输送最为强烈。 (3)两半球之间的质量输送一般大于北半球海陆区之间的质量输送。 (4)两半球之间的质量输送主要决定于亚欧大陆区逐月间的大气质量变化。 (5)亚洲区与太平洋区月际大气质量变化异常时,对我国月平均温度距平分布及水旱区域分布有明显的影响。  相似文献   

14.
Summary Using the 60 year period (1931–1990) gridded land surface air temperature anomalies data, the spatial and temporal relationships between Indian summer monsoon rainfall and temperature anomalies were examined. Composite temperature anomalies were prepared in respect of 11 deficient monsoon years and 9 excess monsoon years. Statistical tests were carried out to examine the significance of the composites. In addition, correlation coefficients between the temperature anomalies and Indian summer monsoon rainfall were also calculated to examine the teleconnection patterns.There were statistically significant differences in the composite of temperature anomaly patterns between excess and deficient monsoon years over north Europe, central Asia and north America during January and May, over NW India during May, over central parts of Africa during May and July and over Indian sub-continent and eastern parts of Asia during July. It has been also found that temperature anomalies over NW Europe, central parts of Africa and NW India during January and May were positively correlated with Indian summer monsoon rainfall. Similarly temperature anomalies over central Asia during January and temperature anomalies over central Africa and Indian region during July were negatively correlated. There were secular variations in the strength of relationships between temperature anomalies and Indian summer monsoon rainfall. In general, temperature anomalies over NW Europe and NW India showed stronger correlations during the recent years. It has been also found that during excess (deficient) monsoon years temperature gradient over Eurasian land mass from sub-tropics to higher latitudes was directed equatowards (polewards) indicating strong (weak) zonal flow. This temperature anomaly gradient index was found to be a useful predictor for long range forecasting of Indian summer monsoon rainfall.With 12 Figures  相似文献   

15.
利用1961—2017年广东86个地面气象观测站逐日降水资料,定义广东区域性暴雨过程的标准,构建了综合考虑区域暴雨过程持续时间、暴雨范围、最大日降水量和最大过程降水量4个指标的广东区域性暴雨过程综合强度评估方法,由此分析近57年广东区域性暴雨过程次数、强度、雨涝年景等特征和变化。结果表明:近57年来,广东共出现1211次区域性暴雨过程,平均每年21.2次,主要出现在4—9月,单次过程平均持续时间是2.3 d;广东区域性暴雨过程的次数和强度存在明显的月际、年际和年代际变化,次数最多出现在5月,强度最大出现在6月;广东雨涝年景指数以0.17/(10 a)的速率显著上升;强和较强等级的广东区域性暴雨过程次数呈显著增加趋势,较弱等级区域性暴雨次数呈显著减少趋势。评估得到广东强雨涝年有5年:2008年、2001年、1973年、1994年、1993年,其中有4年出现在1990年以后。  相似文献   

16.
利用广州市5个国家气象观测站和122个区域自动气象站的逐日降水量监测数据,通过线性趋势分析、M-K检验、小波分析和主成分分析等统计办法,研究广州市“龙舟水”的时空分布特征,结果表明:(1)广州全市和花都近30年“龙舟水”雨量整体呈上升趋势,且花都上升趋势略高于广州平均,花都区“龙舟水”异常年与广州其它地区并不一定同步。(2)广州全市逐年“龙舟水”以7~9年周期为主,2007年以前有4年左右的小周期,之后存在2~3年周期,且特征趋于不明显,花都“龙舟水”雨量变化存在8~10年周期,2007年以前存在4~6年小周期,之后转变为3~4年小周期。(3)广州全市2005和2014年“龙舟水”雨量出现增多突变,2008年又出现了雨量减少的突变;花都“龙舟水”雨量在2014年出现雨量增加的突变,2017年“龙舟水”显著增加。(4)广州“龙舟水”雨量大值区主要位于北部偏东一带,从化和花都北部、白云南部、天河、番禺东部和南部、南沙北部降水年变化相对较为稳定,其余地区逐年变化幅度相对较大。(5)对广州逐年“龙舟水”标准化距平场作EOF分析结果表明,前4个模态解释方差共占91.2%,分别为全市一致偏多或偏少型、南北偶极型、南北向四极型、东西向三极型。  相似文献   

17.
华南前汛期大范围暴雨的合成分析   总被引:3,自引:0,他引:3  
根据广东1959—1982年前汛期13次大范围暴雨过程的普查分析结果,发现这些暴雨过程全部与低空急流密切相关。选取850百帕的大风核中心点为基准,计算了18—30°N,105—120°E间的合成气象场,得到两类大范围暴雨的主要特征,指出了大风核附近的气象要素与广州站5—6月多年平均状态的差别。最后,作了简短的讨论,并给出简要的结论。   相似文献   

18.
Seasonal prediction of Indian Summer Monsoon (ISM) has been attempted for the current year 2011 using Community Atmosphere Model (CAM) developed at the National Centre for Atmospheric Research (NCAR). First, 30?years of model climatology starting from 1981 to 2010 has been generated to capture the variability of ISM over the Indian region using 30 seasonal simulations. The simulated model climatology has been validated with different sets of observed climatology, and it was observed that the simulated climatological rainfall is affected by model bias. Subsequently, a bias correction procedure using the Tropical Rainfall Measuring Mission (TRMM) 3B43 rainfall has been proposed. The bias-corrected rainfall climatology shows both spatial and temporal variability of ISM satisfactorily. Further, four sets of 10-member ensemble simulations of ISM 2009 and 2010 have been performed in hindcast mode using observed sea surface temperature (SST) and persistence of April SST anomaly, and it has been found that the bias-corrected model rainfall captures the seasonal variability of ISM reasonably well with some discrepancies in these two contrasting monsoon years. With this positive background, the seasonal prediction of ISM 2011 has been carried out in forecast mode with the assumption of persistence of May SST anomaly from June through September 2011. The model assessment shows an 11% deficiency in All-India Rainfall (AIR) of ISM 2011. In particular, the monthly accumulated rains are predicted to be 101% (17.6?cm), 86% (24.3?cm), 83% (21.0?cm) and 95% (15.5?cm) of normal AIR for the months of June, July, August and September, respectively.  相似文献   

19.
将我国植被资料和NCAR资料分别用于非静力平衡中尺度模式MM5, 对1998年5月23~24日华南暴雨进行数值模拟试验, 比较其对降水量和动力热力场预报的影响, 结果表明, 当网格格距为45 km时, 二者差别很小, 当网格格距减小到5~15 km, 预报降水量最大值增加了12%~14%, 更接近观测值, 同时对低层大气热力动力结构也有一定影响。  相似文献   

20.
Summary Hindcasts for the Indian summer monsoons (ISMs) of 2002 and 2003 have been produced from an ensemble of numerical simulations performed with a global model by changing SST. Two sets of ensemble simulations have been produced without vegetation: (i) by prescribing the weekly observed SST from ECMWF (European Centre for Medium Range Weather Forecasting) analyses, and (ii) by adding weekly SST anomalies (SSTA) of April to the climatological SST during the simulation period from May to August. For each ensemble, 10 simulations have been realized with different initial conditions that are prepared from ECMWF data with five each from April and May analyses of both the years. The predicted June–July monsoon rainfall over the Indian region shows good agreement with the GPCP (observed) pentad rainfall distribution when 5 member ensemble is taken from May initial conditions. The All-India June–July simulated rainfall time series matches favourably with the observed time series in both the years for the five member ensemble from May initial condition but drifts away from observation with April initial conditions. This underscores the role of initial conditions in the seasonal forecasting. But the model has failed to capture the strong intra-seasonal oscillation in July 2002. Heating over equatorial Indian Ocean for June 2002 in a particular experiment using 29th May 12 GMT as initial conditions shows some intra-seasonal oscillation in July 2002 rainfall, as in observation. Further evaluation of the seasonal simulations from this model is done by calculating the empirical orthogonal functions (EOFs) of the GPCP rainfall over India. The first four EOFs explain more than 80% of the total variance of the observed rainfall. The time series of expansion coefficients (principal components), obtained by projecting on the observed EOFs, provide a better framework for inter-comparing model simulations and their evaluation with observed data. The main finding of this study is that the All-India rainfall from various experiments with prescribed SST is better predicted on seasonal scale as compares to prescribed SST anomalies. This is indicative of a possible useful seasonal forecasts from a GCM at least for the case when monsoon is going to be good. The model responses do not differ much for 2002 and 2003 since the evolution of SST during these years was very similar, hence July rainfall seems to be largely modulated by the other feedbacks on the overall circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号