首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A 70-year history of precipitation δ18O record has been retrieved using an ice core drilled from a plat portion of the firn area in the Guoqu Glacier (33o34′37.8″ N, 91o10′35.3″ E, 5720 m a.s.l.) on Mt. Geladaindong (the source region of Yangtze River) during October and November, 2005. Based on the seasonality of δ18O records and the significant positive relationships between monsoon/non-monsoon δ18O values and summer/spring air temperature from the nearby meteorological stations, the history of summer and spring air temperature have been reconstructed for the last 70 years. The results show that both summer and spring air temperature variations present similar trends during the last 70 years. Regression analysis indicates that the slope of the temperature-δ18O relationship is 1.3℃/‰ for non-monsoon δ18O values and spring air temperature, and 0.4℃/‰ for monsoon δ18O values and summer air temperature. Variation of air temperature recorded in the ice core is consistent with that in the Northern Hemisphere (NH), however, the warming trend in the Geladaindong region is more intense than that in the NH, reflecting a higher sensitivity to global warming in the high elevation regions. In addition, warming trend is greater in spring than in summer.  相似文献   

2.
Hussain  Mian Sabir  Heo  Inhye  Im  Sujeong  Lee  Seungho 《地理学报(英文版)》2021,31(3):369-388
This paper presents a detailed account of the effect of shipping activity on the increasing trends of air temperatures in the Canadian Arctic region for the period of 1980–2018. Increasing trend of temperature has gained significant attention with respect to shipping activities and sea ice area in the Canadian Arctic. Temperature, sea ice area and shipping traffic datasets were investigated, and simple linear regression analyses were conducted to predict the rate of change(per decade) of the average temperature, considering winter(January) and summer(July) seasons. The results indicate that temperature generally increased over the studied region. Significant warming trend was observed during July, with an increase of up to 1℃, for the Canadian Arctic region. Such increasing trend of temperature was observed during July from the lower to higher latitudes. The increase in temperature during July is speculated to increase the melting of ice. Results also show a decline in sea ice area has a significant positive effect on the shipping traffic, and the numbers of marine vessel continue to increase in the region. The increase in temperature causes the breaking of sea ice due to shipping activities over northern Arctic Canada.  相似文献   

3.
A model study is conducted to examine the role of Pacific water in the dramatic retreat of arctic sea ice during summer 2007.The model generally agrees with the observations in showing considerable seasonal and interannual variability of the Pacific water inflow at Bering Strait in response to changes in atmospheric circulation. During summer 2007 anomalously strong southerly winds over the Pacific sector of the Arctic Ocean strengthen the ocean circulation and bring more Pacific water into the Arctic than the recent(2000-2006) average.The simulated summer(3 months) 2007 mean Pacific water inflow at Bering Strait is 1.2 Sv,which is the highest in the past three decades of the simulation and is 20%higher than the recent average.Particularly ,the Pacific water inflow in September 2007 is about 0.5 Sv or 50%above the 2000-2006 average.The strengthened warm Pacific water inflow carries an additional 1.0×10~(20) Joules of heat into the Arctic,enough to melt an additional 0.5 m of ice over the whole Chukchi Sea.In the model the extra summer oceanic heat brought in by the Pacific water mainly stays in the Chukchi and Beaufort region,contributing to the warming of surface waters in that region.The heat is in constant contact with the ice cover in the region in July through September.Thus the Pacific water plays a role in ice melting in the Chukchi and Beaufort region all summer long in 2007,likely contributing to up to 0.5 m per month additional ice melting in some area of that region .  相似文献   

4.
A 70-year history of precipitation δ18O record has been retrieved using an ice core drilled from a plat portion of the firn area in the Guoqu Glacier (33o34′37.8″ N, 91o10′35.3″ E, 5720 m a.s.l.) on Mt. Geladaindong (the source region of Yangtze River) during October and November, 2005. Based on the seasonality of δ18O records and the significant positive rela-tionships between monsoon/non-monsoon δ18O values and summer/spring air temperature from the nearby meteorological stations, the history of summer and spring air temperature have been reconstructed for the last 70 years. The results show that both summer and spring air temperature variations present similar trends during the last 70 years. Regression analysis indicates that the slope of the temperature-δ18O relationship is 1.3℃/‰ for non-monsoon δ18O values and spring air temperature, and 0.4℃/‰ for monsoon δ18O values and summer air temperature. Variation of air temperature recorded in the ice core is consistent with that in the Northern Hemisphere (NH), however, the warming trend in the Geladaindong region is more intense than that in the NH, reflecting a higher sensitivity to global warming in the high elevation regions. In addition, warming trend is greater in spring than in summer.  相似文献   

5.
The vulnerable ecosystem of the arid and semiarid region in Central Asia is sensitive to precipitation variations. Long-term changes of the seasonal precipitation can reveal the evolution rules of the precipitation climate. Therefore, in this study, the changes of the seasonal precipitation over Central Asia have been analyzed during the last century(1901–2013) based on the latest global monthly precipitation dataset Global Precipitation Climatology Centre(GPCC) Full Data Reanalysis Version 7, as well as their relations with El Ni?oSouthern Oscillation(ENSO). Results show that the precipitation in Central Asia is mainly concentrated in spring and summer seasons, especially in spring. For the whole study period, increasing trends were found in spring and winter, while decreasing trends were detected in summer and fall. Inter-annual signals with 3–7 years multi-periods were derived to explain the dominant components for seasonal precipitation variability. In terms of the dominant spatial pattern, Empirical orthogonal function(EOF) results show that the spatial distribution of EOF-1 mode in summer is different from those of the other seasons during 1901–2013. Moreover, significant ENSO-associated changes in precipitation are evident during the fall, winter, spring, and absent during summer. The lagged associations between ENSO and seasonal precipitation are also obtained in Central Asia. The ENSO-based composite analyses show that these water vapor fluxes of spring, fall and winter precipitation are mainly generated in Indian and North Atlantic Oceans during El Ni?o. The enhanced westerlies strengthen the western water vapor path for Central Asia, thereby causing a rainy winter.  相似文献   

6.
Using NCEP/NCAR reanalysis data and the sand-storm frequency data fi'om 37 weather stations in the Tarim Basin for the period 1961-2009, the relationship between the frequency of spring sandstorms in the Tafim Basin and the associated atmospheric circu- lation pattems is analyzed in this study. We found significantly negative correlations between sandstorm frequency and the 500-hPa geopotential height over the Paris Basin and midwestem Mongolia, while there were positive correlations over the Ural River region. The rising of the 500-hPa geopotential height in midwestem Mongolia and its falling over the Ural region corre- spond to a weakening of the large-scale wave patterns in the Eurasian region, which directly causes the frequency of the sand-dust storms in the Tarim Basin to decline. Also, the abrupt decline in the spring sandstorm frequency in the Tarim Basin observed in the last half-century is associated with profound changes in the atmospheric circulation in these key regions. At the interannual scale, the strengthened cyclonic atmospheric circulation patterns in the western part of Mongolia and the anticyclonic patterns over the East European plains at 500-hPa geopotential height, are responsible for frequent sandstorm occurrences in the Tarim Basin.  相似文献   

7.
The temperate monsoon area of China is an important agricultural region but late spring frosts have frequently caused significant damage to plants there. Based on phenological data derived from the Chinese Phenological Observation Network (CPON), corresponding meteorological data from 12 study sites and phenological modeling, changes in flowering times of multiple woody plants and the frequency of frost occurrence were analyzed. Through these analyses, frost risk during the flowering period at each site was estimated. Results of these estimates suggested that first flowering dates (FFD) in the study area advanced significantly from 1963 to 2009 at an average rate of -1.52 days/decade in North-east China (P〈0.01) and -2.22 days/decade (P〈0.01) in North China. Over the same period, the number of frost days in spring decreased and the last frost days advanced across the study area. Considering both flowering phenology and occurrence of frost, the frost risk index, which measures the percentage of species exposed to frost during the flowering period in spring, exhibited a decreasing trend of -0.37% per decade (insignificant) in Northeast China and -1.80% per decade (P〈0.01) in North China, implying that frost risk has reduced over the past half century. These conclusions provide important information to agriculture and forest managers in devising frost protection schemes in the region.  相似文献   

8.
All rivers in the Hexi inland region of Gansu Province, China, originate from the northern slope of the Qilian Mountains. They are located in the southern portion of the region and respectively belong to the three large river systems from east to west, the Shiyang, Heihe and Shule river basins. These rivers are supplied by precipitation, snowmelt and ice-melt runoff from the Qilian Mountain area. Therefore, changes of precipitation and temperature in the upstream watersheds of these rivers have an important effect on changes of mountainous runoff and reasonable utilization of water resources in this region. For this reason, the Qilian Mountain area, upstream watersheds and runoff forming areas of these rivers are chosen as the study area. The change characteristics and variation trend of temperature and precipitation in this area under the backdrop of global warming are analyzed based on observational data of relational weather and hydrologic stations in the area. Results show that temperatures in the upriver mountain areas of these three large river basins have been increasing, although the increasing degree is differentially affected by global warming. The rising extent of annual and seasonal temperatures in the upstream mountain area of the Shule river basin located in the western Qilian Mountains, were all largest over the past 50 years. Precipitation in the upstream mountain areas of Hexi region’ three river basins located respectively in the western, middle and eastern Qilian Mountains have been presenting an increasing trend to varying degrees as a whole for more than 50 years. This means that climate in the upstream mountain areas of Hexi region’ three river basins are becoming increasingly warmer and moister over the past 50 years, which will be very good for the ecological environment and agricultural production in the region.  相似文献   

9.
Based on the cost-benefit data (1980-2002) of farm products and China Agriculture Yearbooks, this paper studies the regional disparity in the changes of the agricultural land use in China during the period 1980-2002 from three aspects such as the degree of intensity, the sown area and the abandoned farmland. The results show that: (1) The degree of intensity of land use in the westena region during 1980-2000 has a strong uptrend, but in the eastern and central regions the degree of intensity descends obviously and has shown a continuous downtrend since 1997. (2) The total sown area shrinks notably in the eastern region, while it enlarges constantly in the western region. (3) The sown area in the eastern, central and western regions has gone through a similar cyclic process: down (1980-1985)-up (1985-1991)-down (1991-1994)-up (1994-1999)-down (1999-2002). However, there are obvious differences in amplitude variation and tendency among them. The sown area has shrunk in the eastern region and expanded in the central and western regions especially before 1999. (4) The most cases of abandoned farmland are reported in the central region, the second in the eastern region and the least in the western region. The abandonment phenomena chiefly occurred during 1992-1995 in the eastern region, and during 1998-2002 in the central region.  相似文献   

10.
青藏高原地气温差变化及空间分布   总被引:2,自引:0,他引:2  
The difference between ground soil and air temperature (Ts-Ta) was studied by using the data of ground and air temperature of 99 stations over the Qinghai-Xizang (Tibet) Plateau from 1960 to 2000,and its spatial distribution and time changing tendency have been diagnosed by principal component analysis and power spectral analysis methods. The results show that the values of (Ts-Ta) are the maximum in June and the minimum in December. The first three loading eigenvectors, which reflect the main spatially anomalous structure of (Ts-Ta) over the Qinghai-Xizang Plateau, contain the contrary changing pattern between the northwestern and the southeastern regions, the pattern response of the sea level elevation and the geography, and the pattern response of the distribution of the permafrost. There are four patterns of time evolution including the patterns of monotonous increasing or decreasing trends, the basic stability pattern and the parabola pattern with the minimum value. (Ts-Ta) has a periodic variation about 2 years. According to the spatial distribution of the third loading eigenvectors of (Ts-Ta) over the Qinghai-Xizang Plateau in cold season, the permafrost response region and the seasonal frozen ground response region are identified.  相似文献   

11.
北极涛动对华北沙尘暴频次的影响   总被引:2,自引:0,他引:2  
This study has investigated the influence of Arctic Oscillation (AO) on dust storm frequency in North China in spring seasons during 1961 2007.There is a significant linkage between dust storm frequency and AO;a negative (positive) AO phase is related to an in-creased (decreased) dust storm frequency in North China.This relationship is closely related to changes in the cold air activity in Mongolia.The cold air activity exerts large impacts on the dust storm frequency;the frequency of cold air activity over Mongolia not only positively cor-relates with the dust storm frequency in North China,but also shows a long-term decreasing trend that is an important reason for the long-term decreasing of dust storm frequency in North China.The AO has large influence on the frequency of cold air activity over Mongolia;a negative (positive) AO phase is highly related to an increased (decreased) frequency of cold air activity over Mongolia,which results in an increased (decreased) dust storm frequency in North China.  相似文献   

12.
As one of the areas with numerous lakes on the Tibetan Plateau, the Hoh Xil region plays an extremely important role in the fragile plateau eco-environment. Based on topographic maps in the 1970 s and Landsat TM/ETM+ remote sensing images in the 1990 s and the period from 2000 to 2011, the data of 83 lakes with an area above 10 km2 each were obtained by digitization method and artificial visual interpretation technology, and the causes for lake variations were also analyzed. Some conclusions can be drawn as follows.(1) From the 1970 s to 2011, the lakes in the Hoh Xil region firstly shrank and then expanded. In particular, the area of lakes generally decreased during the 1970s–1990s. Then the lakes expanded from the 1990 s to 2000 and the area was slightly higher than that in the 1970 s. The area of lakes dramatically increased after 2000.(2) From 2000 to 2011, the lakes with different area ranks in the Hoh Xil region showed an overall expansion trend. Meanwhile, some regional differences were also discovered. Most of the lakes expanded and were widely distributed in the northern, central and western parts of the region. Some lakes were merged together or overflowed due to their rapid expansion. A small number of lakes with the trend of area decrease or strong fluctuation were scattered in the central and southern parts of the study area. And their variations were related to their own supply conditions or hydraulic connection with the downstream lakes or rivers.(3) The increase in precipitation was the dominant factor resulting in the expansion of lakes in the Hoh Xil region. The secondary factor was the increase in meltwater from glaciers and frozen soil due to climate warming.  相似文献   

13.
Kelan River is a branch of the Ertix River, originating in the Altay Mountains in Xinjiang, northwestern China. The upper streams of the Kelan River are located on the southern slope of the Altay Mountains; they arise from small glacial lakes at an elevation of more than 2,500 m. The total water-collection area of the studied basin, from 988 to 3,480 m, is about 1,655 km2. Almost 95 percent of the basin area is covered with snow in winter. The westerly air masses deplete nearly all the moisture that comes in the form of snow during the winter months in the upper and middle reaches of the basin. That annual flow from the basin is about 382 mm, about 45 percent of which is contributed by snowmelt. The mean annual precipitation in the basin is about 620 mm, which is primarily concentrated in the upper and middle basin. The Kelan River system could be vulnerable to climate change because of substantial contribution from snowmelt runoff. The hydrological system could be altered significantly because of a warming of the climate. The impact of climate change on the hydrological cycle and events would pose an additional threat to the Altay region. The Kelan River, a typical snow-dominated watershed, has more area at higher elevations and accumulates snow during the winter. The peak flow occurs as a result of snow-melting during the late spring or early summer. Stream flow varies strongly throughout the year because of seasonal cycles of precipitation, snowpack, temperature, and groundwater. Changes in the temperature and precipitation affect the timing and volume of stream-flow. The stream-flow consists of contributions from meltwater of snow and ice and from runoff of rainfall. Therefore, it has low flow in winter, high flow during the spring and early summer as the snowpack melts, and less flows during the late summer. Because of the warming of the current climate change, hydrology processes of the Kelan River have undergone marked changes, as evidenced by the shift of the maximum flood peak discharge from May to June  相似文献   

14.
长江三角洲地区生态经济系统协调度及其预警(英文)   总被引:2,自引:0,他引:2  
On the basis of Landsat TM data of the Yangtze River Delta (YRD) Economic Zone in 1991, 2001 and 2008, this article, taking 90 counties in this region as study units, built spatial data transformation models, ecosystem service value (ESV) and coordination degree of eco-economic system (CDES) models. With the aid of ArcGIS9.3, mass grid and vector data has been processed for spatial analyses. ESV and CDES indexes have demonstrated the relationship between economic development and eco-environment system and its evolu-tion characteristics in the researched areas. Furthermore, the indexes have also been used for functional zoning and pattern recognition. Some results can be shown as follows. Firstly, since 1991, land use in the YRD has greatly changed: urban land area has increased primar-ily from original paddy land, dry land, grassland, garden plot and other land. Secondly, the ESV model has proved the deterioration trend of the YRD ecological system from 1991 to 2001 and slower degradation trend during 2001-2008. Also, it is illustrated that land-use conversion from water area and paddy field to urban area and dry land could cause great damage to ecosystem stabilization. Thirdly, GDP in the central and southern parts of the YRD is higher than that in the northern part since 1991. GDP growth rate in the central part is higher than that in the northern part during 1991-2001. This growth rate in the central part is also higher than that in the southern and northern parts of the YRD from 2001 to 2008. Fourthly, the YRD could be categorized into 12 types of subregions in terms of CDES index. According to its spatial characteristic of CDES index value in the study area, eco-economic conflict area with low CDES value which is located in the central part is surrounded by eco-coordinated areas with high CDES values. This illustrates a core-periphery spatial structure exists in the YRD. During 1991-2001, the CDES value implied the convergent de-terioration trend of eco-economic system in the study area; while it gradually stepped into coexistence of divergent deterioration and coordination during 2001-2008. Finally, this paper analyzed five subregions in the YRD, including initially degrading zone, initially coordinative zone, continuously degrading zone, coordination-declined zone and coordination-promoted zone, based on eco-economic coordination and evolution patterns. And these subregions can be recognized and categorized by spatial transformation model.  相似文献   

15.
Sea Level Pressure(SLP) data for the period 1950–2012 at 61 stations located in or around the Balkan Peninsula was used. The main concept is that intra-annual course of SLP represents the best different air masses that are situated over the Balkan Peninsula during the year. The method for differentiation of climatic zones is cluster analysis. A hierarchical clustering technique–average linkage between groups with Pearson correlation for measurement of intervals was employed in the research. The climate of the Balkan Peninsula is transitional between oceanic and continental and also between subtropical and temperate climates. Several major changes in atmospheric circulation over the Balkan Peninsula have happened over the period 1950–2012. There is a serious increase of the influence of the Azores High in the period January–Marchwhich leads to an increase of SLP and enhances oceanic influence. There is an increase of the influence of the north-west extension of the monsoonal low in the period June–September. This leads to more continental climatebut also to more tropical air masses over the Balkan Peninsula. Accordinglythe extent of subtropical climate widens in northern direction. There is an increase of the influence of the Siberian High in the period October–December. This influence covers central and eastern part of the peninsula in October and Novemberand it reaches western parts in December. Thusthe climate becomes more continental.  相似文献   

16.
三江源地区1961-2010年降水时空变化(英文)   总被引:2,自引:0,他引:2  
Based on a monthly dataset of precipitation time series (1961-2010) from 12 meteorological stations across the Three-River Headwater Region (THRHR) of Qinghai Province, China, the spatio-temporal variation and abrupt change analysis of precipitation were examined by using moving average, linear regression, spline interpolation, the Mann-Kendall test and so on. Major conclusions were as follows. (1) The long-term annual and seasonal precipitation in the study area indicated an increasing trend with some oscillations during 1961-2010; however, the summer precipitation in the Lantsang (Lancang) River Headwater Region (LARHR), and the autumn precipitation in the Yangtze River Headwater Region (YERHR) of the THRHR decreased in the same period. (2) The amount of annual precipitation in the THRHR and its three sub-headwater regions was greater in the 1980s and 2000s. The springs were fairly wet after the 1970s, while the summers were relatively wet in the 1960s, 1980s and 2000s. In addition, the amount of precipitation in the autumn was greater in the 1970s and 1980s, but it was relatively less for the winter precipitation, except in the 1990s. (3) The normal values of spring, summer, winter and annual precipitation in the THRHR and its three sub-headwater regions all increased, but the normal value of summer precipitation in the LARHR had a negative trend and the normal value of winter precipitation declined in general. (4) The spring and winter precipitation increased in most of the THRHR. The summer, autumn and annual precipitation increased mainly in the marginal area of the west and north and decreased in the regions of Yushu, Zaduo, Jiuzhi and Banma. (5) The spring and winter precipitation in the THRHR and its three sub-headwater regions showed an abrupt change, except for the spring precipitation in the YARHR. The abrupt changes of spring precipitation were mainly in the late 1980s and early 1990s, while the abrupt changes of winter precipitation were primary in the mid-to late 1970s. This research would be helpful for further understanding the trends and periodicity of precipitation and for watershed-based water resource management in the THRHR.  相似文献   

17.
High-precision RTK GPS technology was used to survey the movements of typical coastal dunes, including a coastal crescent dune and a coastal transverse ridge, in the Feicuidao region of the Changli Gold Coast in Hebei Province in 2006–2008. Our data provide information on the direction, type, and velocity of coastal dune movements, and indicate that the coastal dunes in this region are characterized as slow and landward advancing, with to-and-fro fluctuations. The bottom of the studied coastal transverse ridge was stable during the observation period but the position of its crest advanced eastward (seaward) during summer and autumn, and moved landward (westward) in winter and spring. Thus, its crest moved generally landward (westward) but fluctuated to-and-fro eastward and westward. In contrast, the entire coastal crescent dune advanced landward (westward) in a to-and-fro manner, and the velocity of its movement was faster than that of the transverse ridge dune. These results are mainly related to the wind conditions in the research area, the height and volume of the two types of coastal dunes.  相似文献   

18.
A regional climate model, RegCM3, coupled with an online dust module, is used to simulate the radiative forcing (RF) and temperature response of dust aerosols over East Asia in the latest decade (2000–2009). The simulation results show that the geographical and seasonal differences of dust aerosols distribution over East Asia are obvious. There exist two extremes of dust aerosols with column burden (CB) greater than 1,000 mg/m2; one is in the Taklimakan Desert of the Xinjiang Uigur Autonomous Region, China, and the other is in the Badain Jaran Desert of the Inner Mongolian Autonomous Region, China. The maximum value of CB appears in spring, the secondary maximum in winter, and the minimum in autumn. The RF of dust aerosols has distribution characteristics similar to CB. The regional averaged RF over East Asia at the top of atmosphere (TOARF) is ?1.72 W/m2 in spring and ?1.17 W/m2 in autumn, and that at the surface (SURRF) is ?4.34 W/m2 in spring and ?2.33 W/m2 in autumn. The temperature at the surface is decreased by dust aerosols; the regional averaged temperature decrease over East Asia is 0.154 °C in spring and 0.085 °C in autumn. There are different impacts of dust aerosols on air temperature at different heights. The air temperature is decreased by dust aerosols in the lower troposphere, but the extent of the decrease diminishes with increasing height. The air temperature is in fact increased by dust aerosols at the height of 300–400 hPa in spring, which is greatly different from that in autumn.  相似文献   

19.
The extensive debris that covers glaciers in the ablation zone of the Himalayan region plays an important part in regulating ablation rates and water availability for the downstream region. The melt rate of ice is determined by the amount of heat conducted through debris material lying over the ice. This study presents the vertical temperature gradients, thermal properties in terms of thermal diffusivity and thermal conductivity, and positive degree-day factors for the debris-covered portion of Lirung Glacier in Langtang Valley, Nepal Himalaya using field-based measurements from three different seasons.Field measurements include debris temperatures at different debris thicknesses, air temperature, and ice melt during the monsoon(2013), winter(2013), and pre-monsoon(2014) seasons. We used a thermal equation to estimate thermal diffusivity and thermal conductivity, and degree-day factors(DDF) were calculated from cumulative positive temperature and ice melt of the measurement period. Our analysis of debris temperature profiles at different depths of debris show the daily linear gradients of-20.81 °C/m, 4.05 °C/m, and-7.79 °C/m in the monsoon, winter, and pre-monsoon seasons, respectively. The values of thermal diffusivity and thermal conductivity in the monsoon season were 10 times greater than in the winter season. The large difference in these values is attributed to surface temperature and moisture content within the debris. Similarly, we found higher values of DDFs at thinner debris for the pre-monsoon season than in the monsoon season although we observed less melting during the pre-monsoon season. This is attributed to higher cumulative temperature during the monsoon season than in the pre-monsoon season. Our study advances our understanding of heat conductivity through debris material in different seasons, which supports estimating ice melt and discharge from glacierized river basins with debris-covered glaciers in the Himalayan region.  相似文献   

20.
Vegetation greenness is a key indicator of terrestrial vegetation activity. To under-stand the variation in vegetation activity in spring across eastern China (EC), we analysed the variation in the Normalised Difference Vegetation Index (NDVI) from April to May during 1982-2006. The regional mean NDVI across EC increased at the rate of 0.02/10yr (r2=0.28; p=0.024) prior to 1998; the increase ceased, and the NDVI dropped to a low level thereafter. However, the processes of variation in the NDVI were different from one region to another. In the North China Plain, a cultivated area, the NDVI increased (0.03/10yr; r2=0.52; p<0.001) from 1982 to 2006. In contrast, the NDVI decreased (-0.02/10yr; r2=0.24; p=0.014) consecu-tively from 1982 to 2006 in the Yangtze River and Pearl River deltas, two regions of rapid urbanisation. In the eastern region of the Inner Mongolian Plateau and the lower reaches of the Yangtze River in East China, the NDVI increased prior to 1998 and decreased thereafter. In the Hulun Buir area and the southern part of the Yangtze River Basin, the NDVI increased prior to 1998 and remained static thereafter. The NDVI in the grasslands and croplands in the semi-humid and semi-arid areas showed a significant positive correlation with precipitation, while the NDVI in the woodlands in the humid to semi-humid areas showed a significant positive correlation with temperature. As much as 60% of the variation in the NDVI was ex-plained by either precipitation or temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号