首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the subglacial eruption at Gjálp in October 1996 a 6 km long and 500 m high subglacial hyaloclastite ridge was formed while large volumes of ice were melted by extremely fast heat transfer from magma to ice. Repeated surveying of ice surface geometry, measurement of inflow of ice, and a full Stokes 2-D ice flow model have been combined to estimate the heat output from Gjálp for the period 1996–2005. The very high heat output of order 106 MW during the eruption was followed by rapid decline, dropping to  2500 MW by mid 1997. It remained similar until mid 1999 but declined to 700 MW in 1999–2001. Since 2001 heat output has been insignificant, probably of order 10 MW. The total heat carried with the 1.2 × 1012 kg of basaltic andesite erupted (0.45 km3 DRE) is estimated to have been 1.5 × 1018 J. About two thirds of the thermal energy released from the 0.7 km3 edifice in Gjálp occurred during the 13-day long eruption, 20% was released from end of eruption until mid 1997, a further 10% in 1997–2001, and from mid 2001 to present, only a small fraction remained. The post-eruption heat output history can be reconciled with the gradual release of 5 × 1017 J thermal energy remaining in the Gjálp ridge after the eruption, assuming single phase liquid convection in the cooling edifice. The average temperature of the edifice is found to have been approximately 240 °C at the end of the eruption, dropping to  110 °C after 9 months and reaching  40 °C in 2001. Although an initial period of several months of very high permeability is possible, the most probable value of the permeability from 1997 onwards is of order 10− 12 m2. This is consistent with consolidated/palagonitized hyaloclastite but incompatible with unconsolidated tephra. This may indicate that palagonitization had advanced sufficiently in the first 1–2 years to form a consolidated hyaloclastite ridge, resistant to erosion. No ice flow traversing the Gjálp ridge has been observed, suggesting that it has effectively been shielded from glacial erosion in its first 10 years of existence.  相似文献   

2.
3.
The Cenozoic (mostly Neogene) volcanic activity in Syria is part of the extensive magmatism that took place in the Mashrek Region, Middle East, from upper Eocene to Holocene (40–0.0005 Ma). Samples in western Syria are mostly high TiO2 (TiO2 1.8–3.7 wt.%) alkaline mafic rocks (basanites, hawaiites and alkali basalts) plus rare transitional/tholeiitic basalts and basaltic andesites) with within-plate-like trace element signature.On the basis of incompatible trace element content, the volcanic activity in Syria has been divided into two stages: the first lasting from 25 to 5 Ma and the second from 5 to recent times. Indeed, the Syrian lavas show incompatible trace element content increasing with decreasing age from 25 to 5 Ma, followed by an abrupt decrease to low values roughly at the Miocene–Pliocene boundary. This temporal shift in composition is related to major tectonic re-organization occurred during upper Miocene.The proposed petrogenetic model invokes three steps: (a) passive upwelling of the shallow asthenosphere during the development of the Dead Sea transform fault system. Different degrees of partial melting were followed by variable extents of fractional crystallization and limited upper crustal contamination; (b) the Miocene–Pliocene boundary tectonic change enhanced passive decompression of the same sources and a consequent increase in degree of partial melting resulting in low incompatible trace element content of the relatively high-volume liquids; (c) after this phase, the incompatible trace element content in the basaltic magmas increased as consequence of fractional crystallization processes.Major and trace element content similarities with the rest of the circum-Mediterranean igneous rocks are consistent with a common relatively shallow origin for the Cenozoic anorogenic magmatism of the entire circum-Mediterranean area (the so-called Common Magmatic Reservoir). Because much of the igneous activity in the studied area is concentrated near the Dead Sea fault, the origin of Cenozoic magmatism in Syria (and in the rest of the circum-Mediterranean area) reflects a strong lithospheric control on the loci of partial melting. Mantle plumes from lower mantle and/or north-westward channelling of the Afar mantle plume is not needed to explain volcanic activity in Syria and the Mashrek area.  相似文献   

4.
Nearly 900 nocturnal temperature profiles (85–105 km) from the Colorado State University Na lidar at Fort Collins, CO (40.59N, 105.14W) from 1990 to 2007. After the removal of an episodic warming attributable to Mt. Pinatubo eruption, the time series is analyzed as the sum of the climatological mean, annual and semiannual oscillation, solar cycle effect and trends along with possible annual/semiannual modulation of the latter two. The direct seasonal variation is consistent with the concept of the two-level mesopause. The trends in summer and winter are comparable 90–96 km at −0.15±0.1 K/year. The summer trend turns positive above 96 km. The winter trend is negative with minimum of −0.3 K/year at 100 km but positive at 104 km. The negative trend values are a factor of five smaller than an earlier analysis of the early part of this data due to removal of an episodic event.  相似文献   

5.
We take a fresh look at the topography, structure and seismicity of the Ganges–Brahmaputra Delta (GBD)–Burma Arc collision zone in order to reevaluate the nature of the accretionary prism and its seismic potential. The GBD, the world's largest delta, has been built from sediments eroded from the Himalayan collision. These sediments prograded the continental margin of the Indian subcontinent by  400 km, forming a huge sediment pile that is now entering the Burma Arc subduction zone. Subduction of oceanic lithosphere with > 20 km sediment thickness is fueling the growth of an active accretionary prism exposed on land. The prism starts at an apex south of the GBD shelf edge at  18°N and widens northwards to form a broad triangle that may be up to 300 km wide at its northern limit. The front of the prism is blind, buried by the GBD sediments. Thus, the deformation front extends 100 km west of the surface fold belt beneath the Comilla Tract, which is uplifted by 3–4 m relative to the delta. This accretionary prism has the lowest surface slope of any active subduction zone. The gradient of the prism is only  0.1°, rising to  0.5° in the forearc region to the east. This low slope is consistent with the high level of overpressure found in the subsurface, and indicates a very weak detachment. Since its onset, the collision of the GBD and Burma Arc has expanded westward at  2 cm/yr, and propagated southwards at  5 cm/yr. Seismic hazard in the GBD is largely unknown. Intermediate-size earthquakes are associated with surface ruptures and fold growth in the external part of the prism. However, the possibility of large subduction ruptures has not been accounted for, and may be higher than generally believed. Although sediment-clogged systems are thought to not be able to sustain the stresses and strain-weakening behavior required for great earthquakes, some of the largest known earthquakes have occurred in heavily-sedimented subduction zones. A large earthquake in 1762 ruptured  250 km of the southern part of the GBD, suggesting large earthquakes are possible there. A large, but poorly documented earthquake in 1548 damaged population centers at the northern and southern ends of the onshore prism, and is the only known candidate for a rupture of the plate boundary along the subaerial part of the GBD–Burma Arc collision zone.  相似文献   

6.
We present the results of a probabilistic seismic hazard assessment and disaggregation analysis aimed to understand the dominant magnitudes and source-to-site distances of earthquakes that control the hazard at the Celano site in the Abruzzo region of central Italy. Firstly, we calculated a peak ground acceleration map for the central Apennines area, by using a model of seismogenic sources defined on geological-structural basis. The source model definition and the probabilistic seismic hazard evaluation at the regional scale (central Apennines) were obtained using three different seismicity models (Gutenberg–Richter model; characteristic earthquake model; hybrid model), consistent with the available seismological information. Moreover, a simplified time-dependent hypothesis has been introduced, computing the conditional probability of earthquakes occurrence by Brownian passage time distributions.Subsequently, we carried out the disaggregation analysis, with a modified version of the SEISRISK III code, in order to separate the contribution of each source to the total hazard.The results show the percentage contribution to the Celano hazard of the various seismogenic sources, for different expected peak ground acceleration classes. The analysis was differentiated for close (distance from Celano <20 km) and distant (distance from Celano >20 km) seismogenic sources. We propose three different “scenario earthquakes”, useful for the site condition studies and for the seismic microzoning study: (1) large (M=6.6) local (Celano-epicentre distance 16 km) earthquake, with mean recurrence time of 590 years; (2) moderate (M=5.5) local (Celano-epicentre distance 7.5 km) earthquake, with mean recurrence time of 500 years; and (3) large (M=6.6) distant (Celano-epicentre distance 24 km) earthquake, with mean recurrence time of 980 years.The probabilistic and time-dependent approach to the definition of the “scenario earthquakes” changes clearly the results in comparison to traditional deterministic analysis, with effects in terms of engineering design and seismic risk reduction.  相似文献   

7.
Minimum extreme temperature variability from five meteorological stations in the central part of Mexico covering a period from 1920 to 1990 is examined. We found a correlation coefficient (r=0.65) between these temperature records and geomagnetic activity. Furthermore, by performing spectral analysis peaks were obtained with similar periodicities to those found in the sunspot number, the magnetic solar cycle, cosmic ray fluxes and geomagnetic activity; all of these phenomena are modulated by solar activity. Signals with periodicities comparable to those observed in El Niño and the Quasi-Biennial Oscillation were also identified. We conclude that the solar signal is probably present in the minimum extreme temperature record of the central part of Mexico.  相似文献   

8.
Glaciovolcanic deposits are critical for documenting the presence and thickness of terrestrial ice-sheets, and for testing hypotheses about inferred terrestrial ice volumes based on the marine record. Deposits formed by the coincidence of volcanism and ice at the Mount Edziza volcanic complex (MEVC) in northern British Columbia, Canada, preserve an important record for documenting local and possibly regional ice dynamics. Pillow Ridge, located at the northwestern end of the MEVC, formed by ice-confined, fissure-fed eruptions. It comprises predominantly pillow lavas and volcanic breccias of alkaline basalt composition, with subordinate finer-grained volcaniclastic deposits and dykes. The ridge is presently  4 km long,  1000 m in maximum width, and  600 m high. Fifteen syn- and post-eruptive lithofacies are recognized in excellent exposures along the glacially dissected western side of the ridge. We recognize five lithofacies associations: (1) poorly sorted tuff breccia and dykes, (2) proximal pillow lava, dykes and tuff breccia, (3) distal pillow lava, poorly sorted conglomerate and well-sorted volcanic sandstone, (4) interbedded tuff, lapilli tuff, and tuff breccia units, and (5) heterolithic volcanogenic conglomerate and sandstone. Given the abundance of pillow lavas and the lack of surrounding topographic barriers capable of impounding water, we agree with Souther [Souther, J.G., 1992. The late Cenozoic Mount Edziza volcanic complex. Geol. Soc. Can. Mem., vol. 420. 320 pp] that the bulk of the edifice formed while confined by ice, but have found evidence for a more complex and variable eruption history than that which he proposed. Preliminary estimates of water-ice depths derived from FTIR analyses of H2O give ranges of 300 to 680 m assuming 0 ppm CO2, and 857 to 1297 m assuming 25 ppm CO2. Variations in depth estimates among samples may indicate that water/ice depths changed during the evolution of the ridge, which is consistent with our interpretations for the origins of different lithofacies associations. Given that the age of the units are likely to be ca. 0.9 Ma [Souther, J.G., 1992. The late Cenozoic Mount Edziza volcanic complex. Geol. Soc. Can. Mem., vol. 420. 320 pp], Pillow Ridge may be the best documentation of a regional high stand of the Cordilleran Ice Sheet (CIS) in the middle Pleistocene, and an excellent example of the lithofacies and stratigraphic complexities produced by variations in water levels during a prolonged glaciovolcanic eruption.  相似文献   

9.
The aim of this paper is to report some periodicities observed in the ionospheric parameter foF2 measured at Tucuman (26.9°S; 65.4°W), station placed near the southern crest of the equatorial anomaly. For that, monthly medians of foF2 at several hours of LT for the period 1958–1987 are used. The data are run with Fast Fourier Transform (FFT). Data gaps (4–5 months) are filled by means of linear interpolation. Several periodicities are present. Besides the solar cycle dominant dependence (11 years), semi-annual, annual, five years and quasi-biennial periodicities are also observed. A marked quasi-biennial periodicity is observed at daytime and nighttime hours being their greater amplitude at local noon and midnight. Different mechanisms or combined effects possibly cause them. It is suggested that the solar activity by means of extreme ultraviolet radiation (EUV), which present a quasi-biennial oscillation (QBO) and it is responsible for the ionization, could be the dominant mechanism for the diurnal quasi-biennial periodicity of foF2. At night, since the photoionization by extreme ultraviolet radiation is not significant and the F2 layer is lower than during daytime (100 km) other mechanism may be operative for the quasi-biennial periodicity observed. Possibly the stratospheric QBO contributes to the modulation of the observed behaviour in foF2 at night. This result is preliminary because it needs to be extended to other stations so as to extract definite conclusions. Moreover, we cannot dismiss the possibility of a combined effect of both these mechanisms mainly at daytime and/or QBO influence of geomagnetic parameters.  相似文献   

10.
A sodium resonance lidar at 589 nm has been operated in São José dos Campos, Brazil (23°S, 46°W) since 1972 mainly for studies related to the origin, chemistry and dynamics of the mesospheric sodium layer. Beginning in 1993, the improved laser capability has also enabled the processing of the Rayleigh signal from which the temperatures from 35 to 65 km are retrieved on a nightly mean basis. We used these nightly profiles to determine the monthly temperature profiles from 1993 to 2006. The mean temperature characteristics for each year and for the whole period are obtained. Seasonal thermal amplitude is small (6 K peak to peak at 40 and 60 km). Compared with the MSISE-90 model, a large difference is noted, with temperature lower than the model below the stratopause and higher above. Also the seasonal variation has a large difference with better agreement occurring around local winter, but with temperatures higher by 8–10 K at the equinoxes. The semiannual component is dominant over the annual at all altitudes. Linear trends with decreasing temperature of 1.09, 2.29 and 1.42 K/decade are observed at 40, 50 and 60 km, respectively.  相似文献   

11.
Due to its restricted connection with the Indian Ocean, the desert-enclosed Red Sea is extremely sensitive to global sea level changes and thus ideally suited for paleoceanographic studies of what occurred during the last glaciation. The understanding of its glacial history is, however, still limited. A serious obstacle to obtain satisfactory paleoecological information has been the rarity of microfossil proxy species caused by high salinities. Here, we present a continuous and well-dated calcareous nannoplankton record from the northern Red Sea, covering the interval from 60–14.5 ka BP. Our investigation shows that the composition of the calcareous nannoplankton community varied between  32 ka BP and 14.5 ka BP in response to rapid environmental changes which are closely correlated to climatic fluctuations described from the North Atlantic region. Heinrich events H3, H2 and H1 are dominated by Emiliania huxleyi. Gephyrocapsa oceanica and especially Gephyrocapsa ericsonii are abundant between H3–H2 and H2–H1. A less pronounced response of the calcareous nannoplankton to the high latitudinal climatic oscillations is documented prior to  32 ka BP, suggesting that a strong atmospheric coupling between the northern Red Sea and the North Atlantic realm was established in the late Marine Isotope Stage 3. In contrast to the previously held view of a sea level related salinity increase as the major cause for changes of the plankton communities within the glacial Red Sea, we interpret the documented variations as being caused by local hydrographic changes under the atmospheric control from the extratropics. Temperature changes and especially variations of the water stratification appear to be critical selective factors for the calcareous nannoplankton composition.  相似文献   

12.
A sediment budget is constructed for the slope and narrow continental shelf off the Sepik River in order to estimate the relative importance of turbid plumes versus bottom gravity transport through a near-shore submarine canyon in the dispersal of sediment across this collision margin. 210Pb geochronology and inventories of Kasten cores are consistent with the northwestward dispersal of sediment from the river mouth via hypopycnal and possible isopycnal plumes. Sediment accumulation rates are 5 cm yr−1 on the upper slope just off of the Sepik mouth, decreasing gradually to 1 cm yr−1 toward the northwest, and decreasing abruptly offshore (<0.2 cm yr−1 at 1200 m water depth). A sediment budget indicates that only about 7–15% of the Sepik River sediment discharge accumulates on the adjacent open shelf and slope. The remainder presumably escapes offshore via gravity flows through a submarine canyon, the head of which extends into the river mouth. The divergent sediment pathways observed off the Sepik River (i.e., surface and subsurface plumes versus sediment gravity flows through a canyon) may be common along high-yield collision margins of the Indo–Pacific archipelago, and perhaps are analogous to most margins during Late Quaternary low sea-level conditions.  相似文献   

13.
In solar cycles 22–23, all solar indices showed maxima near 1990 and 2000 and minima in 1996. The maximum to minimum variation was only 1–2% in the UV range 240–350 nm. Dobson ozone intensities did not show any clear relationship with solar cycle and ozone variations were less than 10%. The UV-B (295–325 nm) observed at ground by Brewer spectrophotometers at some locations had variations of 50–100% for 295–300 nm, and 20–50% for 305–325 nm. The maxima were in different years at different locations (even with separations of only 300 km), did not match with the solar cycle, and were far too large to be explained on the basis of ozone changes (1% decrease of ozone is expected to cause 2% increase of UV-B). Thus, if the data are not bad, the UV-B changes do not match with solar activity or ozone changes and must be mostly due to other local effects (clouds, etc.?). When data are averaged over wide geographical regions, UV-B variation ranges are smaller (10–20%, probably because localised, highly varying cloud effects get filtered out), and are roughly as expected from ozone variations.  相似文献   

14.
We report results from an investigation of the geologic processes controlling hydrothermal activity along the previously-unstudied southern Mid-Atlantic Ridge (3–7°S). Our study employed the NOC (UK) deep-tow sidescan sonar instrument, TOBI, in concert with the WHOI (USA) autonomous underwater vehicle, ABE, to collect information concerning hydrothermal plume distributions in the water column co-registered with geologic investigations of the underlying seafloor. Two areas of high-temperature hydrothermal venting were identified. The first was situated in a non-transform discontinuity (NTD) between two adjacent second-order ridge-segments near 4°02′S, distant from any neovolcanic activity. This geologic setting is very similar to that of the ultramafic-hosted and tectonically-controlled Rainbow vent-site on the northern Mid-Atlantic Ridge. The second site was located at 4°48′S at the axial-summit centre of a second-order ridge-segment. There, high-temperature venting is hosted in an  18 km2 area of young lava flows which in some cases are observed to have flowed over and engulfed pre-existing chemosynthetic vent-fauna. In both appearance and extent, these lava flows are directly reminiscent of those emplaced in Winter 2005−06 at the East Pacific Rise, 9°50′N and reference to global seismic catalogues reveals that a swarm of large (M 4.6−5.6) seismic events was centred on the 5°S segment over a  24 h period in late June 2002, perhaps indicating the precise timing of this volcanic eruptive episode. Temperature measurements at one of the vents found directly adjacent to the fresh lava flows at 5°S MAR (Turtle Pits) have subsequently revealed vent-fluids that are actively phase separating under conditions very close to the Critical Point for seawater, at  3000 m depth and 407 °C: the hottest vent-fluids yet reported from anywhere along the global ridge crest.  相似文献   

15.
Summary Recently excellent archeomagnetic data sequences have been bublished from several parts of the world. Using these sequences, an attempt is made to trace the secular variation of the virtual geomagnetic dipole field characterized by the three first order spherical harmonic coefficients . The archeomagnetic data (declination, inclination and total intensity) are transformed into the first order coefficients mentioned by a simple mathematical method. The secular variations of these coefficients, however, contain both dipole and non-dipole components. The separation of these is also attempted.Paper presented at the IAGA Symposium, Madrid, September 1969.  相似文献   

16.
The effect of different organic-rich sewage concentration (0%, 20% and 60% diluted in seawater) and absence or presence of mangrove trees on the survival, bioturbation activities and burrow morphology of fiddler crabs species was assessed. After 6 months, males of both species always showed higher survival (80%) when compared to females (20%). Crabs inhabiting pristine conditions achieved higher survival (67–87%) than those living in sewage-exposed mesocosms (40–71%). At 60% sewage loading, fiddler crabs processed less sediment (34–46%) during feeding and excavated slightly more sediment (45–80%) than at pristine conditions. While percent volume of the burrow chambers increased (13–66%) at contaminated mesocosms for both vegetation conditions, burrows were shallower (33%) in bare cells loaded with sewage. The results show that fiddler crabs presented moderate mortality levels in these artificial mangrove wetlands, but mainly in sewage impacted cells. However, they still function as ecosystem engineers through bioturbation activities and burrow construction.  相似文献   

17.
An eruption along a 2.5 km-long rhyolitic dyke at Krafla volcano, northern Iceland during the last glacial period formed a ridge of obsidian (Hrafntinnuhryggur). The ridge rises up to 80 m above the surrounding land and is composed of a number of small-volume lava bodies with minor fragmental material. The total volume is < 0.05 km3. The lava bodies are flow- or dome-like in morphology and many display columnar-jointed sides typical of magma–ice interaction, quench-fragmented lower margins indicative of interaction with meltwater and pumiceous upper surfaces typical of subaerial obsidian flows. The fragmental material compromises poorly-sorted perlitic quench hyaloclastites and poorly-exposed pumiceous tuffs. Lava bodies on the western ridge flanks are columnar jointed and extensively hydrothermally altered. At the southern end of the ridge the feeder dyke is exposed at an elevation  95 m beneath the ridge crest and flares upwards into a lava body.Using the distribution of lithofacies, we interpret that the eruption melted through ice only 35–55 m thick, which is likely to have been dominated by firn. Hrafntinnuhryggur is therefore the first documented example of a rhyolitic fissure eruption beneath thin ice/firn. The eruption breached the ice, leading to subaerial but ice/firn-contact lava effusion, and only minor explosive activity occurred. The ridge appears to have been well-drained during the eruption, aided by the high permeability of the thin ice/firn, which appears not to have greatly affected the eruption mechanisms. We estimate that the eruption lasted between 2 and 20 months and would not have generated a significant jökulhlaup (< 70 m3 s− 1).  相似文献   

18.
During volcanic eruptions, volcanic ash transport and dispersion models (VATDs) are used to forecast the location and movement of ash clouds over hours to days in order to define hazards to aircraft and to communities downwind. Those models use input parameters, called “eruption source parameters”, such as plume height H, mass eruption rate , duration D, and the mass fraction m63 of erupted debris finer than about 4 or 63 μm, which can remain in the cloud for many hours or days. Observational constraints on the value of such parameters are frequently unavailable in the first minutes or hours after an eruption is detected. Moreover, observed plume height may change during an eruption, requiring rapid assignment of new parameters. This paper reports on a group effort to improve the accuracy of source parameters used by VATDs in the early hours of an eruption. We do so by first compiling a list of eruptions for which these parameters are well constrained, and then using these data to review and update previously studied parameter relationships. We find that the existing scatter in plots of H versus yields an uncertainty within the 50% confidence interval of plus or minus a factor of four in eruption rate for a given plume height. This scatter is not clearly attributable to biases in measurement techniques or to well-recognized processes such as elutriation from pyroclastic flows. Sparse data on total grain-size distribution suggest that the mass fraction of fine debris m63 could vary by nearly two orders of magnitude between small basaltic eruptions ( 0.01) and large silicic ones (> 0.5). We classify eleven eruption types; four types each for different sizes of silicic and mafic eruptions; submarine eruptions; “brief” or Vulcanian eruptions; and eruptions that generate co-ignimbrite or co-pyroclastic flow plumes. For each eruption type we assign source parameters. We then assign a characteristic eruption type to each of the world's  1500 Holocene volcanoes. These eruption types and associated parameters can be used for ash-cloud modeling in the event of an eruption, when no observational constraints on these parameters are available.  相似文献   

19.
Microscopic mechanisms for heat transport in dense minerals (phonon scattering and photon attenuation) exhibit aspects of threshold behavior, discussed qualitatively here. For all minerals examined so-far using laser-flash analysis, the lattice component of the thermal conductivity of the mantle asymptotes to a constant above a critical temperature of 1500 K. Radiative transfer calculated from absorption spectra has thresholds in both grain-size and Fe content, and a rather complex dependence on temperature. These critical phenomena impact convection of the lower mantle, because the lattice contribution tends to destabilize the cold boundary layers, whereas radiative transfer mostly promotes stability in the lower mantle, unless the grains are large and Fe-rich, which makes convection chaotic and time-dependent. The specific behavior suggests that flow in the lower mantle is sluggish, whereas flow in the upper mantle-transition zone is time-dependent. The decrease in krad as Fe/(Fe + Mg) increases beyond 0.1 may be connected with formation of lower mantle, thermo-chemical plumes through positive feedback.  相似文献   

20.
During 1990–2007, there were 894 lidar observations of nocturnal mesopause region temperatures over Fort Collins, Colorado. In an earlier analysis with data to April 1997, an unexpected episodic warming, peaking in 1993 with a maximum value over 10 K, was reported and attributed to the Mount Pinatubo eruption in June 1991. With all data, long-term temperature trends from a 7-parameter linear regression analysis including solar cycle effect and long-term trends leads to a cooling of as much as 6.8 K/decade at 100 km, consistent with some reported observations but larger than model predictions. Including the observed episodic warming response in an 11-parameter nonlinear regression analysis reduces the maximum long-term cooling trends to 1.5 K/decade at 91 km, with magnitude and altitude dependences consistent with the prediction of two models, Spectral Mesosphere/Lower Thermosphere Model (SMLTM) and Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA). In addition, the mid-latitude middle-atmospheric response to solar flux variability in Thermosphere–Ionosphere-Energetics and Dynamics (TIMED)/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperatures is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号