首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Burial depth, cumulative displacement, and peak temperature of frictional heat of a fault system are estimated by thermal analysis in the fold–thrust belt of the Western Foothills complex, western Taiwan based on the vitrinite reflectance technique. The regional thermal structure across the complex reveals that the rocks were exposed to maximum temperatures ranging from 100 °C to 180 °C, which corresponds to a burial depth of 3.7–6.7 km. A large thermal difference of 90 °C were observed at the Shuilikeng fault which make the eastern boundary of the fold–thrust belt where it is in contact with metamorphic rock of Hsuehshan Range. The large thermal difference corresponds to cumulative displacements on the Shuilikeng fault estimated to be in the range of 5.2–6.9 km. However, thermal differences in across the Shuangtung and Chelungpu faults cannot be determined apparently due to small vertical offsets. The large displacement observed across the Shuilikeng fault is absent at the other faults which are interpreted to be younger faults within the piggyback thrust system. Localized high temperatures adjacent to fault zones were observed in core samples penetrating the Chelungpu fault. Three major fracture zones were observed at core lengths of 225 m, 330 m, and 405 m and the two lower zones which comprise dark gray narrow shear zones. A value of vitrinite reflectance of 1.8%, higher than the background value of 0.8%, is limited at a narrow shear zone of 1 cm thickness at the fracture zone at 330 m. The estimated peak temperature in the range of 550–680 °C in the shear zone is far higher than the background temperature of 130 °C, and it is interpreted as due to frictional heating during seismic faulting.  相似文献   

2.
1800 m of drill core through the Nojima fault zone, Japan, reveals subsidiary fault and fracture networks that developed in the fault zone that triggered the 1995 Ms 7.2 Kobe earthquake. The subsidiary fault zones contain a fault gouge of < 1 cm bounded by thin zones of foliated cataclasite or breccia. Fractures are filled with calcite veins, calcite-cemented breccias, clay, and iron-oxide and carbonate alternation of the granitic host rock. These features are typical of extensional fractures that form the conduit network for fluid flux close to a major fault zone. The zone of distributed deformation surrounding the main fault is 50 m in width, and the dip of the Nojima fault at > 1 km depth is 75°. The fault-fracture networks associated with the Nojima fault zone are coseismic and were filled with carbonate and fine-grained material during repeated seismic-related infiltration of the fault zone by carbonate-bearing subsurface water. This study shows that fault-related fracture networks plays an important role as fluid flow conduits within seismically active faults, and can change in character from zones of high permeability to low permeability due to cementation and/or pore collapse.  相似文献   

3.
Fission-track (FT) analysis using apatite and zircon was performed on samples from two fracture zones (FZ) at the depths of 1140 and 1310 m within the 1838 m borehole core penetrating the Ryoke Granitic Rocks in the Nojima Fault at Nojima-Hirabayashi, Awaji Island, Japan, drilled just after the 1995 Hyogo-ken Nanbu earthquake. Clear discordance in apatite and zircon FT age was found for two samples located at  2 m below the central part of each FZs where the presence of pseudotachylyte and/or fault gouge would predict the largest amount of slip. Asymmetric distribution was identified by discordant ages with respect to the central part of FZs. These very local discordant ages in the fault reflect thermal anomalies caused by secondary heating with an inferred maximum temperature in the region between apatite and zircon closure temperatures at a time post-48 Ma. As a source of the secondary heating, heat transfer or dispersion via geothermal fluids caused presumably the observed similarity in asymmetric distribution of discordant FT ages at two different FZs. Other samples yield concordant FT zircon and apatite ages and these indicate rapid cooling within the bounds of two closure temperatures of these minerals at  60 Ma of the Ryoke Granitic Rocks.  相似文献   

4.
To investigate the strength of frictional sliding and stability of mafic lower crust, we conducted experiments on oven-dried gabbro gouge of 1 mm thick sandwiched between country rock pieces (with gouge inclined 35° to the sample axis) at slip rates of 1.22 × 10− 3 mm/s and 1.22 × 10− 4 mm/s and elevated temperatures up to 615 °C. Special attention has been paid to whether transition from velocity weakening to velocity strengthening occurs due to the elevation of temperature.Two series of experiments were conducted with normal stresses of 200 MPa and 300 MPa, respectively. For both normal stresses, the friction strengths are comparable at least up to 510 °C, with no significant weakening effect of increasing temperature. Comparison of our results with Byerlee's rule on a strike slip fault with a specific temperature profile in the Zhangbei region of North China shows that the strength given by experiments are around that given by Byerlee's rule and a little greater in the high temperature range.At 200 MPa normal stress, the steady-state rate dependence a − b shows only positive values, probably still in the “run-in” process where velocity strengthening is a common feature. With a normal stress of 300 MPa, the values of steady-state rate dependence decreases systematically with increasing temperature, and stick-slip occurred at 615 °C. Considering the limited displacement, limited normal stress applied and the effect of normal stress for the temperatures above 420 °C, it is inferred here that velocity weakening may be the typical behaviour at higher normal stress for temperature above 420 °C and at least up to 615 °C, which covers most of the temperature range in the lower crust of geologically stable continental interior. For a dry mafic lower crust in cool continental interiors where frictional sliding prevails over plastic flow, unstable slip nucleation may occur to generate earthquakes.  相似文献   

5.
Despite the fact that phyllosilicates are widespread in fault zones, little is known about the strength of phyllosilicate-bearing fault rocks under brittle–ductile transitional conditions. In this study, we explored the steady state strength and healing behaviour of a simulated phyllosilicate-bearing fault rock, i.e. muscovite plus halite and brine, at room temperature, normal stresses of 1–9 MPa, atmospheric fluid pressure and sliding velocities of 0.001–13 μm/s, using a rotary shear apparatus. While 100% halite and 100% muscovite samples exhibit rate-independent frictional/brittle behaviour, the strength of mixtures containing 10–50% muscovite is both normal stress and sliding velocity dependent. At low velocities (< 1 μm/s), strength increases with increasing velocity and normal stress, and a mylonitic foliation develops. This behaviour results from pressure solution in the halite grains, which accommodates frictional sliding on the phyllosilicate foliation. The pervasive muscovite foliation, which coats all halite grains, prevents significant healing. At high velocities (> 1 μm/s), velocity-weakening frictional behaviour occurs, along with the development of a structureless, intermixed, cataclastic microstructure. The steady state porosity of samples deformed in this regime increases with increasing sliding velocity. We propose that this behaviour involves competition between dilatation due to granular flow and compaction due to pressure solution. Towards higher sliding velocities, dilatation increasingly dominates over pressure solution compaction, so that porosity increases and frictional strength decreases. During periods of zero slip, pressure solution compaction occurs, causing a significant strength increase on reshearing. Our results imply that cataclastic overprinting of mylonitic rocks in natural fault zones does not require any changes in temperature or effective pressure conditions, but can simply result from oscillating fault motion rates. Our healing data suggest that foliated, aseismically creeping fault segments will remain weak and aseismic, whereas segments that have slipped seismically will rapidly re-strengthen and remain in the unstable, velocity-weakening regime.  相似文献   

6.
An 1800-m-deep borehole into the Nojima fault zone was drilled at Nojima-Hirabayashi, Japan, after the 1995 Hyogo-ken Nanbu (Kobe) earthquake. Three possible fracture zones were detected at depths of about 1140, 1300, and 1800 m. To assess these fracture zones in this recently active fault, we analyzed the distributions of fault rocks, minerals, and chemical elements in these zones. The central fault plane in the shallowest fracture zone was identified by foliated blue-gray gouge at a depth of 1140 m. The degree of fracturing was evidently greater in the hanging wall than in the footwall. Minerals detected in this zone were quartz, orthoclase, plagioclase, and biotite, as in the parent rock (granodiorite), and also kaolinite, smectite, laumontite, stilbite, calcite, ankerite, and siderite, which are related to hydrothermal alteration. Biotite was absent in both the hanging wall and footwall across the central fault plane, but it was absent over a greater distance from the central fault plane in the hanging wall than in the footwall. Major element compositions across this zone suggested that hydrothermal alteration minerals such as kaolinite and smectite occurred across the central fault plane for a greater distance in the hanging wall than in the footwall. Similarly, H2O+ and CO2 had higher concentrations in the hanging wall than in the footwall. This asymmetrical distribution pattern is probably due to the greater degree of wall–rock fracturing and associated alteration in the hanging wall. We attributed the characteristics of this zone to fault activity and fluid–rock interactions. We analyzed the other fracture zones along this fault in the same way. In the fracture zone at about 1300 m depth, we detected the same kinds of hydrothermal alteration minerals as in the shallower zone, but they were in fewer samples. We detected relatively little H2O+ and CO2, and little evidence for movement of the major chemical elements, indicating little past fluid–rock interaction. In the fracture zone at about 1800 m depth, H2O+ and CO2 were very enriched throughout the interval, as in the fracture zone at about 1140 m depth. However, smectite was absent and chlorite was present, indicating the occurrence of chloritization, which requires a temperature of more than 200 °C. Only smectite can form under the present conditions in these fracture zones. The chloritization probably occurred in the past when the fracture zone was deeper than it is now. These observations suggest that among the three fracture zones, that at about 1140 m depth was the most activated at the time of the 1995 Hyogo-ken Nanbu (Kobe) earthquake.  相似文献   

7.
Frictional sliding of gabbro gouge under hydrothermal conditions   总被引:12,自引:0,他引:12  
We investigated the frictional sliding behaviour of gabbro gouge under hydrothermal conditions. Experiments were performed on 1-mm-thick gabbro gouge sandwiched between country rock pieces (with gouge inclined 35° to the sample axis) in a triaxial testing system with argon gas as the confining medium. In the first series, experiments were conducted under effective normal stresses of 200 MPa and 300 MPa respectively, with pore pressure of 10 MPa. For temperature over 400 °C, pore pressure of 30 MPa was also applied to implement supercritical water conditions. At temperatures up to 615 °C, slip rate steps ranging from 0.0488 μm/s to 1.22 μm/s were applied to obtain the rate dependence of friction.At 200 MPa effective normal stress and a pore pressure of 10 MPa, the steady state rate dependence ab shows velocity-weakening behaviour for temperatures between  200 and  310 °C. The higher temperature limit for velocity-weakening behaviour to occur extends up to  510 °C under supercritical water conditions with a pore pressure of 30 MPa. For the limited sliding distance in our experiments, only velocity-strengthening behaviour occurred at 300 MPa effective normal stress. Considering the limited displacement (< 3.5 mm), velocity-weakening behaviour may not be excluded in the high effective normal stress case for temperature below  510 °C.The coefficient of friction shows an increasing trend with increasing temperature in the low temperature range. The cut-off temperatures for the increasing trend are  250 °C and  440 °C, respectively for the 200 MPa and 300 MPa effective normal stress cases. Above the cut-off temperatures, the coefficient of friction at 1.83 mm permanent displacement varies around an average of 0.73, which is identical to the average for the oven-dried case [He, C., Yao, W., Wang, Z., Zhou, Y., 2006. Strength and stability of frictional sliding of gabbro gouge at elevated temperatures. Tectonophysics 427, 217–229, doi:10.1016/j.tecto.2006.05.023]. Together with the small value of rate dependence (ab < 0.0073) for the whole temperature range, these results indicate the absence of fluid-assisted creep.With the result of our experiments as a constraint on strength of frictional sliding, comparison between converted strength for strike–slip faults and creep strength of gabbro-like rocks implies fracturing and faulting behaviours in the lower crust of a cool area (Zhangbei) in North China.  相似文献   

8.
The active fault drilling at Nojima Hirabayashi after the 1995 Hyogoken-nanbu (Kobe) earthquake (MJMA = 7.2) provides us with a unique opportunity to investigate subsurface fault structure and the in-situ properties of fault and fluid. The borehole intersected the fault gouge of the Nojima fault at a depth interval of 623 m to 625 m. The lithology is mostly Cretaceous granodiorite with some porphyry dikes.The fault core is highly permeable due to fracturing. The borehole water was sampled in 1996 and 2000 from the depth interval between 630 and 650 m, just below the fault core. The chemical and isotopic compositions were analyzed. Carbon and oxygen isotope ratios of carbonates from the fault core were analyzed to estimate the origin of fluid.The following conclusions were obtained. (1) The ionic and isotopic compositions of borehole water did not change from 1996 to 2000. They are mostly derived from local ground water as mentioned by Sato and Takahashi [Sato, T., Takahashi, M., 2000. Chemical and isotopic compositions of groundwater obtained from the Hirabayashi well. Geological Survey of Japan Interim Report No. EQ/00/1, 187–192.]. (2) Geochemical speciation revealed that the borehole water was derived from a relatively deep reservoir, which may be situated at a depth of 3 to 4 km where the temperature is about 80–90 °C. (3) The shallower part of the Nojima fault (shallower than the reservoir depth) has not been healed from the hydrological viewpoints 5 years after the event, in contrast to the rapid healing detected by S wave splitting [Tadokoro, K., Ando, M., 2002. Evidence for rapid fault healing derived from temporal changes in S wave splitting, Geophys. Res. Lett., 29, 10.1029/2001GL013644.]. (4) Precipitation of calcite from the present borehole water since drilling supports the idea of precipitation of some calcite in coseismic hydraulic fractures in the fault core [Boullier, A-M., Fujimoto, K., Ohtani, T., Roman-Ross, G., Lewin, E., Ito, H., Pezard, P., Ildefonse, B., 2004. Textural evidence for recent co-seismic circulation of fluids in the Nojima fault zone, Awaji Island, Japan., Tectonophysics, 378, 165–181.]. (5) Carbon and oxygen isotope ratios of calcite indicated that the meteoric water flux had been localized at the fault core. (6) A difference in the carbon isotope ratio between the footwall and the hanging wall suggests that the fault has been acted as a hydrologic barrier, although the permeability along the fault is still high.  相似文献   

9.
Grain size and grain shape analysis of fault rocks   总被引:4,自引:0,他引:4  
  相似文献   

10.
Field observations and interpretations of satellite images reveal that the westernmost segment of the Altyn Tagh Fault (called Karakax Fault Zone) striking WNW located in the northwestern margin of the Tibetan Plateau has distinctive geomorphic and tectonic features indicative of right-lateral strike-slip fault in the Late Quaternary. South-flowing gullies and N–S-trending ridges are systematically deflected and offset by up to ~ 1250 m, and Late Pleistocene–Holocene alluvial fans and small gullies that incise south-sloping fans record dextral offset up to ~ 150 m along the fault zone. Fault scarps developed on alluvial fans vary in height from 1 to 24 m. Riedel composite fabrics of foliated cataclastic rocks including cataclasite and fault gouge developed in the shear zone indicate a principal right-lateral shear sense with a thrust component. Based on offset Late Quaternary alluvial fans, 14C ages and composite fabrics of cataclastic fault rocks, it is inferred that the average right-lateral strike-slip rate along the Karakax Fault Zone is ~ 9 mm/a in the Late Quaternary, with a vertical component of ~ 2 mm/a, and that a M 7.5 morphogenic earthquake occurred along this fault in 1902. We suggest that right-lateral slip in the Late Quaternary along the WNW-trending Karakax Fault Zone is caused by escape tectonics that accommodate north–south shortening of the western Tibetan Plateau due to ongoing northward penetration of the Indian plate into the Eurasian plate.  相似文献   

11.
High velocity (1 m/s) friction experiments on bituminous coal gouge display several earthquake-related phenomena, including devolatilization by frictional heating, gas pressurization, and slip weakening. Stage I is characterized by sample shortening and reduction in the coefficient of friction (μ) from  1 to 0.6. Stage II is characterized by high frequency ( 5 Hz) oscillations in stress and strain records and by gas emissions. Stage III is marked by rapid weakening (μ  0.1 to 0.35) and sample shortening, together with continued gas emissions. Stage IV produces stable stress records and continued weakness (μ  0.2), but without gas emission. Stage I shortening is due to compaction of the gouge and the weakening is attributed to mechanical or thermal effects. Stage II behavior is interpreted as due to coal gasification and fluctuations in fluid pressure, resulting in high frequency stick-slip type behavior. Dramatic reduction in shear stress in stage III is attributed to gas pressurization by pore collapse and corresponds to a frictional instability, analogous to nucleation of an earthquake. Microstructural observations indicate the deformation was brittle during stages I and II but ductile during stages III and IV. Time dependent finite element frictional heat models indicate the center of the samples became hot ( 900 °C) during stage II, whereas the edge of samples remained relatively cold (< 300 °C). Vitrinite reflectance of coal samples shows an increase in reflectance from  0.5 to  0.8% over the displacement interval 20–40 m (20–40 s), indicating that the reflectance responds to frictional heating on a short time scale. The energy expended per unit area in these low stress, large displacement experiments is similar to that of higher stress ( 50 MPa), short displacement ( 1 m) earthquakes ( 107 J/m2).  相似文献   

12.
The Nojima Fault Zone Probe was designed to study the properties and healing processes of the Nojima fault, which is the surface fault rupture of the Hyogo-ken Nanbu earthquake (M7.2) of 1995 (1995 Kobe earthquake). In this project, water injection experiments were conducted in a borehole of 1800 m depth at the Nojima fault. We set up electrodes around the borehole and observed self-potential variations to investigate the magnitude of electrokinetic and hydraulic parameters around the Nojima fault zone. In the 1997 experiment, self-potential variations were in the range of a few to about 20 mV across 320–450 m electrode dipoles with hydraulic pressure variations from 3.5 to 4 MPa. In the 2000 experiment, self-potential variations were in the range of a few to about 85 mV across 160–260 m electrode dipoles with the hydraulic pressure variations from 3 to 4.5 MPa. In the 2003 experiment, self-potential variations were in the range of a few to about 30 mV across 20–80 m electrode dipoles with hydraulic pressure of 4 MPa. These observed self-potential variations were explained well with an electrokinetic effect due to the underground flow of the injected water. From the observed results, we estimated that the ratio of hydraulic parameters (permeability, porosity, and tortuosity) to electrokinetic parameters (zeta potential and dielectric constant) decreased approximately 40% during eight years after the earthquake. This result suggests that the healing process around the fault zone progress.  相似文献   

13.
Talc is one of the weakest minerals that is associated with fault zones. Triaxial friction experiments conducted on water-saturated talc gouge at room temperature yield values of the coefficient of friction, μ (shear stress, τ/effective normal stress, σ′N) in the range 0.16–0.23, and μ increases with increasing σ′N. Talc gouge heated to temperatures of 100°–400 °C is consistently weaker than at room temperature, and μ < 0.1 at slow strain rates in some heated experiments. Talc also is characterized by inherently stable, velocity-strengthening behavior (strength increases with increasing shear rate) at all conditions tested. The low strength of talc is a consequence of its layered crystal structure and, in particular, its very weak interlayer bond. Its hydrophobic character may be responsible for the relatively small increase in μ with increasing σ′N at room temperature compared to other sheet silicates.Talc has a temperature–pressure range of stability that extends from surficial to eclogite-facies conditions, making it of potential significance in a variety of faulting environments. Talc has been identified in exhumed subduction zone thrusts, in fault gouge collected from oceanic transform and detachment faults associated with rift systems, and recently in serpentinite from the central creeping section of the San Andreas fault. Typically, talc crystallized in the active fault zones as a result of the reaction of ultramafic rocks with silica-saturated hydrothermal fluids. This mode of formation of talc is a prime example of a fault-zone weakening process. Because of its velocity-strengthening behavior, talc may play a role in stabilizing slip at depth in subduction zones and in the creeping faults of central and northern California that are associated with ophiolitic rocks.  相似文献   

14.
Fission-track (FT) thermochronologic analysis was performed on zircon separates from rocks in and around the Nojima fault, which was activated during the 1995 Kobe earthquake. Samples were collected from the University Group 500 m (UG-500) borehole and nearby outcrops. FT lengths in zircons from localities > 25 m away from the fault plane as well as one 0.1 m away from the fault in the footwall are characterized by concordant mean values of  10–11 μm and unimodal distributions with negative skewness, which showed no signs of appreciable reduction in FT length. In contrast, those adjacent (< 3 m) to the fault at depths on the hanging wall side showed significantly reduced mean track lengths of  6–8 μm and distributions having a peak around 6–7 μm with rather positive skewness. The former pattern is interpreted to reflect cooling through the zircon partial annealing zone (ZPAZ), without later, partial thermal overprints. The latter indicates substantial track shortening due probably to secondary heating by a thermal event(s) that locally perturbed the geothermal structure. Modeled zircon FT length and age data of partially annealed samples from the UG-500 borehole revealed a cooling episode in the ZPAZ that started at  4 Ma within  3 m from the fault plane, whereas those from the Geological Survey of Japan 750 m borehole record cooling started at  31–38 Ma within  25 m from the fault. On the basis of one-dimensional heat conduction modeling as well as the consistency between the degree of FT annealing and the degree of deformation/alteration of borehole rocks, these cooling ages in both boreholes are interpreted as consequences of ancient thermal overprints by heat transfer or dispersion via fluids in the fault zone. Together with the zircon FT data of a pseudotachylyte layer recently analyzed, it is suggested that the present Nojima fault system was reactivated in the Middle Quaternary from an ancient fault initiated at  56 Ma at mid-crustal depths. Also shown is a temporal/spatial variation in terms of the thermal anomalies recorded in the fault rocks, implying heterogeneity of hot fluid flows in the fault zone.  相似文献   

15.
Timpanogos Cave, located near the Wasatch fault, is about 357 m above the American Fork River. Fluvial cave sediments and an interbedded carbonate flowstone yield a paleomagnetic and U–Th depositional age of 350 to 780 ka. Fault vertical slip rates, inferred from calculated river downcutting rates, range between 1.02 and 0.46 mm yr− 1. These slip rates are in the range of the 0–12 Ma Wasatch Range exhumation rate ( 0.5–0.7 mm yr− 1), suggesting that the long-term vertical slip rate remained stable through mid-Pleistocene time. However, the late Pleistocene (0–250 ka) decelerated slip rate ( 0.2–0.3 mm yr− 1) and the accelerated Holocene slip rate ( 1.2 mm yr− 1) are consistent with episodic fault activity. Assuming that the late Pleistocene vertical slip rate represents an episodic slowing of fault movement and the long-term (0–12 Ma) average vertical slip rate, including the late Pleistocene and Holocene, should be  0.6 mm yr− 1, there is a net late Pleistocene vertical slip deficit of  50–75 m. The Holocene and late Pleistocene slip rates may be typical for episodes of accelerated and slowed fault movement, respectively. The calculated late Pleistocene slip deficit may mean that the current accelerated Wasatch fault slip rate will extend well into the future.  相似文献   

16.
We revisit the April 1979 Montenegro earthquake sequence to invert for finite-fault slip models for the mainshock of 15 April 1979 (Mw 7.1) and of the strongest aftershock of 24 May 1979 (Mw 6.2) using P, SH and SV waveforms, retrieved from IRIS data center. We also used body waveform modelling inversion to confirm the focal mechanism of the mainshock as a pure thrust mechanism and rule out the existence of considerable strike slip component in the motion. The mainshock occurred along a shallow (depth 7 km), low angle (14°) thrust fault, parallel to the coastline and dipping to the NE. Our preferred slip distribution model for the mainshock indicates that rupture initiated from SE and propagated towards NW, with a speed of 2.0 km/s. Moment was released in a main slip patch, confined in an area of L  50 km × W  23 km. The maximum slip ( 2.7 m) occurred  30 km to the NW of the hypocenter (location of rupture initiation). The average slip is 49 cm and the total moment release over the fault is 4.38e19 Nm. The slip model adequately fits the distribution of the Mw ≥ 4.3 aftershocks, as most of them are located in the regions of the fault plane that did not slip during the mainshock. The 24 May 1979 (Mw 6.2) strongest aftershock occurred  40 km NW of the mainshock. Our preferred slip model for this event showed a characteristic two-lobe pattern, where each lobe is  7.5 × 7.5 km2. Rupture initiated in the NW lobe, where the slip obtained its maximum value of 45 cm, very close to the hypocenter, and propagated towards the south-eastern lobe where it reached another maximum value — for this lobe — of 30 cm, approximately 10 km away from the hypocenter. To indirectly validate our slip models we produced synthetic PGV maps (Shake maps) and we compared our predictions with observations of ground shaking from strong motion records. All comparisons were made for rock soil conditions and in general our slip models adequately fit the observations especially at the closest stations where the shaking was considerably stronger. Through the search of the parameter space for our inversions we obtained an optimum location for the mainshock at 42.04°N and 19.21° E and we also observed that better fit to the observations was obtained when the fault was modeled as a blind thrust fault.  相似文献   

17.
The internal structure and permeability of the Neodani fault, which was last activated at the time of the 1891 Nobi earthquake (M8.0), were examined through field survey and experiments. A new exposure of the fault at a road construction site reveals a highly localized feature of the past fault deformation within a narrow fault core zone. The fault of the area consists of three zone units towards the fault core: (a) protolith rocks; (b) 15 to 30 m of fault breccia, and (c) 200 mm green to black fault gouge. Within the fault breccia zone, cataclastic foliation oblique to the fault has developed in a fine-grained 2-m-wide zone adjacent to the fault. Foliation is defined by subparallel alignment of intact lozenge shaped clasts, or by elongated aggregates of fine-grained chert fragments. The mean angle of 20°, between the foliation and the fault plane suggests that the foliated breccia accommodated a shear strain of γ<5 assuming simple shear for the rotation of the cataclastic foliation. Previous trench surveys have revealed that the fault has undergone at least 70 m of fault displacement within the last 20,000 years in this locality. The observed fault geometry suggests that past fault displacements have been localized into the 200-mm-wide gouge zone. Gas permeability analysis of the gouges gives low values of the order of 10−20 m2. Water permeability as low as 10−20 m2 is therefore expected for the fault gouge zone, which is two orders of magnitude lower than the critical permeability suggested for a fault to cause thermal pressurization during a fault slip.  相似文献   

18.
The Hirabayashi borehole (Awaji Island, Japan) was drilled by the Geological Survey of Japan (GSJ) 1 year after the Hyogo-ken Nanbu (Kobe) earthquake (1995, MJMA=7.2). This has enabled scientists to study the complete sequence of deformation across the active Nojima fault, from undeformed granodiorite to the fault core. In the fault core, different types of gouge and fractures have been observed and can be interpreted in terms of a complex history of faulting and fluid circulation. Above the fault core and within the hanging wall, compacted cataclasites and gouge are cut by fractures which show high apparent porosity and are filled by 5–50 μm euhedral and zoned siderite and ankerite crystals. These carbonate-filled fractures have been observed within a 5.5-m-wide zone above the fault, but are especially abundant in the vicinity (1 m) of the fault. The log-normal crystal size distributions of the siderite and ankerite suggest that they originated by decaying-rate nucleation accompanied by surface-controlled growth in a fluid saturated with respect to these carbonates. These carbonate-filled fractures are interpreted as the result of co-seismic hydraulic fracturing and upward circulation of fluids in the hanging wall of the fault, with the fast nucleation of carbonates attributed to a sudden fluid or CO2 partial pressure drop due to fracturing. The fractures cut almost all visible structures at a thin section scale, although in some places, the original idiomorphic shape of carbonates is modified by a pressure-solution mechanism or the carbonate-filled fractures are cut and brecciated by very thin gouge zones; these features are attributed to low and high strain-rate mechanisms, respectively. The composition of the present-day groundwater is at near equilibrium or slightly oversaturated with respect to the siderite, calcite, dolomite and rhodochrosite. Taken together, this suggests that these fractures formed very late in the evolution of the fault zone, and may be induced by co-seismic hydraulic fracturing and circulation of a fluid with a similar composition to the present-day groundwater. They are therefore potentially related to recent earthquake activity (<1.2 Ma) on the Nojima fault.  相似文献   

19.
The occurrence of synkinematic and authigenic clay minerals is a common feature in fault gouges. Few attempts have been made to date fault gouges. We present the first age data in Australia for synkinematic illite–smectite growth in two fault zones of the northern Sydney Basin, NSW. The faults occur at Burwood Beach, NSW in the northern part of the Sydney Basin and are hosted by Early Permian siltstones, tuffs and coals of the Lambton Formation, Newcastle Coal Measures. The faults are 1.5 m apart, show normal displacement and trend N–S with steep easterly dips. Foliated gouge zones, comminution and dilational breccias are developed along both fault surfaces. K–Ar ages extracted from samples in the gouge and tuffs in the damage zones are 172 (6–10 μm) to 119 Ma (<0.4 μm), respectively. Older ages of 272–281 Ma for the coarse fractions (>2 μm), 237–245 Ma for the <2 μm fraction, 218 Ma for the <0.4 μm fraction and 196 Ma for the <0.1 μm fraction have been obtained from siltstones within and outside the damage zone. We believe the younger ages of 196–237 Ma indicate the time at which diagenetic illite–smectite formed and the 122–150 Ma dates from the <2 μm fraction represent the maximum age of gouge formation. The younger ages are thought to reflect the last slip event occurring on the faults, which is related to the rifting and dispersal of the eastern margin of the Australian continent.  相似文献   

20.
谭文彬  何昌荣 《地学前缘》2008,15(3):279-286
岩石摩擦滑动的力学行为能够很好地用速率和状态依赖性摩擦本构关系来描述。在速率和状态依赖性本构关系中,速度依赖性参数a-b是控制摩擦滑动稳定性的重要参数。且a-b<0是断层上不稳定滑动成核的必要条件。为了进一步研究控制摩擦滑动的矿物成分因素,在已有辉长岩摩擦滑动实验结果的基础上,对辉长岩中主要矿物(斜长石和辉石)在不同加载条件下进行了3个系列的摩擦滑动实验研究。通过对实验结果的分析得到如下结论:(1)斜长石断层泥在实验温度范围内(<617℃)显示速度强化,且在大于450℃的高温区其速度依赖性参数a-b随温度的增大而增加。辉石断层泥的实验显示其有利于速度弱化滑动行为的出现,是造成辉长岩在615℃出现速度弱化的原因。(2)斜长石与辉石断层泥的摩擦强度都没有随温度的增加而显著变化。辉长岩断层泥的摩擦强度(1.83mm滑动位移处的值)为斜长石与辉石断层泥摩擦强度按体积百分比加权的平均值(摩擦系数精确到2位有效数字一致)。这一结果表明,辉长岩断层泥的应力支承结构可以抽象为一种双组分并列单元模型。(3)尽管前人研究结果表明石英控制了花岗岩的摩擦特性,但是某种主要矿物对岩石整体摩擦滑动性质的控制作用并不具有普适性。对于中性岩、基性岩而言,不能以一种主要矿物(如斜长石等)来判断岩石整体的摩擦滑动稳定性,否则会导致错误结论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号