首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fracture-zone conditions on a recently active fault: insights from mineralogical and geochemical analyses of the Hirabayashi NIED drill core on the Nojima fault, southwest Japan, which ruptured in the 1995 Kobe earthquake
Authors:Tatsuo Matsuda  Kentaro Omura  Ryuji Ikeda  Takashi Arai  Kenta Kobayashi  Koji Shimada  Hidemi Tanaka  Tomoaki Tomita  Satoshi Hirano  
Institution:a National Research Institute for Earth Science and Disaster Prevention (NIED), 3-1 Tennodai, Tsukuba 305, Ibaraki-ken, Japan;b Hokkaido University, Hokkaido, Japan;c National Institute of Advanced Industrial Science and Technology, Japan;d Niigata University, Japan;e University of Tokyo, Tokyo, Japan;f University of Tsukuba, Tsukuba, Japan;g Japan Marine Science and Technology Center, Japan
Abstract:An 1800-m-deep borehole into the Nojima fault zone was drilled at Nojima-Hirabayashi, Japan, after the 1995 Hyogo-ken Nanbu (Kobe) earthquake. Three possible fracture zones were detected at depths of about 1140, 1300, and 1800 m. To assess these fracture zones in this recently active fault, we analyzed the distributions of fault rocks, minerals, and chemical elements in these zones. The central fault plane in the shallowest fracture zone was identified by foliated blue-gray gouge at a depth of 1140 m. The degree of fracturing was evidently greater in the hanging wall than in the footwall. Minerals detected in this zone were quartz, orthoclase, plagioclase, and biotite, as in the parent rock (granodiorite), and also kaolinite, smectite, laumontite, stilbite, calcite, ankerite, and siderite, which are related to hydrothermal alteration. Biotite was absent in both the hanging wall and footwall across the central fault plane, but it was absent over a greater distance from the central fault plane in the hanging wall than in the footwall. Major element compositions across this zone suggested that hydrothermal alteration minerals such as kaolinite and smectite occurred across the central fault plane for a greater distance in the hanging wall than in the footwall. Similarly, H2O+ and CO2 had higher concentrations in the hanging wall than in the footwall. This asymmetrical distribution pattern is probably due to the greater degree of wall–rock fracturing and associated alteration in the hanging wall. We attributed the characteristics of this zone to fault activity and fluid–rock interactions. We analyzed the other fracture zones along this fault in the same way. In the fracture zone at about 1300 m depth, we detected the same kinds of hydrothermal alteration minerals as in the shallower zone, but they were in fewer samples. We detected relatively little H2O+ and CO2, and little evidence for movement of the major chemical elements, indicating little past fluid–rock interaction. In the fracture zone at about 1800 m depth, H2O+ and CO2 were very enriched throughout the interval, as in the fracture zone at about 1140 m depth. However, smectite was absent and chlorite was present, indicating the occurrence of chloritization, which requires a temperature of more than 200 °C. Only smectite can form under the present conditions in these fracture zones. The chloritization probably occurred in the past when the fracture zone was deeper than it is now. These observations suggest that among the three fracture zones, that at about 1140 m depth was the most activated at the time of the 1995 Hyogo-ken Nanbu (Kobe) earthquake.
Keywords:Drilling  Fault zone  Material analysis  Nojima fault  Kobe earthquake
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号