首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
凡口铅锌矿床同位素地球化学证据   总被引:3,自引:0,他引:3  
汪礼明  徐文忻  李蘅  彭省临 《地球学报》2005,26(Z1):164-167
对凡口铅锌矿床不同成矿阶段进行矿物包裹体温度、硫和铅同位素测定,获得成矿第Ⅰ阶段温度为300±50℃,第Ⅱ、Ⅲ阶段温度为250±50℃;并获得矿床硫化物的S同位素组成为2.1‰~26.5‰,具有δ34SPy>δ34SSp>δ34SGn;第Ⅰ阶段硫化物的硫同位素组成随赋存层位由老到新硫同位素有逐渐减小趋势;第Ⅱ阶段硫化物的δ34S为14.3‰~23.8‰;第Ⅲ阶段硫化物的δ34S为5.7%~15.7‰,具有从早阶段至晚阶段硫同位素组成变化范围从大至小的减小趋势。分析获得68件铅同位素数据,其中硫化物的206Pb/204Pb比值为18.023~18.847;207Pb/204Pb比值为15.700~15.820;208Pb/204Pb比值为38.056~39.796。灰岩全岩的206Pb/204Pb比值为18.230~18.860;207Pb/204Pb比值为15.640~16.000;208Pb/204Pb比值为38.714~39.960。辉绿岩的206Pb/204Pb比值为18.570~18.650;207Pb/204Pb比值为15.260~15.620;208Pb/204Pb比值为38.650~38.960。第Ⅰ阶段δ34OH2O为13.3‰~13.1‰,δD为-50.2‰~-61.5‰;第Ⅱ阶段δ18OH2O为-2.4‰~+10.8‰,δD为-50.2‰~-63.2‰;第Ⅲ阶段δ18OH2O为-4.9‰~-14.3‰,δD为-59.0‰~-61.0‰。  相似文献   

2.
铜山岭铜多金属矿床是湘南W、Sn、Pb、Zn、Cu多金属矿集区的代表性矿床,本文对其不同类型岩石和矿石矿物进行了S、Pb、C同位素组成对比研究。矿石硫化物的δ34 S值变化范围为-1.9‰~5.7‰,平均值为2.6‰,硫主要来源于硫同位素组成均一化的岩浆。硫化物硫同位素平衡温度表明,矿床主要成矿温度为134~339℃。矿石铅的206 Pb/204 Pb、207 Pb/204 Pb、208 Pb/204 Pb比值分别为18.256~18.856、15.726~15.877、38.352~39.430;岩体岩石铅的206Pb/204Pb、207Pb/204Pb、208Pb/204Pb比值分别为18.617~18.805、15.721~15.786、38.923~39.073;两者铅同位素组成相同,都主要为上地壳铅,是由同一岩浆体系分异形成,可能来源于古老基底岩石。不同类型岩石、方解石矿物的δ13 CPDB值为-9.88‰~1.32‰,δ18 OSMOW值为11.67‰~17.68‰,从矽卡岩矿体到距岩体稍远的围岩地层,方解石矿物的δ13 CPDB、δ18 OSMOW值逐渐增大,成矿流体中的碳早期可能主要来源于岩浆,在成矿过程中有部分碳酸盐岩地层碳的加入。铜山岭矿床成矿物质主要来源于岩浆,赋矿地层对矿床成矿物质来源作用不显著,仅提供了少量成矿物质。  相似文献   

3.
李毅  徐文忻  刘悟辉  李蘅  戴塔根 《地球学报》2005,26(Z1):168-170
对滇、黔、桂微细浸染型金矿硫化物进行硫、铅同位素测定,获得马雄、浪全、金牙、高龙、堂上等矿床206Pb/204Pb比值为17.636~19.530;207Pb/204Pb比值为15.451~16.092;208Pb/204Pb比值为37.871~40.854。用等时线斜率与铅同位素曲线关系剖析,矿床形成年代晚于矿床赋存层位,铅来源较为复杂。金牙矿床硫化物的δ34S值为15.3‰~15.6‰;板其矿床硫化物的δ34S值为-1.5‰~14.7‰;柴木函矿床硫化物的δ34S值为0.2‰~18.0‰;戈塘矿床硫化物的δ34S值为-29.2‰~5.0‰;丫他矿床硫化物的δ34S值为5.5‰~8.0‰,获得矿床有单一岩浆来源,单一海水(地层)来源和混合来源3种类型矿床。  相似文献   

4.
为明确西华山钨矿床成矿物质的来源,本文以矿床中的硫化物和钾长石为研究对象,通过硫化物中硫、铅同位素的研究,对矿床成矿物质来源进行探讨。结果表明,矿石中黄铁矿δ34S值为-2.1‰~0.4‰,辉钼矿δ34S值为4‰~7.9‰,硫主要来源于岩浆。辉钼矿、黄铁矿、钾长石的206 Pb/204 Pb值分别为18.718~18.849、18.640~18.745、18.698~18.792;207Pb/204Pb值分别为15.762~15.770、15.704~15.747、15.697~15.724;208 Pb/204 Pb值分别为39.094~39.134、38.902~39.056、38.904~39.012。由此判断矿床中矿石铅与岩石铅同位素组成具有同源关系,矿石铅主要来自与岩浆作用有关的上地壳;成矿物质来源于上地壳重熔形成的花岗岩浆,即上地壳岩浆侵位,为成矿作用提供部分成矿物质,同时也暗示成矿物质是由体现壳源特征的西华山复式岩体提供。  相似文献   

5.
中条山铜矿床同位素地球化学研究   总被引:2,自引:0,他引:2  
徐文忻  汪礼明  李蘅  郭新生 《地球学报》2005,26(Z1):130-133
笔者对中条山绛县群和中条群主要铜矿床进行铅、硫、碳、氢、氧同位素测定,获得:横岭关型矿床的206Pb/204Pb比值为17.746~19.270, 207Pb/204Pb比值为15.500~15.684,208 Pb/204Pb比值为37.236~39.931,硫化物的δ34S值为-8.1‰~+36.9‰, δ18OH2O值为+1.7‰~+5.7‰, δD值为-58. 4‰~-111.3‰;铜矿峪型矿床的206Pb/204Pb比值为18.040~46.243 207Pb/204Pb比值为15.565~18.765,208Pb/204Pb比值为37.682~69.623,硫化物的产δ34S值为-7.2‰~+10.2‰, δ18OH2O为+6.3‰~+10.5‰, δD值为-52.8‰~-123.3‰;落家河型矿床的206Pb/204Pb比值为17.591~19.270, 207Pb/204Pb比值为15.494~15.684,208Pb/204Pb比值为37.263~39.931,硫化物的δ34S值为-1‰~-21.9‰, δ18OH2O值为+3.6‰~+6.4‰, δD值为-35.8‰~-70‰;胡-蓖型矿床206 Pb/204 Pb比值为18.097~249.50, 207Pb/204Pb比值为15.578~44.230,208Pb/204Pb比值为35.379~51.480,硫化物的δ34S值为3.4‰~23.2‰, δ18OH2O值为+7.5‰~+12.5‰, δD值为-36.3‰~-72.2‰。  相似文献   

6.
对黄沙坪矿床硫化物期矿物进行矿物包裹体温度和成分测定,并进行热力学计算,获得毒砂-闪锌矿阶段成矿温度为300°,logfCO2为0.4~1.4;logfCH4为-2.05~2.07logfH2O为1.67~1.93;logfO2为-32.87~-38.39。对矽卡岩期和硫化物期硫化物进行硫同位素测定,获得矽卡岩期黄铁矿的δ34S为4.1‰~4.6‰; 硫化物期硫化物的δ34S为6.2‰~17.5‰,并具有δ34SSp大于δ34SGn和两组δ34SΣs值。对长石、方铅矿和闪锌矿进行了铅同位素测定,获得长石的206Pb/204Pb比值为18.429~19.305,207Pb/204Pb比值为15.598~15.905;208Pb/204Pb比值为38.647~39.235。方铅矿和闪锌矿的206Pb/204Pb比值为18.00~18.772,207Pb/204Pb比值为15.580~16.045,208Pb/204Pb比值为38.490~41.560,并呈线性排列,显示矿床硫铅是两种以上的物质来源。  相似文献   

7.
龙山Au-Sb矿床是湘中Au、Sb矿集区的代表性矿床,本文对其不同类型矿石、矿区围岩和区域地层进行了S、Pb、Sr同位素组成对比研究。矿石中硫化物的δ~(34)S值为-3.0‰~5.1‰,平均值2.3‰;矿区围岩的δ~(34)S值为4.0‰~5.9‰,平均值5.2‰;区域地层的δ~(34)S值为9.3‰~13.3‰,平均值11.3‰。矿石与矿区围岩、区域地层的硫同位素组成差别较大,矿石硫具岩浆来源特征。矿石中硫化物的~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb和~(208)Pb/~(204)Pb比值分别为16.992~18.457、15.392~15.722和37.586~38.960,矿区围岩的~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb和~(208)Pb/~(204)Pb比值分别为17.630~17.993、15.522~15.644和37.981~38.366;区域地层的~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb和~(208)Pb/~(204)Pb比值分别为17.566~18.092、15.430~15.630和37.988~38.710。矿石铅同位素组成变化较大,矿石铅的来源较复杂,赋矿地层、印支期岩浆岩和上地幔可能都为其提供了部分铅。石英流体包裹体的(~(87)Sr/~(86)Sr)_i比值为0.71540~0.72309,矿区围岩的(~(87)Sr/~(86)Sr)_i比值为0.71844~0.72153,区域地层的(~(87)Sr/~(86)Sr)_i比值为0.71792~0.71939,矿石、矿区围岩、区域地层的初始锶同位素值均较高,主要为壳源锶,部分锶来自赋矿地层,部分来自印支期岩浆岩。龙山矿床成矿物质具壳幔混合来源特征,矿化剂硫主要来源于岩浆,成矿物质部分来自江口组地层,部分来自印支期岩浆岩。  相似文献   

8.
岔路口和大黑山钼矿床位于大兴安岭北段,是近年来新发现的2个斑岩型钼矿床。文章通过对这2个矿床的硫、铅同位素的研究,探讨了成矿物质来源。岔路口矿区硫化物的δ34S值为1.8‰~2.9‰,平均2.4‰;大黑山矿区硫化物的δ34S值变化于0.4‰~2.3‰,平均1.53‰,均显示出典型的岩浆硫特征。岔路口矿区硫化物的206Pb/204Pb、207Pb/204Pb和208Pb/204Pb值分别变化于18.311~18.356、15.536~15.573和38.115~38.229,大黑山矿区硫化物的206Pb/204Pb、207Pb/204Pb和208Pb/204Pb值则分别变化于18.341~18.719、15.529~15.637和38.033~38.363。铅同位素进一步指示铅的来源与燕山期岩浆作用有关。在铅同位素构造模式图中,矿石铅主要投点于地幔演化线和造山带演化线之间,表明铅来自于壳幔物质的混合。大兴安岭北段在晚侏罗世受古太平洋板块俯冲的影响,发生了强烈的壳、幔相互作用并产生了大量含钼岩浆,为该区斑岩型钼矿床的形成奠定了基础。  相似文献   

9.
宝山铅锌矿床是湘南地区代表性矿床之一。宝山铅锌矿床的成矿作用与156~158 Ma的宝山花岗闪长斑岩密切相关。花岗闪长斑岩主要由古老地壳部分熔融而成。为确定成矿物质来源,文章系统研究了宝山铅锌矿床的硫、铅、碳、氧同位素组成特征。矿床中硫化物黄铁矿、闪锌矿、方铅矿的δ34S值呈狭窄的塔式分布,变化在-2.17‰~6.46‰之间,平均值为3.13‰。δ34S值总体表现为δ34S黄铁矿δ34S闪锌矿δ34S方铅矿,表明硫同位素分馏基本达到了平衡。矿石、花岗闪长斑岩和赋矿地层硫同位素对比研究表明,矿石中的硫主要由岩浆分异演化而来,岩浆中的硫主要来自古老地壳。矿石206Pb/204Pb、207Pb/204Pb和208Pb/204Pb比值分别为18.188~18.844、15.661~15.843和38.562~39.912,赋矿地层206Pb/204Pb、207Pb/204Pb和208Pb/204Pb比值分别为18.268~19.166、15.620~5.721和38.364~39.952。矿石铅同位素组成比地层中的更富放射性成因铅,矿石中部分铅来自宝山花岗闪长质岩浆,在成矿流体运移过程中有部分地层铅参与了成矿,岩浆中的铅主要来自古老地壳。热液方解石的碳、氧同位素组成介于岩浆和赋矿碳酸盐岩的碳、氧同位素之间,主要是由于岩浆流体和碳酸盐岩不同比例的水岩反应所致,测水组有机碳的加入造成了部分热液方解石δ13CPDB值偏低。  相似文献   

10.
拜仁达坝和维拉斯托是近年来在内蒙古东部地区发现的2个大型银多金属矿床,文章对其开展了硫和铅同位素研究。结果表明,拜仁达坝矿床矿石中硫化物的δ34S值为-4.0‰~+1.6‰,维拉斯托矿床矿石中硫化物的δ34S值为-0.8‰~+2.0‰,与岩浆热液型矿床的硫同位素值接近,表明这2个矿床中的硫主要来自岩浆。拜仁达坝矿区43件金属硫化物的206Pb/204Pb值为18.333~18.515,207Pb/204Pb值为15.532~15.656,208Pb/204Pb值为38.057~38.610;维拉斯托矿区20件金属硫化物的206Pb/204Pb值为18.304~18.377,207Pb/204Pb值为15.520~15.610,208Pb/204Pb值为38.112~38.435。拜仁达坝东矿区矿石中的铅同位素组成与维拉斯托矿区相似,变化范围小,相对贫放射性铅同位素,并且均为混合铅。矿石中的铅可能来自围岩地层及深源岩浆。  相似文献   

11.
Most sulfide-rich magmatic Ni-Cu-(PGE) deposits form in dynamic magmatic systems by partial melting S-bearing wall rocks with variable degrees of assimilation of miscible silicate and volatile components, and generation of barren to weakly-mineralized immiscible Fe sulfide xenomelts into which Ni-Cu-Co-PGE partition from the magma. Some exceptionally-thick magmatic Cr deposits may form by partial melting oxide-bearing wall rocks with variable degrees of assimilation of the miscible silicate and volatile components, and generation of barren Fe ± Ti oxide xenocrysts into which Cr-Mg-V ± Ti partition from the magma. The products of these processes are variably preserved as skarns, residues, xenoliths, xenocrysts, xenomelts, and xenovolatiles, which play important to critical roles in ore genesis, transport, localization, and/or modification. Incorporation of barren xenoliths/autoliths may induce small amounts of sulfide/chromite to segregate, but incorporation of sulfide xenomelts or oxide xenocrysts with dynamic upgrading of metal tenors (PGE > Cu > Ni > Co and Cr > V > Ti, respectively) is required to make significant ore deposits. Silicate xenomelts are only rarely preserved, but will be variably depleted in chalcophile and ferrous metals. Less dense felsic xenoliths may aid upward sulfide transport by increasing the effective viscosity and decreasing the bulk density of the magma. Denser mafic or metamorphosed xenoliths may also increase the effective viscosity of the magma, but may aid downward sulfide transport by increasing the bulk density of the magma. Sulfide wets olivine, so olivine xenocrysts may act as filter beds to collect advected finely dispersed sulfide droplets, but other silicates and xenoliths may not be wetted by sulfides. Xenovolatiles may retard settling of – or in some cases float – dense sulfide droplets. Reactions of sulfide melts with felsic country rocks may generate Fe-rich skarns that may allow sulfide melts to fractionate to more extreme Cu-Ni-rich compositions. Xenoliths, xenocrysts, xenomelts, and xenovolatiles are more likely to be preserved in cooler basaltic magmas than in hotter komatiitic magmas, and are more likely to be preserved in less dynamic (less turbulent) systems/domain/phases than in more dynamic (more turbulent) systems/domains/phases. Massive to semi-massive Ni-Cu-PGE and Cr mineralization and xenoliths are often localized within footwall embayments, dilations/jogs in dikes, throats of magma conduits, and the horizontal segments of dike-chonolith and dike-sill complexes, which represent fluid dynamic traps for both ascending and descending sulfides/oxides. If skarns, residues, xenoliths, xenocrysts, xenomelts, and/or xenovolatiles are present, they provide important constraints on ore genesis and they are valuable exploration indicators, but they must be included in elemental and isotopic mass balance calculations.  相似文献   

12.
针对兖州煤田下组煤深部开采受奥灰高承压水威胁以及当地大型煤化工企业生产用水量大的现状,在已进行的水文地质勘探及放水试验基础上,评价奥灰富水性,并采用有限差分法进行奥灰疏水降压数值模拟研究,提出水煤共采观点。研究结果表明:兖州煤田深部奥灰水压高,合理布置水煤共采孔,可以实现奥灰水位的有效疏降,疏降中心区水位最大降深可达110 m,突水系数显著下降,提高了下组煤开采的安全性;同时可提供煤化工43200 m3/d的供水量,能达到可持续的、水资源保护性的供水效果,实现下组煤的水煤共采。  相似文献   

13.
《Chemical Geology》2007,236(1-2):13-26
We examined the coprecipitation behavior of Ti, Mo, Sn and Sb in Ca–Al–Mg fluorides under two different fluoride forming conditions: at < 70 °C in an ultrasonic bath (denoted as the ultrasonic method) and at 245 °C using a Teflon bomb (denoted as the bomb method). In the ultrasonic method, small amounts of Ti, Mo and Sn coprecipitation were observed with 100% Ca and 100% Mg fluorides. No coprecipitation of Ti, Mo, Sn and Sb in Ca–Al–Mg fluorides occurred when the sample was decomposed by the bomb method except for 100% Ca fluoride. Based on our coprecipitation observations, we have developed a simultaneous determination method for B, Ti, Zr, Nb, Mo, Sn, Sb, Hf and Ta by Q-pole type ICP-MS (ICP-QMS) and sector field type ICP-MS (ICP-SFMS). 9–50 mg of samples with Zr–Mo–Sn–Sb–Hf spikes were decomposed by HF using the bomb method and the ultrasonic method with B spike. The sample was then evaporated and re-dissolved into 0.5 mol l 1 HF, followed by the removal of fluorides by centrifuging. B, Zr, Mo, Sn, Sb and Hf were measured by ID method. Nb and Ta were measured by the ID-internal standardization method, based on Nb/Mo and Ta/Mo ratios using ICP-QMS, for which pseudo-FI was developed and applied. When 100% recovery yields of Zr and Hf are expected, Nb/Zr and Ta/Hf ratios may also be used. Ti was determined by the ID-internal standardization method, based on the Ti/Nb ratio from ICP-SFMS. Only 0.053 ml sample solution was required for measurement of all 9 elements. Dilution factors of ≤ 340 were aspirated without matrix effects. To demonstrate the applicability of our method, 4 carbonaceous chondrites (Ivuna, Orgueil, Cold Bokkeveld and Allende) as well as GSJ and USGS silicate reference materials of basalts, andesites and peridotites were analyzed. Our analytical results are consistent with previous studies, and the mean reproducibility of each element is 1.0–4.6% for basalts and andesites, and 6.7–11% for peridotites except for TiO2.  相似文献   

14.
Partition coefficients of Hf,Zr, and REE between zircon,apatite, and liquid   总被引:25,自引:2,他引:25  
Concentration ratios of Hf, Zr, and REE between zircon, apatite, and liquid were determined for three igneous compositions: two andesites and a diorite. The concentration ratios of these elements between zircon and corresponding liquid can approximate the partition coefficient. Although the concentration ratios between apatite and andesite groundmass can be considered as partition coefficients, those for the apatite in the diorite may deviate from the partition coefficients. The HREE partition coefficients between zircon and liquid are very large (100 for Er to 500 for Lu), and the Hf partition coefficient is even larger. The REE partition coefficients between apatite and liquid are convex upward, and large (D=10–100), whereas the Hf and Zr partition coefficients are less than 1. The large differences between partition coefficients of Lu and Hf for zircon-liquid and for apatite-liquid are confirmed. These partition coefficients are useful for petrogenetic models involving zircon and apatite.  相似文献   

15.
16.
17.
The distribution of Cu, Co, As and Fe was studied downstream from mines and deposits in the Idaho Cobalt Belt (ICB), the largest Co resource in the USA. To evaluate potential contamination in ecosystems in the ICB, mine waste, stream sediment, soil, and water were collected and analyzed for Cu, Co, As and Fe in this area. Concentrations of Cu in mine waste and stream sediment collected proximal to mines in the ICB ranged from 390 to 19,000 μg/g, exceeding the USEPA target clean-up level and the probable effect concentration (PEC) for Cu of 149 μg/g in sediment; PEC is the concentration above which harmful effects are likely in sediment dwelling organisms. In addition concentrations of Cu in mine runoff and stream water collected proximal to mines were highly elevated in the ICB and exceeded the USEPA chronic criterion for aquatic organisms of 6.3 μg/L (at a water hardness of 50 mg/L) and an LC50 concentration for rainbow trout of 14 μg/L for Cu in water. Concentrations of Co in mine waste and stream sediment collected proximal to mines varied from 14 to 7400 μg/g and were highly elevated above regional background concentrations, and generally exceeded the USEPA target clean-up level of 80 μg/g for Co in sediment. Concentrations of Co in water were as high as in 75,000 μg/L in the ICB, exceeding an LC50 of 346 μg/L for rainbow trout for Co in water by as much as two orders of magnitude, likely indicating an adverse effect on trout. Mine waste and stream sediment collected in the ICB also contained highly elevated As concentrations that varied from 26 to 17,000 μg/g, most of which exceeded the PEC of 33 μg/g and the USEPA target clean-up level of 35 μg/g for As in sediment. Conversely, most water samples had As concentrations that were below the 150 μg/L chronic criterion for protection of aquatic organisms and the USEPA target clean-up level of 14 μg/L. There is abundant Fe oxide in streams in the ICB and several samples of mine runoff and stream water exceeded the chronic criterion for protection of aquatic organisms of 1000 μg/L for Fe. There has been extensive remediation of mined areas in the ICB, but because some mine waste remaining in the area contains highly elevated Cu, Co, As and Fe, inhalation or ingestion of mine waste particulates may lead to human exposure to these elements.  相似文献   

18.
This paper reports the first results of a study of 11 isotope systems (3He/4He, 40Ar/36Ar, 34S/32S, 65Cu/63Cu, 62Ni/60Ni, 87Sr/86Sr, 143Nd/144Nd, 206–208Pb/204Pb, Hf–Nd, U–Pb, and Re–Os) in the rocks and ores of the Cu–Ni–PGE deposits of the Norilsk ore district. Almost all the results were obtained at the Center of Isotopic Research of the Karpinskii All-Russia Research Institute of Geology. The use of a number of independent genetic isotopic signatures and comprehensive isotopic knowledge provided a methodic basis for the interpretation of approximately 5000 isotopic analyses of various elements. The presence of materials from two sources, crust and mantle, was detected in the composition of the rocks and ores. The contribution of the crustal source is especially significant in the paleofluids (gas–liquid microinclusions) of the ore-forming medium. Crustal solutions were probably a transport medium during ore formation. Air argon is dominant in the ores, which indicates a connection between the paleofluids and the atmosphere. This suggests intense groundwater circulation during the crystallization of ore minerals. The age of the rocks and ores of the Norilsk deposits was determined. The stage of orebody formation is restricted to a narrow age interval of 250 ± 10 Ma. An isotopic criterion was proposed for the ore-bearing potential of mafic intrusions in the Norilsk–Taimyr region. It includes several interrelated isotopic ratios of various elements: He, Ar, S, and others.  相似文献   

19.
The dielectric constants and dielectric loss values of 4 Ca-containing minerals were determined at 1 MHz using a two-terminal method and empirically determined edge corrections. The results are: vesuvianitel κ′ a=9.93 tan δ=0.006 κ′ c=9.79 tan δ=0.005 vesuvianitel κ′ a=10.02 tan δ=0.002 κ′ c=9.85 tan δ=0.003 zoisite1 κ′ a =10.49 tan δ=0.0006 κ′ b =15.31 tan δ=0.0008 κ′ c=9.51 tan δ=0.0008 zoisite2 κ′ a =10.55 tan δ=0.0011 κ′ b =15.45 tan δ=0.0013 κ′ c=9.39 tan δ=0.0008 epidote κ′ 11= 9.52 tan δ=0.0008 κ′ 22=17.1 tan δ=0.0009 κ′ 33= 9.37 tan δ=0.0006 fluorapatite1 κ′ a =10.48 tan δ=0.0008 κ′ c = 8.72 tan δ=0.0114 fluorapatite2 κ′ a =10.40 tan δ=0.0010 κ′ c=8.26 tan δ=0.0178 The deviation (δ) between measured dielectric polarizabilities as determined from the Clausius-Mosotti equation and those calculated from the sum of oxide polarizabilities according to α D (mineral)=∑ α D (oxides) for vesuvianite is ~ 0.5%. The large deviations of epidote and zoisite from the additivity rule with Δ=+ 10.1 and + 11.7%, respectively, are attributed to “rattling” Ca ions. The combined effects of both a large F thermal parameter and possible F-ion conductivity in fluorapatite are believed to be responsible for Δ=+2–3%. Although variation of oxygen polarizability with oxygen molar volume (Vo) is believed to affect the total polarizabilities, the variation of Vo in these Ca minerals is too small to observe the effect.  相似文献   

20.
Indonesia has become the world's largest exporter of thermal coal and is a major supplier to the Asian coal market, particularly as the People's Republic of China is now (2007) and perhaps may remain a net importer of coal. Indonesia has had a long history of coal production, mainly in Sumatra and Kalimantan, but only in the last two decades have government and commercial forces resulted in a remarkable coal boom. A recent assessment of Indonesian coal-bed methane (CBM) potential has motivated active CBM exploration. Most of the coal is Paleogene and Neogene, low to moderate rank and has low ash yield and sulfur (generally < 10 and < 1 wt.%, respectively). Active tectonic and igneous activity has resulted in significant rank increase in some coal basins. Eight coal samples are described that represent the major export and/or resource potential of Sumatra, Kalimantan, Sulawesi, and Papua. Detailed geochemistry, including proximate and ultimate analysis, sulfur forms, and major, minor, and trace element determinations are presented. Organic petrology and vitrinite reflectance data reflect various precursor flora assemblages and rank variations, including sample composites from active igneous and tectonic areas. A comparison of Hazardous Air Pollutants (HAPs) elements abundance with world and US averages show that the Indonesian coals have low combustion pollution potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号