首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Panxi region of the Late Permian (~ 260 Ma) Emeishan large igneous province (ELIP) there is a bimodal assemblage of mafic and felsic plutonic rocks. Most Emeishan granitic rocks were derived by differentiation of basaltic magmas (i.e. mantle-derived) or by mixing between crustal melts and primary basaltic magmas (i.e. hybrid). The Yingpanliangzi granitic pluton within the city of Panzhihua intrudes Sinian (~ 600 Ma) marbles and is unlike the mantle-derived or hybrid granitic rocks. The SHRIMP zircon U–Pb ages of the Yingpanliangzi pluton range from 259 ± 8 Ma to 882 ± 22 Ma. Younger ages are found on the zircon rims whereas older ages are found within the cores. Field relationships and petrography indicate that the Yingpanliangzi pluton must be < 600 Ma, therefore the older zircons are interpreted to represent the protolith age whereas the younger analyses represent zircon re-crystallization during emplacement. The Yingpanliangzi granites are metaluminous and have negative Ta–NbPM anomalies, low εNd(260 Ma) values (? 3.9 to ? 4.4), and high ISr (0.71074 to 0.71507) consistent with a crustal origin. The recognition of a crustally-derived pluton along with mantle-derived and mantle–crust hybrid plutons within the Panxi region of the ELIP is evidence for a complete spectrum of sources. As a consequence, the types of Panxi granitoids can be distinguished according to their ASI, Eu/Eu*, εNd(T), εHf(T), TZr(°C) and Nb–TaPM values. The diverse granitic magmatism during the evolution of the ELIP from ~ 260 Ma to ~ 252 Ma demonstrates the complexity of crustal growth associated with LIPs.  相似文献   

2.
The Wajilitag and Puchang igneous complexes host two known economic Fe–Ti oxide deposits in the recently recognized Tarim large igneous province (TLIP). The Wajilitag complex comprises clinopyroxenite and melagabbro, whereas the Puchang complex is generally gabbroic and anorthositic in lithology apart from minor plagioclase-bearing clinopyroxenites in the marginal contact zone. The Fe–Ti oxide ores are disseminated throughout the Wajilitag complex and principally restricted to the ultramafic unit, whereas the Puchang complex contains massive to disseminated Fe–Ti oxide ores mainly hosted within the gabbroic rocks. Both secondary ion mass spectroscopy and laser ablation-inductively coupled plasma-mass spectrometry U–Pb dating of zircon grains from the Wajilitag and Puchang complexes yield U–Pb zircon ages of ca. 283 Ma and ca. 275 Ma, respectively, clearly indicating that there were two independent episodes of the magmatic events related to Fe–Ti oxide mineralization in the TLIP. The new zircon U–Pb ages of intrusive rocks studied here, coupled with available geochronological data from elsewhere in the TLIP, show a long duration of magmatism (up to 30 Myr), although the precise age of the TLIP remains to be determined. The two complexes are late-stage events that notably postdate most, if not all, the basaltic lava flows. Furthermore, the occurrence of the earliest manifestation (e.g., ca. 300 Ma kimberlitic rocks) of a proposed mantle plume in the Bachu area and the potential temporal migration of the late-stage magmatism from the Bachu and Keping areas to the edges of the Tarim Craton, indicate a possible plume centre near the Bachu–Keping district. The εHf(t) values of zircons from each complex show a range of several εHf(t) units (Wajilitag: + 2.7 to + 9.2, Puchang: − 5.2 to + 2.6), probably suggesting late-stage crustal contamination in magma chambers at the time of zircon saturation. Unlike the Lu–Hf isotopic system, the zircons may preserve the original O isotope signature of their mantle sources. The increase of O isotopic composition from the Wajilitag complex (δ18O = 5.2–5.9‰) to the Puchang complex (δ18O = 5.6–7.1‰), indicates a relatively high proportion of recycled subduction-related materials (e.g., eclogite and garnet pyroxenite) incorporated into the subcontinental lithospheric mantle source for the Puchang intrusive rocks. Partial melting of the refertilized subcontinental lithospheric mantle with the involvement of garnet-bearing mafic components can be of great importance for the formation of parental Fe-rich magmas and ultimately Fe–Ti oxide deposits. This observation is consistent with the occurrence of some mineralized LIPs (e.g., Emeishan) in formerly active convergent plate margins of ancient cratonic blocks, contributing to a global understanding valuable to exploration efforts.  相似文献   

3.
The biostratigraphically constrained Permo-Triassic Emeishan Volcanic Province (EVP), extending over wide areas in southwest China, has been recently considered as a Large Igneous Province contemporaneous with the Siberian Traps and the siliceous tuffs at the P–T boundary in South China. We report the first 40Ar/39Ar ages on this igneous province. Minimum ages have been obtained on phenocrystic plagioclase of the Emeishan basalt, which has undergone a pervasive metamorphism, most likely during subsequent tectonization as a consequence of terrane amalgamation. Comparison between the Ar–release spectra obtained on clear vs. cloudy plagioclase indicates a 40–30 Ma sericite resetting time. A minimum apparent age of 246 ± 4 Ma for plagioclase from a plagiogranite, a late-differentiate of the Panzhihua Layered Complex, and an age of 254 ± 5 Ma for phlogopite from a pyroxenite near Lake Erhai, provide the first absolute age constraint on this igneous province. Additional Ar–Ar age measurements on post-Emeishan alkaline and mafic magmatism yielded 104 ± 2 and 100 ± 2 Ma for an alkaline complex near Panzhihua, and 42 ± 1 Ma for a gabbro sill emplaced near the Ertan Dam. Further study is still needed to determine the age of the Emeishan volcanic emission accurately, and to test the validity of the assumed short duration of the eruption.  相似文献   

4.
《Chemical Geology》2007,236(1-2):112-133
The Cida A-type granitic stock (∼ 4 km2) and Ailanghe I-type granite batholith (∼ 100 km2) in the Pan-Xi (Panzhihua-Xichang) area, SW China, are two important examples of granites formed during an episode of magmatism associated with the Permian Emeishan mantle plume activity. This is a classic setting of plume-related, anorogenic magmatism exhibiting the typical association of mantle-derived mafic and alkaline rocks along with silicic units. SHRIMP zircon U–Pb data reveal that the Cida granitic pluton (261 ± 4 Ma) was emplaced shortly before the Ailanghe granites (251 ± 6 Ma). The Cida granitoids display mineralogical and geochemical characteristics of A-type granites including high FeO/MgO ratios, elevated high-field-strength elements (HFSE) contents and high Ga/Al ratios, which are much higher than those of the Ailanghe granites. All the granitic rocks show significant negative Eu anomalies and demonstrate the characteristic negative anomalies in Ba, Sr, and Ti in the spidergrams. It can be concluded that the Cida granitic rocks are highly fractionated A-type granitoids whereas the Ailanghe granitic rocks belong to highly evolved I-type granites.The Cida granitoids and enclaves have Nd and Sr isotopic initial ratios (εNd(t) =  0.25 to + 1.35 and (87Sr/86Sr)i = 0.7023 to 0.7053) close to those of the associated mafic intrusions and Emeishan basalts, indicating the involvement of a major mantle plume component. The Ailanghe granites exhibit prominent negative Nb and Ta anomalies and weakly positive Pb anomalies in the spidergram and have nonradiogenic εNd(t) ratios (− 6.34 to − 6.26) and high (87Sr/86Sr)i values (0.7102 to 0.7111), which indicate a significant contribution from crustal material. These observations combined with geochemical modeling suggest that the Cida A-type granitoids were produced by extensive fractional crystallization from basaltic parental magmas. In contrast, the Ailanghe I-type granites most probably originated by partial melting of the mid-upper crustal, metasedimentary–metavolcanic rocks from the Paleo-Mesoproterozoic Huili group and newly underplated basaltic rocks.In the present study, it is proposed that petrogenetic distinctions between A-type and I-type granites may not be as clear-cut as previously supposed, and that many compositional and genetically different granites of the A- and I-types can be produced in the plume-related setting. Their ultimate nature depends more importantly on the type and proportion of mantle and crustal material involved and melting conditions. Significant melt production and possible underplating and/or intrusion into the lower crust, may play an important role in generating the juvenile mafic lower crust (average 20 km) in the central part of the Emeishan mantle plume.  相似文献   

5.
High-precision 40Ar/39Ar dating of lamprophyre dike swarms in the Western Province of New Zealand reveals that these dikes were emplaced into continental crust prior to, during and after opening of the Tasman Sea between Australia and New Zealand. Dike ages form distinct clusters concentrated in different areas. The oldest magmatism, 102–100 Ma, is concentrated in the South Westland region that represents the furthest inboard portion of New Zealand in a Gondwana setting. A later pulse of magmatism from ~ 92 Ma to ~ 84 Ma, concentrated in North Westland, ended when the first oceanic crust formed at the inception of opening of the Tasman Sea. Magmatic quiescence followed until ~ 72–68 Ma, when another swarm of dikes was emplaced. The composition of the dikes reveals a dramatic change in primary melt sources while continental extension and lithospheric thinning were ongoing. The 102–100 Ma South Westland dikes represent the last mafic calc-alkaline magmatism associated with a long-lived history of the area as Gondwana's active margin. The 92–84 Ma North and 72–68 Ma Central Westland dike swarms on the other hand have strongly alkaline compositions interpreted as melts from an intraplate source. These dikes represent the oldest Western Province representatives of alkaline magmatism in the greater New Zealand region that peaked in activity during the Cenozoic and has remained active up to the present day. Cretaceous alkaline dikes were emplaced parallel to predicted normal faults associated with dextral shear along the Alpine Fault. Furthermore, they temporally correspond to polyphase Cretaceous metamorphism of the once distal Alpine Schist. Dike emplacement and distal metamorphism could have been linked by a precursor to the Alpine Fault. Dike emplacement in the Western Province coupled to metamorphism of the Alpine Schist at 72–68 Ma indicates a period of possible reactivation of this proto Alpine Fault before it served as a zone of weakness during the opening of the oceanic Emerald Basin (at ~ 45 Ma) and eventually the formation of the present-day plate boundary (~ 25 Ma–recent).  相似文献   

6.
扬子克拉通西缘在~260Ma发生短期内大规模峨眉山玄武岩溢流喷发。攀西地区发育的镁铁-超镁铁质岩被广泛认为是峨眉山大火成岩省的产物,但在北端松潘-甘孜岩区一直缺乏该类岩石的报道。本文首次报道扬子西缘丹巴水子乡单斜辉石岩的准确年龄,其锆石LA-ICP-MS U-Pb加权平均年龄为260.7±3.3Ma,表明其为峨眉山大火成岩省北端松潘-甘孜岩区镁铁-超镁铁质岩的组成部分。通过与攀枝花钒钛磁铁矿含矿岩体边缘相带苦橄岩和上部相带浅色辉长岩进行锆石微量元素对比显示,水子乡单斜辉石岩具有相近的高氧逸度,其ΔQFM为0~3,Ce_(N)/Ce_(N)平均为~30,该性质可能同样源自扬子西缘洋壳板片俯冲交代形成的较高氧逸度地幔源区。尽管如此,水子乡辉石岩体并未因高氧逸度而有明显的含钛磁铁矿饱和结晶,可能由其较低结晶分异程度造成。相比之下,攀枝花岩体经历了更高程度的含钛磁铁矿和斜长石分离结晶作用,伴随大规模的钒钛磁铁矿成矿。  相似文献   

7.
The newly-discovered Shiyaogou molybdenum deposit is located in the eastern Qinling metallogenic belt in central China. The deposit contains at least 152,000 t of Mo metal and bears typical porphyry-type features in terms of its concentric alteration zonation, quartz vein-hosted Mo mineralization, veining sequence and the spatial association with concealed granite porphyries. Re–Os isotope analyses of molybdenite from the deposit yield an ore-forming age of 132.3 ± 2.8 Ma. LA-ICP-MS U–Pb zircon dating of ore-related porphyries yields crystallization ages from 135 Ma to 132 Ma, indicating a temporal link between granitic magmatism and Mo mineralization. A population of captured magmatic zircons indicates another pulse of magmatism at ~ 143 Ma. A barren granite intrusion near the deposit gives a zircon U–Pb age of 148.1 ± 1.1 Ma. These magmatic activities were concurrent with the emplacement of the nearby Heyu granitic batholith, a largely ore-barren intrusive complex formed from ~ 148 Ma to ~ 127 Ma. Zircon Ce4 +/Ce3 + ratios of ore-related porphyries are obviously higher than those of contemporaneous barren granitoids, implying an affinity between Mo mineralization and highly oxidized magmas. Moreover, zircons from these granitoids overall have decreasing Ce4 +/Ce3 + ratios from 148 Ma to 132 Ma, reflecting decreasing oxygen fugacities during magma evolution. Available geological, radiometric and stable isotopic evidence suggests that the decrease of magma oxygen fugacity was probably associated with an increase of mantle contribution to granitic magmatism and metallogenesis, which probably gave rise to successive mineralization of Mo and Au in the eastern Qinling. The intense magmatic–metallogenic events in the eastern Qinling during Late Jurassic to Early Cretaceous times are interpreted as a response to the large-scale lithosphere thinning and subsequent asthenosphere upwelling beneath the eastern part of the North China Craton.  相似文献   

8.
The Central Asian Orogenic Belt (CAOB) formed mainly in the Paleozoic due to the closure of the Paleo-Asian oceanic basins and accompanying prolonged accretion of pelagic sediments, oceanic crust, magmatic arcs, and Precambrian terranes. The timing of subduction–accretion processes and closure of the Paleo-Asian Ocean has long been controversial and is addressed in a geochemical and isotopic investigation of mafic rocks, which can yield important insight into the geodynamics of subduction zone environments. The Xilingol Complex, located on the northern subduction–accretion zone of the CAOB, mainly comprises strongly deformed quartzo-feldspathic gneisses with intercalated lenticular or quasi-lamellar amphibolite bodies. An integrated study of the petrology, geochemistry, and geochronology of a suite of amphibolites from the complex constrains the nature of the mantle source and the tectono-metamorphic events in the belt. The protoliths of these amphibolites are gabbros and gabbroic diorites that intruded at ca. 340–321 Ma with positive εHf(t) values ranging from + 2.89 to + 12.98. Their TDM1 model ages range from 455 to 855 Ma and peak at 617 Ma, suggesting that these mafic rocks are derived from a depleted continental lithospheric mantle. The primitive magma was generated by variable degrees of partial melting of spinel-bearing peridotites. Fractionation of olivine, clinopyroxene and hornblende has played a dominant role during magma differentiation with little or no crustal contamination. The mafic rocks are derived from a Late Neoproterozoic depleted mantle source that was subsequently enriched by melts affected by slab-derived fluids and sediments, or melts with a sedimentary source rock. The Carboniferous mafic rocks in the northern accretionary zone of the CAOB record a regional extensional event after the Early Paleozoic subduction of the Paleo-Asian Ocean. Both addition of mantle-derived magmas and recycling of oceanic crust played key roles in significant Late Carboniferous (ca. 340–309 Ma) vertical crustal growth in the CAOB. Amphibolite–facies metamorphism (P = 0.34–0.52 GPa, T = 675–708 °C) affected these mafic rocks in the Xilingol Complex at ca. 306–296 Ma, which may be related to the crustal thickening by northward subduction of a forearc oceanic crust beneath the southern margin of the South Mongolian microcontinent. The final formation of the Solonker zone may have lasted until ca. 228 Ma.  相似文献   

9.
The Wajilitag igneous complex is part of the early Permian Tarim large igneous province in NW China, and is composed of a layered mafic–ultramafic intrusion and associated syenitic plutons. In order to better constrain its origin, and the conditions of associated Fe–Ti oxide mineralization, we carried out an integrated study of mineralogical, geochemical and Sr–Nd–Hf isotopic analyses on selected samples. The Wajilitag igneous rocks have an OIB-like compositional affinity, similar to the coeval mafic dykes in the Bachu region. The layered intrusion consists of olivine clinopyroxenite, coarse-grained clinopyroxenite, fine-grained clinopyroxenite and gabbro from the base upwards. Fe–Ti oxide ores are mainly hosted in fine-grained clinopyroxenite. Forsterite contents in olivines from the olivine clinopyroxenite range from 71 to 76 mol%, indicating crystallization from an evolved magma. Reconstructed composition of the parental magma of the layered intrusion is Fe–Ti-rich, similar to that of the Bachu mafic dykes. Syenite and quartz syenite plutons have εNd(t) values ranging from +1.4 to +2.9, identical to that for the layered intrusion. They may have formed by differentiation of underplated magmas at depth and subsequent fractional crystallization. Magnetites enclosed in olivines and clinopyroxenes have Cr2O3 contents higher than those interstitial to silicates in the layered intrusion. This suggests that the Cr-rich magnetite is an early crystallized phase, whereas interstitial magnetite may have accumulated from evolved Fe–Ti-rich melts that percolated through a crystal mush. Low V content in Cr-poor magnetite (<6600 ppm) is consistent with an estimate of oxygen fugacity of FMQ + 1.1 to FMQ + 3.5. We propose that accumulation of Fe–Ti oxides during the late stage of magmatic differentiation may have followed crystallization of Fe–Ti-melt under high fO2 and a volatile-rich condition.  相似文献   

10.
The Baima layered intrusion is located in the central part of the Emeishan Large Igneous Province (ELIP). The N–S striking intrusion is ~ 24 km long and ~ 2 km thick and dips to the west. Based on variations in modal proportions and cumulus mineral assemblages, the intrusion from the base to the top is simply subdivided into a lower zone (LZ) with most of the economic magnetite layers, and an upper zone (UZ) with apatite-bearing troctolite and gabbro. The rock textures suggest crystallization of the Fe–Ti oxide slightly later than plagioclase (An67-54) but relatively earlier than olivine (Fo74-55), followed by clinopyroxene and finally apatite.Relatively low olivine forsterite content and abundant ilmenite exsolution lamellae in clinopyroxene indicate that the Baima parental magma is a highly evolved Fe–Ti-rich magma. Via MELTS model, it demonstrates that under a closed oxygen system, extensive silicate mineral fractionation of a picritic magma might lead to Fe and Ti enrichment and oxygen fugacity elevation in the residual magma. When such Fe–Ti-rich magma ascends to the shallower Baima intrusion, the Fe–Ti oxides may become an early liquidus phase. Well-matched olivine and plagioclase microprobe data with the results of MELTS calculation, combined with relatively low CaO content in olivine (0.02–0.08 wt.%) indicate that wall-rock contamination probably plays a weak role on oxygen fugacity elevation and the early crystallization of Fe–Ti oxides. Several reversals in whole-rock chromium and plagioclase anorthite contents illustrate that multiple recharges of such Fe–Ti-rich magma mainly occurred along the lower part of the Baima magma chamber. Frequent Fe–Ti-rich magma replenishment and gravitational sorting and settling are crucial for the development of thick Fe–Ti oxide layers at the base of the Baima layered intrusion.  相似文献   

11.
Widespread Mesozoic Au and other hydrothermal polymetal (Zn–Pb–Cu–Mo–Ag–W–Fe–REE) deposits or smaller prospects occur in association with ancient mobile belts surrounding and cutting through the North China Carton (NCC). Among these, the gold ores of the Jiaodong Peninsula, Shandong Province, eastern NCC, represent the largest gold district in China. However, the genesis of these important gold mineralizations has remained controversial, notably their relationships to widespread mafic magmatism of alkaline affinity.The ore bodies of the Guocheng gold deposit on the Jiaodong Peninsula are fracture-controlled, sulfide-rich veins and disseminations, formed contemporaneously with abundant dolerite, lamprophyre and monzonite dikes at ca. 120 Ma. Dolerite dikes possess mantle-like major element compositions and alkaline affinity, associated with prominent subduction-type trace element enrichments. The dikes show petrographic and chemical evidence of magma mixing that triggered exsolution of magmatic sulfide and anhydrite crystallization, preserved as primary inclusions in phenocrysts. LA-ICP-MS analysis of magmatic sulfide inclusions demonstrates that metal abundance ratios (Ag, As, Au, Bi, Co, Cu, Mo, Ni, Pb, Sb, Zn) largely correspond to those of both unaltered bulk rock and bulk ore. Together with identical Pb isotope ratios of dolerite and bulk ore, this demonstrates that gold mineralization and dolerite dikes share a common source.Lead isotope signatures of the ore sulfides are much less radiogenic (17.08 < 206Pb/204Pb < 17.25, 15.41 <207Pb/204Pb < 15.45, 37.55 < 208Pb/204Pb < 37.93) relative to the Pb signature of Phanerozoic convecting mantle and plot to the left of the Geochron and above the MORB-source mantle Pb evolution line. Forward Monte Carlo simulations indicate three events for the U–Th–Pb isotope evolution: (1) late Archean formation of juvenile crust is followed by (2) subduction of this aged crust at ca. 1.85 Ga along with the assembly of Jiao–Liao–Ji mobile belt (suture within Columbia supercontinent). This late-Archean subducted crust released fluids with drastically reduced U/Pb that metasomatized the overlying depleted mantle, which formed cratonic lithospheric mantle. This metasomatized lithospheric mantle was (3) tapped in response to early Cretaceous extensional tectonics affecting notably the eastern margin of the NCC to generate mafic magmas and associated gold mineralization at Guocheng. Similarly non-radiogenic uranogenic Pb isotope data characterize the contemporaneous mafic dikes and gold deposits in the entire Jiaodong Peninsula, suggesting that our genetic model applies to the entire Jiaodong gold district.We propose that early Cretaceous melting of subcontinental lithospheric mantle metasomatized by subduction fluids during Paleoproterozoic amalgamation of terranes to the eastern NCC along with Columbia supercontinent assembly generated mafic magmatism and associated gold deposits. Given the conspicuous association of Phanerozoic hydrothermal ore deposits associated with reactivated Paleoproterozoic mobile belts, we envisage that our genetic model, which largely corresponds to that which is proposed for the Bingham porphyry-Cu–Au–Mo deposit, USA, may explain much of the magmatic-hydrothermal activity and associated ore formation all around the NCC.  相似文献   

12.
The Palaeozoic to Mesozoic igneous and metamorphic basement rocks exposed in the Mérida Andes of Venezuela and the Santander Massif of Colombia are generally considered to define allochthonous terranes that accreted to the margin of Gondwana during the Ordovician and the Carboniferous. However, terrane sutures have not been identified and there are no published isotopic data that support the existence of separate crustal domains. A general paucity of geochronological data led to published tectonic reconstructions for the evolution of the northwestern corner of Gondwana that do not account for the magmatic and metamorphic histories of the basement rocks of the Mérida Andes and the Santander Massif. We present new zircon U–Pb (ICP-MS) data from 52 igneous and metamorphic rocks, which we combine with whole rock geochemical and Pb isotopic data to constrain the tectonic history of the Precambrian to Mesozoic basement of the Mérida Andes and the Santander Massif. These data show that the basement rocks of these massifs are autochthonous to Gondwana and share a similar tectono-magmatic history with the Gondwanan margin of Peru, Chile and Argentina, which evolved during the subduction of oceanic lithosphere of the Iapetus Ocean. The oldest Palaeozoic arc magmatism is recorded at ~ 500 Ma, and was followed shortly by Barrovian metamorphism. Peak metamorphic conditions at upper amphibolite facies are recorded by anatexis at ~ 477 Ma and the intrusion of synkinematic granitoids until ~ 472 Ma. Subsequent retrogression resulted from localised back-arc or intra-arc extension at ~ 453 Ma, when volcanic tuffs and interfingered sedimentary rocks were deposited over the amphibolite facies basement. Continental arc magmatism dwindled after ~ 430 Ma and terminated at ~ 415 Ma, coevally with most of the western margin of Gondwana. After Pangaea amalgamation in the Late Carboniferous to Early Permian, a magmatic arc developed on its western margin at ~ 294 Ma as a result of subduction of oceanic crust of the palaeo-Pacific ocean. Intermittent arc magmatism recorded between ~ 294 and ~ 225 Ma was followed by the onset of the Andean subduction cycle at ~ 213 Ma, in an extensional regime. Extension was accompanied by slab roll-back which led to the migration of the arc axis into the Central Cordillera of Colombia in the Early Jurassic.  相似文献   

13.
The Qinling Orogenic Belt marks the link between the South China and North China Blocks and is an important region to understand the geological evolution of the Chinese mainland as well as the Asian tectonic collage. However, the tectonic affinity and geodynamic evolution of the South Qinling Tectonic Belt (SQTB), a main unit of the Qinling Orogenic Belt, remains debated. Here we present detailed geological, geochemical and zircon U–Pb–Hf isotopic studies on the Zhangjiaba, Xinyuan, Jiangjiaping, Guangtoushan and Huoshaodian plutons from the Guangtoushan granitoid suite (GGS) in the western segment of the SQTB. Combining geology, geochronology and whole-rock geochemistry, we identify four distinct episodes of magmatism as: (1) ~ 230–228 Ma quartz diorites and granodiorites, (2) ~ 224 Ma fine-grained granodiorites and monzogranites, (3) ~ 218 Ma porphyritic monzogranites and (4) ~ 215 Ma high-Mg# quartz diorites and granodiorites as well as coeval muscovite monzogranites. The ~ 230–228 Ma quartz diorites and granodiorites were generated by magma mixing between a mafic melt from mantle source and a granodioritic melt derived from partial melting of Neoproterozoic rocks in the lower continental crust related to a continental arc regime. The ~ 224 Ma fine-grained granodiorites and monzogranites were formed through partial melting of a transitional source with interlayers of basaltic rocks and greywackes in the deep zones of the continental arc. The ~ 218 Ma porphyritic monzogranites originated from partial melting of metamorphosed greywackes in lower crustal levels, suggesting underthrusting of middle or upper crustal materials into lower crustal depths. The ~ 215 Ma high-Mg# quartz diorites and granodiorites (with Mg# values higher than 60) were derived from an enriched mantle altered by sediment-derived melts. Injection of hot mantle-derived magmas led to the emergence of the ~ 215 Ma S-type granites at the final stage.Integrating our studies with previous data, we propose that the Mianlue oceanic crust was still subducting beneath the SQTB during ~ 248–224 Ma, and final closure of the Mianlue oceanic basin occurred between ~ 223 Ma and ~ 218 Ma. After continental collision between the South China Block and the SQTB, slab break-off occurred, following which the SQTB transformed into post-collisional extension setting.  相似文献   

14.
《Gondwana Research》2013,24(4):1378-1401
The Qilian Orogen at the northern margin of the Tibetan Plateau is a type suture zone that recorded a complete history from continental breakup to ocean basin evolution, and to the ultimate continental collision in the time period from the Neoproterozoic to the Paleozoic. The Qilian Ocean, often interpreted as representing the “Proto-Tethyan Ocean”, may actually be an eastern branch of the worldwide “Iapetus Ocean” between the two continents of Baltica and Laurentia, opened at ≥ 710 Ma as a consequence of breakup of supercontinent Rodinia.Initiation of the subduction in the Qilian Ocean probably occurred at ~ 520 Ma with the development of an Andean-type active continental margin represented by infant arc magmatism of ~ 517–490 Ma. In the beginning of Ordovician (~ 490 Ma), part of the active margin was split from the continental Alashan block and the Andean-type active margin had thus evolved to western Pacific-type trench–arc–back-arc system represented by the MORB-like crust (i.e., SSZ-type ophiolite belt) formed in a back-arc basin setting in the time period of ~ 490–445 Ma. During this time, the subducting oceanic lithosphere underwent LT-HP metamorphism along a cold geotherm of ~ 6–7 °C/km.The Qilian Ocean was closed at the end of the Ordovician (~ 445 Ma). Continental blocks started to collide and the northern edge of the Qilian–Qaidam block was underthrust/dragged beneath the Alashan block by the downgoing oceanic lithosphere to depths of ~ 100–200 km at about 435–420 Ma. Intensive orogenic activities occurred in the late Silurian and early Devonian in response to the exhumation of the subducted crustal materials.Briefly, the Qilian Orogen is conceptually a type example of the workings of plate tectonics from continental breakup to the development and evolution of an ocean basin, to the initiation of oceanic subduction and formation of arc and back-arc system, and to the final continental collision/subduction and exhumation.  相似文献   

15.
The study of the Mesoproterozoic (1473 ± 24 Ma) dolerites of the Olenek uplift of the Siberian craton basement has shown their petrologic and geochemical similarity to typical OIB produced with participation of a mantle plume. The dolerites are characterized by variations in the geochemical composition explained by different degrees of melting of the same source. A conclusion is drawn that the parental melts of the rocks were slightly modified by crustal contamination, as evidenced from their Nd isotope composition (£Nd(T) = + 0.6 to − 0.8) and the presence of inherited zircons of four ages (2564, 2111, 2053, and 1865 Ma). Since the Siberian craton in the structure of the Nuna supercontinent (Columbia) was located relatively close to the Baltic continent and the Congo and Sao Francisco cratons, we assume that the Early Mesoproterozoic mafic intrusions (1500–1470 Ma) of all these cratons belong to the same large igneous province (LIP). The province formation was related to the activity of superplume (or mantle hot field), which supplied mantle matter to the lithosphere basement. The superplume core was probably located beneath the northern part of the Siberian craton, where basites are compositionally most similar to the primary mantle source.  相似文献   

16.
《Gondwana Research》2014,26(4):1445-1468
The continental crust of the North China Craton (NCC) is a major reservoir of mineral resources with imprints of secular changes in tectonics and metallogeny. The Jiaodong Peninsula, located in the eastern margin of the North China Craton (NCC), is currently one of the largest gold producers over the globe, and preserves the records of multiple magmatic and metamorphic events. Here we characterize the timing and tectonics of the major Mesozoic magmatism and the associated gold metallogeny in this region through a comprehensive U–Pb geochronological and Hf isotope investigation of zircons in a suite of granitoids, mafic magmatic enclaves, melanocratic dikes and melted basement rocks.The Linglong granite, hosting one of the major gold deposits in Jiaodong, shows emplacement ages between 150 and 160 Ma, and the dominantly negative εHf (t) values (− 34.0 to − 23.8) of zircons from this intrusion suggest magma derivation from recycled components in the Archean basement. The Guojialing granodiorite and its mafic magmatic enclaves show similar ages between 123 and 127 Ma, with negative εHf (t) values (− 19.3 to − 16.8), corresponding to crustal magma source. The melanocratic dikes, belonging to pre- and syn-mineralization stages, with U–Pb age range of 126 to 166 Ma display large variation in their zircon εHf (t) values (− 25.7 and 2.3) suggesting the involvement of both recycled crustal and juvenile mantle components. Zircons in the melted basement rocks with ages in the range of ca. 127–132 Ma also display both positive and negative εHf (t) values (− 44.6 and 9.8) indicating a mixture of recycled ancient crust and juvenile magmas. Our study shows that although the peak of gold metallogeny coincided with the tectonics associated with Pacific plate subduction which mobilized and concentrated the ores, the source materials of gold mineralization and magmatism had multiple origins including from the Precambrian basement rocks, Mesozoic granitoids and mantle-derived mafic magmas with extensive mixing of crustal, lithosphere mantle and asthenospheric components. A combination of delamination, mantle upwelling, subduction-related metasomatic enrichment and recycling of ancient components facilitated the gold metallogeny in this region. Our study provides a typical case of juvenile and recycled components in the formation and evolution of continental crust and associated mineral resources.  相似文献   

17.
In this paper we report zircon U–Pb age, chemical compositions of rock-forming minerals, and whole-rock elemental and Sr–Nd isotopic data for the No. II mafic-ultramafic intrusive complex (N2MC) in the Quruqtagh area at the northeastern margin of the Tarim Block, northwestern China to evaluate its petrogenesis and tectonic significance. The N2MC with an exposure area of ca. 12 km2 has a funnel-shaped cross-section and intruded the Paleoproterozoic basement. U–Pb zircon dating gives a crystallization age of 760 ± 6 Ma. Rock types of the N2MC include lherzolite, pyroxenite, gabbro and minor diorite. Major elements geochemistry of these rocks exhibits a tholeiitic trend with a wide range of SiO2 contents (38.8–60 wt.%). On the other hand, they are systematically enriched in LILE, LREE and depleted in HFSE and HREE, thus leading to low HFSE/LREE ratios (e.g., Nb/La  0.3). Isotopically, the studied rocks are characterized by negative whole-rock εNd(t) values (? 7.6 to ? 2.8) and variable high (87Sr/86Sr)i (0.7095–0.7059). These features, together with chemical compositions of the rock-forming minerals and the presence of the primary phlogopite and hornblende, suggest that N2MC was likely formed via crystal fractionation/cumulation (with negligible crustal contamination) of a tholeiitic magma derived from a metasomatized subcontinental lithosphere mantle (SCLM) in an extensional environment. The enrichment of the mantle source could be ascribed to the metasomatism by subducted-slab-released fluids before partial melting. Overall, reported Neoproterozoic igneous rocks throughout the Tarim Block constitute two major phases of Neoproterozoic igneous activities, i.e., ca. 825–800 Ma and ca. 780–745 Ma, respectively. Similar to that of many other Rodinian continents, this feature is interpreted to be related to the two phases of Neoproterozoic mantle plume activity under the Rodinia. Furthermore, there exist two types of mafic-ultramafic complex at Quruqtagh, i.e., the ca. 820 Ma carbonatite-bearing and the ca. 760 Ma tholeiitic, which could reflect the presence of two different mantle sources.  相似文献   

18.
Cenozoic lamprophyre dykes occur widely along the Ailao-Shan-Red-River (ASRR) shear zone related to the Indian–Eurasian collision. Two generations of lamprophyres have been found at the Daping gold deposit in the southern part of the ASRR shear zone and have been investigated by using phlogopite 40Ar/39Ar dating and whole-rock major and trace element as well as Sr and Nd isotope geochemical analyses. The 40Ar/39Ar plateau ages of phlogopite from the two generations of lamprophyres bracket the emplacement of auriferous quartz veins in the Daping deposit between 36.8 ± 0.2 Ma and 29.6 ± 0.2 Ma, consistent with the timing of gold mineralization in other parts of the ASRR shear zone. Geochemical data suggest that these lamprophyres most likely originated from a subduction-modified mantle source consisting of phlogopite-bearing spinel lherzolite, which underwent partial melting with contributions from crust materials. In particular, the second generation lamprophyres are characterized by more primitive geochemical features than the first, suggesting that secular source evolution probably resulted from post-collisional slab break-off mantle convection and remelting from ascending asthenosphere after subducted lithosphere break-off. Widespread and episodic occurrences of lamprophyres and other potassic volcanism in the eastern Tibetan Plateau were probably related to the onset of transtensional tectonics along the ASRR shear zone during Oligocene. A genetic model involving transtensional tectonics has been proposed for lamprophyres and gold mineralization in the ASRR shear zone.  相似文献   

19.
The presence and/or generation mechanism of a mantle plume associated with early Permian rifting on the northern margin of Gondwana are topics of debate. Here we report LA–ICP–MS U–Pb zircon ages, whole-rock geochemistry, and Sr–Nd isotope data for high-Ti mafic dykes from southern Qiangtang, Tibet, with the aim of assessing if a mantle plume formed in this region during the early Permian. Zircon U–Pb dating of diabase dykes yielded ages of 290.6 ± 3.5 Ma and 290.1 ± 1.5 Ma, indicating they were emplaced during the early Permian. Whole-rock geochemistry shows that these mafic dykes are alkaline (Nb/Y = 0.73–0.99), have high TiO2 (3.6%–4.8%), and have ocean-island basalt (OIB)-like trace element patterns with enrichments in Nb, Ta, and Ti. Whole-rock Sr–Nd isotope data show a relatively narrow range of εNd(t) (+ 2.29 to + 3.53), similar to basalts produced by a mantle plume (e.g., Emeishan continental flood basalts (ECFB)). Elemental and isotope data suggest that the dykes have undergone fractionation crystallization of mafic minerals and have experienced negligible crustal contamination. These mafic rocks show an affinity to OIB and may have been generated by partial melting of an OIB-type, garnet-bearing asthenospheric mantle source. On the basis of a similar emplacement age to the Panjal Traps basalts in the Himalayas, combined with a tectonic reconstruction of Gondwana in the early to middle Permian, our work suggests that the high-Ti mafic dykes in the Southern Qiangtang terrane and the coeval Panjal Traps basalts in the Himalayas together comprise a ca. 290 Ma large igneous province linked to a mantle plume, which probably played an active role in early Permian rifting on the northern margin of Gondwana and was related to circum-Pangea subduction.  相似文献   

20.
Numerous intrusive bodies of mafic–ultramafic to felsic compositions are exposed in association with volcanic rocks in the Late Permian Emeishan large igneous province (ELIP), southwestern China. Most of the granitic rocks in the ELIP were derived by differentiation of basaltic magmas with a mantle connection, and crustal magmas have rarely been studied. Here we investigate a suite of mafic dykes and I-type granites that yield zircon U-Pb emplacement ages of 259.9 ± 1.2 Ma and 259.3 ± 1.3 Ma, respectively. The εHf(t) values of zircon from the DZ mafic dyke are –0.3 to 9.4, and their corresponding TDM1 values are in the range of 919–523 Ma. The εHf(t) values of zircon from the DSC I-type granite are between –1 and 3, with TDM1 values showing a range of 938–782 Ma. We also present zircon O isotope data on crust-derived felsic intrusions from the ELIP for the first time. The δ18O values of zircon from the DSC I-type granite ranges from 4.87‰ to 7.5‰. The field, petrologic, geochemical and isotopic data from our study lead to the following salient findings. (i) The geochronological study of mafic and felsic intrusive rocks in the ELIP shows that the ages of mafic and felsic magmatism are similar. (ii) The DZ mafic dyke and high-Ti basalts have the same source, i.e., the Emeishan mantle plume. The mafic dyke formed from magmas sourced at the transitional depth between from garnet-lherzolite and spinel-lherzolite, with low degree partial melting (<10%). (iii) The Hf-O isotope data suggest that the DSC I-type granite was formed by partial melting of Neoproterozoic juvenile crust and was contaminated by minor volumes of chemically weathered ancient crustal material. (iv) The heat source leading to the formation of the crust-derived felsic rocks in of the ELIP is considered to be mafic–ultramafic magmas generated by a mantle plume, which partially melted the overlying crust, generating the felsic magma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号