首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatial structure of a jet flow at a river mouth   总被引:1,自引:0,他引:1  
The present work concentrates on the latest data measured in the Jordan river flow in lake Kinneret. Spectral characteristics of fluctuating velocity components have been obtained and processed. The three-dimensional structure of turbulence along the flow has been described. The main features of the jet flow turbulence in the river mouth are: a) The supply of turbulent energy changes due to different mechanisms along the flow. b) The structure of turbulence formed in the river decays rapidly along the flow, and c) In the sand area and beyond it, a significant generation of turbulent energy occurs. Quantitative estimations of the above effects were carried out.  相似文献   

2.
A wind-tunnel experiment was carried out to test a hypothesis that the turbulence characteristics in the near-neutral surface layer are largely determined by detached eddies from above. The surrogate detached eddies were generated by using an active turbulence grid installed at the front of the test section and the parameters of the grid were chosen such that the fully developed logarithmic layer downstream consists of a turbulent flow that has similar normalized intensity to that typically observed in the near-neutral atmospheric surface layer. The effects of the detached eddies on turbulence characteristics were investigated by comparison with a second experiment without detached eddies. The influence of the detached eddies on the logarithmic layer was mostly on the coherent structures; the logarithmic layer with the detached eddies revealed a multi-layer structure similar to that found in the atmosphere where the lower part of the surface layer is dominated by sweep-like events and the upper part by ejection-like events. Our experiments show that the mean velocity gradient and the Reynolds shear stress were, however, not affected significantly by the detached eddies and hence the eddy viscosity.  相似文献   

3.
Wind-Turbine Wakes in a Convective Boundary Layer: A Wind-Tunnel Study   总被引:1,自引:1,他引:0  
Thermal stability changes the properties of the turbulent atmospheric boundary layer, and in turn affects the behaviour of wind-turbine wakes. To better understand the effects of thermal stability on the wind-turbine wake structure, wind-tunnel experiments were carried out with a simulated convective boundary layer (CBL) and a neutral boundary layer. The CBL was generated by cooling the airflow to 12–15 °C and heating up the test section floor to 73–75 °C. The freestream wind speed was set at about 2.5 m s?1, resulting in a bulk Richardson number of ?0.13. The wake of a horizontal-axis 3-blade wind-turbine model, whose height was within the lowest one third of the boundary layer, was studied using stereoscopic particle image velocimetry (S-PIV) and triple-wire (x-wire/cold-wire) anemometry. Data acquired with the S-PIV were analyzed to characterize the highly three-dimensional turbulent flow in the near wake (0.2–3.2 rotor diameters) as well as to visualize the shedding of tip vortices. Profiles of the mean flow, turbulence intensity, and turbulent momentum and heat fluxes were measured with the triple-wire anemometer at downwind locations from 2–20 rotor diameters in the centre plane of the wake. In comparison with the wake of the same wind turbine in a neutral boundary layer, a smaller velocity deficit (about 15 % at the wake centre) is observed in the CBL, where an enhanced radial momentum transport leads to a more rapid momentum recovery, particularly in the lower part of the wake. The velocity deficit at the wake centre decays following a power law regardless of the thermal stability. While the peak turbulence intensity (and the maximum added turbulence) occurs at the top-tip height at a downwind distance of about three rotor diameters in both cases, the magnitude is about 20 % higher in the CBL than in the neutral boundary layer. Correspondingly, the turbulent heat flux is also enhanced by approximately 25 % in the lower part of the wake, compared to that in the undisturbed CBL inflow. This study represents the first controlled wind-tunnel experiment to study the effects of the CBL on wind-turbine wakes. The results on decreased velocity deficit and increased turbulence in wind-turbine wakes associated with atmospheric thermal stability are important to be taken into account in the design of wind farms, in order to reduce the impact of wakes on power output and fatigue loads on downwind wind turbines.  相似文献   

4.
A series of experiments were performed in a rotating cylindrical tank over a wide range of rotation rates in which convective turbulence was generated by a bottom-mounted heated plate in both homogeneous and stratified fluids. Measurements were made of the turbulent velocities in all three axes over the full depth of the chamber, and of the temperatures at the mid-depth near the centre of the tank. For even small rotation rates, the measurements showed that the turbulent velocities were weakly affected by rotation at all depths, but as the rotation rate increased, the deviation from the non-rotational scaling slowly and progressively increased until eventually the turbulent velocities were fully rotationally controlled. The results indicated that there was no sudden transition of the turbulent field from the non-rotational state (a function only of the surface buoyancy flux B and the depth z) to the rotational state (where the strength of the turbulent field is a function of only B and the Coriolis parameter f). Rather the transition was a smooth asymptotic one from one state to the other. Nevertheless, it was possible to parametrize this transition by a single value of the turbulent or small scale Rossby number, defined by Ro = (B/f3z2)1/3. Our measurements suggested a critical value of Roc ≈ 0.1, below which the turbulence was fully rotationally controlled and which was equivalent to a critical depth zc = (35 ± 15)(B/f3)1/2. Using typical oceanic values for B and f, the oceanic turbulence driven by surface cooling events becomes rotationally controlled only for depths greater than about 10 km, a depth which is greater than that of the bulk of the world's oceans. Thus, convective turbulence actively being generated by cooling of the ocean surface is best described by non-rotating turbulent velocity and length scales and is a function only of the surface buoyancy flux and the depth.  相似文献   

5.
We investigate the spatial characteristics of urban-like canopy flow by applying particle image velocimetry (PIV) to atmospheric turbulence. The study site was a Comprehensive Outdoor Scale MOdel (COSMO) experiment for urban climate in Japan. The PIV system captured the two-dimensional flow field within the canopy layer continuously for an hour with a sampling frequency of 30 Hz, thereby providing reliable outdoor turbulence statistics. PIV measurements in a wind-tunnel facility using similar roughness geometry, but with a lower sampling frequency of 4 Hz, were also done for comparison. The turbulent momentum flux from COSMO, and the wind tunnel showed similar values and distributions when scaled using friction velocity. Some different characteristics between outdoor and indoor flow fields were mainly caused by the larger fluctuations in wind direction for the atmospheric turbulence. The focus of the analysis is on a variety of instantaneous turbulent flow structures. One remarkable flow structure is termed ‘flushing’, that is, a large-scale upward motion prevailing across the whole vertical cross-section of a building gap. This is observed intermittently, whereby tracer particles are flushed vertically out from the canopy layer. Flushing phenomena are also observed in the wind tunnel where there is neither thermal stratification nor outer-layer turbulence. It is suggested that flushing phenomena are correlated with the passing of large-scale low-momentum regions above the canopy.  相似文献   

6.
Six levels of simultaneously sampled ultrasonic data are used to analyse the turbulence structure within a mixed forest of 13 m height on a steep slope (35°) in an alpine valley. The data set is compared to other studies carried out over forests in more ideal, flat terrain. The analysis is carried out for 30-min mean data, joint probability distributions, length scales and spectral characteristics.Thermally induced upslope winds and cold air drainage lead to a wind speed maximum within the trunk space. Slope winds are superimposed on valley winds and the valley-wind component becomes stronger with increasing height. Slope and valley winds are thus interacting on different spatial and time scales leading to a quite complex pattern in momentum transport that differs significantly from surface-layer characteristics. Directional shear causes lateral momentum transports that are in the same order or even larger than the longitudinal ones. In the canopy, however, a sharp attenuation of turbulence is observed. Skewed distributions of velocity components indicate that intermittent turbulent transport plays an important role in the energy distribution.Even though large-scale pressure fields lead to characteristic features in the turbulent structure that are superimposed on the canopy flow, it is found that many statistical properties typical of both mixing layers and canopy flow are observed in the data set.  相似文献   

7.
We quantify the role of the convective buoyant structures and the remainder turbulence, here called background turbulence, in the convective atmospheric boundary layer in horizontally homogeneous, dry and barotropic conditions. Three filtering methods to separate the structures and the background turbulence are first evaluated. These are: short-time averaging, Fourier filtering and proper orthogonal decomposition. The Fourier method turns out to be the most appropriate for the present purpose. The decomposition is applied to two cases: one with no mean flow and another with moderate mean wind speed. It is shown that roughly 85 % of the vertical flux of the potential temperature and about 72 % of the kinetic energy is carried by the structures in the mixed layer in both cases. The corresponding percentage for the potential temperature variance is 81 % in the zero mean-wind case and 76 % in the moderate mean-wind case. The structures are responsible for as much as 94 % of the momentum flux in the mixed layer of the moderate mean-wind case. In the surface layer the background turbulence is generally more important than the structure contribution in both cases. The budget of the potential temperature flux is analyzed in detail and it is shown that its turbulent transport term is mostly built up by the structures but also the interaction between the structures and the background turbulence plays a significant role. The other important budget terms are shown to be dominated by the structures except for the pressure–temperature gradient covariance.  相似文献   

8.
Three aircraft-based studies of boundary-layer fronts (BLFs) werecarried out during the experiment KABEG in April 1997 near thesea-ice edge over the Davis Strait. The boundary-layer flow wasparallel to the ice edge and hence two independent turbulent regimescould develop in an identical synoptic framework, separated by thefrontal zone along the ice edge. The zone of strongest crosswindhorizontal gradients was typically 20 km wide, while the downstreamscale of the BLF was observed to be several hundreds of kilometres.For two of the three cases the investigation of turbulence structureswas possible and the results are given herein.Horizontal and vertical profiles of turbulent fluxes and other turbulentquantities are presented. A spectral analysis reveals the coexistence ofsmall-scale turbulence with roll motions. These roll motions can behidden or can be visible as cloud streets. The associated transportmechanisms are highly relevant for the choice of suitable averagingintervals for turbulent flux calculations and model validation.Parameterizations for the vertical velocity variance, countergradienttransport, sea surface roughness and eddy diffusivity are evaluatedand compared for this baroclinic strong-wind convective boundary-layerenvironment. Analogously, drag coefficients and bulk transfer coefficientsare derived from measurements.  相似文献   

9.
A comparison is made of numerical and experimental results for flow over two-dimensional hills in both neutral and stably stratified flow. The numerical simulations are carried out using a range of one-and-a-half order and second-order closure schemes. The performance of the various turbulence schemes in predicting both the mean and turbulent quantities over the hill is assessed by comparing the results with new wind-tunnel measurements. The wind-tunnel experiments include both neutral and stably stratified flow over two different hills with different slopes, one of which is steep enough to induce flow separation. The dataset includes measurements of the mean and turbulent parts of the flow using laser Doppler anemometry. Pressure measurements are also made across the surface of the hill. These features make the dataset an excellent test of the model performance. In general second-order turbulence schemes provide the best agreement with the experimental data, however, they can be numerically unstable for steep hills. Some modifications can be made to the standard one-and-a-half order closure scheme, which results in improved performance at a fraction of the computation cost of the second-order schemes.  相似文献   

10.
In the approaches used to predict the dispersion of discrete particles moving in a turbulent flow, the effects of crossing trajectories due to gravity (or any other external force field) are generally accounted for by modifying the integral time scales according to the well-known analysis of Csanady (J Atmos Sci 20:201–208, 1963). Here, an alternative theoretical analysis of the time correlation of the fluid velocity fluctuations along a particle trajectory is presented and applied in a turbulent shear flow. The study is carried out in the frame of three-dimensional Langevin-type stochastic models, where the main unknowns are the drift tensor components rather than the conventional integral time scales of the fluid seen by the particles. Starting from a model for the space-time velocity covariance tensor of the turbulence under the assumption of homogeneous shear flow, the various components of the time correlation tensor of the fluid seen are expressed in the asymptotic case of large mean relative velocity (between the particles and the flow) compared to the particle velocity fluctuations. In order to provide comparison with the generally used expressions arising from isotropic turbulence assumption, we examine also the conventional integral time scales of the fluid seen in the directions parallel and perpendicular to the mean relative velocity. The most prominent deviations from isotropic turbulence are observed when the external force field is in the direction of the mean velocity gradient: in this case the loss of correlation in the mean flow direction is significantly lower than expected in a uniform flow, an observation that is in qualitative agreement with the few available data.  相似文献   

11.
Wind-tunnel experiments were carried out to study turbulence statistics in the wake of a model wind turbine placed in a boundary-layer flow under both neutral and stably stratified conditions. High-resolution velocity and temperature measurements, obtained using a customized triple wire (cross-wire and cold wire) anemometer, were used to characterize the mean velocity, turbulence intensity, turbulent fluxes, and spectra at different locations in the wake. The effect of the wake on the turbulence statistics is found to extend as far as 20 rotor diameters downwind of the turbine. The velocity deficit has a nearly axisymmetric shape, which can be approximated by a Gaussian distribution and a power-law decay with distance. This decay in the near-wake region is found to be faster in the stable case. Turbulence intensity distribution is clearly non-axisymmetric due to the non-uniform distribution of the incoming velocity in the boundary layer. In the neutral case, the maximum turbulence intensity is located above the hub height, around the rotor tip location and at a distance of about 4–5.5 rotor diameters, which are common separations between wind turbines in wind farms. The enhancement of turbulence intensity is associated with strong shear and turbulent kinetic energy production in that region. In the stable case, the stronger shear in the incoming flow leads to a slightly stronger and larger region of enhanced turbulence intensity, which extends between 3 and 6 rotor diameters downwind of the turbine location. Power spectra of the streamwise and vertical velocities show a strong signature of the turbine blade tip vortices at the top tip height up to a distance of about 1–2 rotor diameters. This spectral signature is stronger in the vertical velocity component. At longer downwind distances, tip vortices are not evident and the von Kármán formulation agrees well with the measured velocity spectra.  相似文献   

12.
A turbulent stratified shear flow is generated in a towing tank by towing a grid or a circular cylinder through a tank of stratified salt water. The internal waves and turbulence generated in these flows are visualized with shadowgraphs and measured with quartz-coated hot-film probes (up to four probes for velocity fluctuations) and single-electrode conductivity probes (up to four probes for salinity fluctuations) which are towed at the same speed as the obstacle. The velocity and salinity signals are recorded on magnetic tapes. A portion of these signals is processed directly-on-line with a digital computer. From these shadowgraphs and probe measurements, we observe that
  1. Far downstream of the obstacle where the turbulence has already subsided, the stratified fluid always has a layered structure. This layered structure persists for a long time, and is a result of the convection of turbulently mixed layers by the mean flow. These results indicate that in the regions of a stably stratified atmosphere and ocean where the turbulence has subsided, one could often find layered structure.
  2. There are spectral peaks and valleys in the measured velocity and salinity autospectra when the stratifications are sufficiently strong. Under certain conditions, these spectral peaks tend to lift up the spectral curves to show substantialf ?5/3 subranges, although the turbulence Reynolds numbers are too low for the flows to have recognizable inertial subranges. This anomalousf ?5/3 subrange demonstrates the pitfalls of using spectral measurements in thef ?5/3 subrange to predict the turbulent energy dissipation rate through the Kolmogorov hypothesis.
  3. A diagnostic method is developed for distinguishing internal waves from turbulence, utilizing their phase characteristics. The phase characteristics can be conveniently examined from the cospectra and quadrature spectra measurements of: (a), two vertically separated velocity probes; (b), two vertically separated density probes; and (c), a velocity probe and a density probe. This method is demonstrated to be useful in the laboratory and can be applied directly to atmospheric and oceanic measurements to distinguish internal waves from turbulence.
  4. From the coherency measurements, it is found that the entire turbulent stratified wake is actually whipping up and down at a frequency corresponding to the Brunt-Väisälä frequency. This indicates that similar stratified shear flows in the atmosphere and in the ocean, such as the jet streams in the atmosphere and the Cromwell current in the ocean, may oscillate vertically, which in turn can induce horizontal oscillation and meandering.
  相似文献   

13.
The phase-averaged characteristics of the turbulent velocity fields beneath steep short wind waves are investigated. A scheme was developed to compute the phase of individual wind waves using spatial surface displacement data. This information was used to analyze the two-dimensional velocity data acquired using particle image velocimetry (PIV) in a wind-wave tank. The experiments were conducted at a fetch of 5.5m and at wind speeds that ranged from 4 to 10ms−1. Under these conditions previous studies have shown that a significant percentage of the waves are microscale breaking waves. An analysis of the phase-averaged results suggests under these conditions (short fetches and moderate wind speeds) a wind-driven water surface can be divided into three regions based on the intensity of the turbulence. These are the crests of microscale breaking waves, the crests of non-breaking waves and the troughs of all waves. The turbulence is most intense beneath the crests of microscale breaking waves. In the crest region of microscale breaking waves coherent structures were observed that were stronger and occurred more frequently than beneath the crests of non-breaking waves. Beneath the crests of non-breaking waves the turbulence is a factor of two to three times weaker and beneath the wave troughs it is a factor of six weaker. These findings provide additional support for the hypothesis that approximately two-thirds of the gas and heat fluxes occur across the turbulent wakes produced by microscale breaking waves.  相似文献   

14.
A Lagrangian stochastic model for the motion of heavy particles has been developed by coupling a stochastic model for the motion of fluid elements to the Stokes equations of motion of a particle in a turbulent flow. The effects of crossing trajectories and continuity are incorporated by generalising Csanady's (1963) ideas developed for stationary homogeneous turbulence; effects of turbulence inhomogeneity and nonstationarity are embodied in the stochastic model for the fluid motion.The model has been used particularly to examine the effects of turbulence nonstationarity through simulations of the dispersion of heavy particles in the decaying homogeneous turbulence which is obtained by Taylor-transforming grid turbulence. Significant differences from the stationary case occur, mainly as a result of the growth of the turbulent time scale with time.The importance of the source location in influencing both passive scalar and particle dispersion in grid turbulence is highlighted by the model and can be simply accounted for by nondimensionalisation using the r.m.s. turbulence velocity at the source and the mean travel time from the grid to the source as velocity and time scales, respectively. Reconciliation of the three different experiments of Snyder and Lumley (1971), Wells and Stock (1983) and Ferguson (1986) reporting heavy particle flow and dispersion statistics in wind tunnel grid turbulence has been attempted using this nondimensionalisation. A good correspondence between the various data sets was not obtained because the source in the Wells and Stock, and Ferguson experiments was located at the grid where the self-similar development of the turbulence which underlies the scaling is not appropriate.The model matches the data for the heaviest particles used by Snyder and Lumley reasonably well. For very light particles, it correctly reverts to the passive scalar limit, while the experimental data in general do not properly approach this limit.  相似文献   

15.
With a focus towards developing multiscale capabilities in numerical weather prediction models, the specific problem of the transition from the mesoscale to the microscale is investigated. For that purpose, idealized one-way nested mesoscale to large-eddy simulation (LES) experiments were carried out using the Weather Research and Forecasting model framework. It is demonstrated that switching from one-dimensional turbulent diffusion in the mesoscale model to three-dimensional LES mixing does not necessarily result in an instantaneous development of turbulence in the LES domain. On the contrary, very large fetches are needed for the natural transition to turbulence to occur. The computational burden imposed by these long fetches necessitates the development of methods to accelerate the generation of turbulence on a nested LES domain forced by a smooth mesoscale inflow. To that end, four new methods based upon finite amplitude perturbations of the potential temperature field along the LES inflow boundaries are developed, and investigated under convective conditions. Each method accelerated the development of turbulence within the LES domain, with two of the methods resulting in a rapid generation of production and inertial range energy content associated to microscales that is consistent with non-nested simulations using periodic boundary conditions. The cell perturbation approach, the simplest and most efficient of the best performing methods, was investigated further under neutral and stable conditions. Successful results were obtained in all the regimes, where satisfactory agreement of mean velocity, variances and turbulent fluxes, as well as velocity and temperature spectra, was achieved with reference non-nested simulations. In contrast, the non-perturbed LES solution exhibited important energy deficits associated to a delayed establishment of fully-developed turbulence. The cell perturbation method has negligible computational cost, significantly accelerates the generation of realistic turbulence, and requires minimal parameter tuning, with the necessary information relatable to mean inflow conditions provided by the mesoscale solution.  相似文献   

16.
The formation of cold air drainage flows in a shallow gully is studied during CASES-99 (Cooperative Atmosphere-Surface Exchange Study). Fast and slow response wind and temperature measurements were obtained on an instrumented 10-m tower located in the gully and from a network of thermistors and two-dimensional sonic anemometers, situated across the gully. Gully flow formed on clear nights even with significant synoptic flow. Large variations in surface temperature developed within an hour after sunset and in situ cooling was the dominant factor in wind sheltered locations. The depth of the drainage flow and the height of the down-gully wind speed maximum were found to be largest when the external wind speed above the gully flow is less than 2 m s-1. The shallow drainage current is restricted to a depth of a few metres, and is deepest when the stratification is stronger and the external flow is weaker. During the night the drainage flow breaks down, sometimes on several occasions, due to intermittent turbulence and downward fluxes of heat and momentum. The near surface temperature may increase by 6 ° C in less than 30 min due to the vertical convergence of downward heat flux. The mixing events are related to acceleration of the flow above the gully flow and decreased Richardson number. These warming events also lead to warming of the near surface soil and reduction of the upward soil heat flux. To examine the relative importance of different physical mechanisms that could contribute to the rapid warming, and to characterize the turbulence generated during the intermittent turbulent periods, the sensible heat budget is analyzed and the behaviour of different turbulent parameters is discussed.  相似文献   

17.
重点介绍和讨论了中性条件下旋转扰动流体中边界层强迫不稳定及其相关的一些问题,阐述了旋转体系中切变驱动边界层不稳定的动力学特征.这些不稳定状态的研究在大气物理学、流体动力学、海洋学等多个领域中引起科学家极大的兴趣,近年来在实验和理论研究中都得到了不断的发展.意大利都灵大学基础物理系地球科学实验组通过水槽旋转实验方法,不断改变水槽启动或结束时的旋转运动速度,以及底部壁面粗糙度等要素,所得到的实验结果与SDBL理论非常一致.  相似文献   

18.
Measurements of mean velocity and turbulence intensity components are reported for flow over a two-dimensional rectangular depression; these include measurements in the highly turbulent regions of recirculating flow. Predictions of the mean-flow variables were obtained from three finite-difference models: (1) a vorticity stream-function model using constant effective viscosity, (2) a primitive variable model using constant effective viscosity, and (3) a primitive variable model in which effective viscosity is computed from a turbulence model. The turbulent kinetic energy was also predicted by the last of these models. These predictions were compared with the measurements in order to evaluate what accuracy can be expected when state-of-the-art finite-difference models are applied to complex flow situations in the atmospheric environment. Some areas are noted where improvement of modeling capabilities for complex flows is still needed.  相似文献   

19.
The studies of turbulence decay were based in the past on measurements carried out in neutrally stratified wind tunnels and, more recently, on large-eddy simulation runs. Here the atmospheric turbulence decay process during the solar total eclipse of 11 August 1999 is examined. Thus a rapid transition from convective boundary-layer turbulence to that of a neutral or slightly stable one is considered. A u-v-w propeller anemometer and a fast response temperature sensor located in northern France on top of a 9-m mast recorded the turbulence observations. The measurements, in terms of turbulent kinetic energy decay with time, were found to be in good agreement with those prescribed by a theoretical model of turbulence decay recently proposed. In particular, it was found that the exponent of the power law describing the decay process has the value -2.  相似文献   

20.
The kinetic energy variations of mean flow and turbulence at three levels in the surface layer were calculated by using eddy covariance data from observations at Jinta oasis in 2005 summer.It is found that when the mean horizontal flow was stronger,the turbulent kinetic energy was increased at all levels,as well as the downward mean wind at the middle level.Since the mean vertical flow on the top and bottom were both negligible at that time,there was a secondary circulation with convergence in the upper half and divergence in the lower half of the column.After consideration of energy conversion,it was found that the interaction between turbulence and the secondary circulation caused the intensification of each other.The interaction reflected positive feedback between turbulence and the vertical shear of the mean flow.Turbulent sensible and latent heat flux anomaly were also analyzed.The results show that in both daytime and at night,when the surface layer turbulence was intensified as a result of strengthened mean flow,the sensible heat flux was decreased while the latent heat flux was increased.Both anomalous fluxes contributed to the cold island effect and the moisture island effect of the oasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号