首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new static microwave sounding unit (MSU) channel 4 weighting function is obtained from using Coupled Model Inter-comparison Project, Phase 5 (CMIP5) historical multimodel simulations as inputs into the fast Radiative Transfer Model for TOVS (RTTOV v10). For the same CMIP5 model simulations, it is demonstrated that the computed MSU channel 4 brightness temperature (T4) trends in the lower stratosphere over both the globe and the tropics using the proposed weighting function are equivalent to those calculated by RTTOV, but show more cooling than those computed using the traditional UAH (University of Alabama at Huntsville) or RSS (Remote Sensing Systems in Santa Rosa, California) static weighting functions. The new static weighting function not only reduces the computational cost, but also reveals reasons why trends using a radiative transfer model are different from those using a traditional static weighting function. This study also shows that CMIP5 model simulated T4 trends using the traditional UAH or RSS static weighting functions show less cooling than satellite observations over the globe and the tropics. Although not completely removed, this difference can be reduced using the proposed weighting function to some extent, especially over the tropics. This work aims to explore the reasons for the trend differences and to see to what extent they are related to the inaccurate weighting functions. This would also help distinguish other sources for trend errors and thus better understand the climate change in the lower stratosphere.  相似文献   

2.
Through its control on the marine ITCZ, future changes in the tropical Atlantic meridional sea-surface temperature gradient (TAG) could have important impacts, on regional to global scales. We study the inter-model spread of projected TAG trends in response to increasing CO2, using results from 19 coupled GCMs which took part in the IPCC fourth assessment. Some models project substantial changes, with the smallest changes being in boreal autumn. There is substantial uncertainty, with no consistency even in the sign of change, and an ensemble mean close to zero. However, a strong statistical relationship is found between the simulated magnitudes of TAG trends and unforced TAG variability. Models with larger unforced variability in December–February show larger magnitude trends. We speculate that this relationship may be due to an underlying system of feedbacks whose strength varies considerably from model to model (the unforced variability ranges by a factor of 3 amongst these models, and the models exhibit large differences in mean state). We present evidence from further analysis and the literature to suggest which physical mechanisms may be involved. In particular, models projecting larger(smaller) magnitude TAG trends have larger(smaller) SST variability and cooler(warmer) mean SST in not just the Atlantic, but all three tropical/sub-tropical oceans, especially in the southern hemisphere near eastern coasts. These results could assist efforts to understand model errors in present and future tropical climate, and to develop observational constraints on future tropical projections.  相似文献   

3.
The study compares the simulated poleward migration characteristics of boreal summer intraseasonal oscillations (BSISO) in a suite of coupled ocean?Catmospheric model sensitivity integrations. The sensitivity experiments are designed in such a manner to allow full coupling in specific ocean basins but forced by temporally varying monthly climatological sea surface temperature (SST) adopted from the fully coupled model control runs (ES10). While the local air?Csea interaction is suppressed in the tropical Indian Ocean and allowed in the other oceans in the ESdI run, it is suppressed in the tropical Pacific and allowed in the other oceans in the ESdP run. Our diagnostics show that the basic mean state in precipitation and easterly vertical shear as well as the BSISO properties remain unchanged due to either inclusion or exclusion of local air?Csea interaction. In the presence of realistic easterly vertical shear, the continuous emanation of Rossby waves from the equatorial convection is trapped over the monsoon region that enables the poleward propagation of BSISO anomalies in all the model sensitivity experiments. To explore the internal processes that maintain the tropospheric moisture anomalies ahead of BSISO precipitation anomalies, moisture and moist static energy budgets are performed. In all model experiments, advection of anomalous moisture by climatological winds anchors the moisture anomalies that in turn promote the northward migration of BSISO precipitation. While the results indicate the need for realistic simulation of all aspects of the basic state, our model results need to be taken with caution because in the ECHAM family of coupled models the internal variance at intraseasonal timescales is indeed very high, and therefore local air?Csea interactions may not play a pivotal role.  相似文献   

4.
对流层和平流层温度中ENSO信号的多种资料比较   总被引:2,自引:0,他引:2  
于超越  周天军  李博 《大气科学》2011,35(6):1020-1032
本文利用1980~1999年卫星资料Microwave Sounding Unit (MSU)和5种再分析资料(ERA40、JRA25、NCEP1、NCEP2、MERRA),分析了北半球冬季全球对流层中层和平流层低层温度变化中的ENSO信号,讨论了ENSO暖冷位相时温度异常的对称性和非对称性,并以MSU卫星资料为标准,...  相似文献   

5.
Reconciling upper-air temperature trends derived from radiosonde and satellite observations is a necessary step to confidently determine the global warming rate. This study examines the raw and homogenized radiosonde observations over China and compares them with layer-mean atmospheric temperatures derived from satellite microwave observations for the lower-troposphere(TLT), mid-troposphere(TMT), upper-troposphere(TUT), and lower-stratosphere(TLS) by three research groups. Comparisons are for averages over China, excluding the Tibetan Plateau, and at individual stations where metadata contain information on radiosonde instrument changes. It is found that major differences between the satellite and radiosonde observations are related to artificial systematic changes. The radiosonde system updates in the early 2000 s over China caused significant discontinuities and led the radiosonde temperature trends to exhibit less warming in the middle and upper troposphere and more cooling in the lower stratosphere than satellite temperatures. Homogenized radiosonde data have been further adjusted by using the shift-point adjustment approaches to match with satellite products for China averages. The obtained trends during 1979–2015 from the re-adjusted radiosonde observation are respectively 0.203 ± 0.066, 0.128 ± 0.044, 0.034 ± 0.039, and –0.329 ± 0.135 K decade–1 for TLT, TMT, TUT, and TLS equivalents. Compared to satellite trends, the re-adjusted radiosonde trends are within 0.01 K decade–1 for TMT and TUT, 0.054 K decade–1 warmer for TLT, and 0.051 K decade–1 cooler for TLS. The results suggest that the use of satellite data as a reference is helpful in identifying and removing inhomogeneities of radiosonde temperatures over China and reconciling their trends to satellite microwave observations. Future efforts are to homogenize radiosonde temperatures at individual stations over China by using similar approaches.  相似文献   

6.
W. May 《Climate Dynamics》2004,22(2-3):183-204
In this study the simulation of the variability and extremes of daily rainfall during the Indian summer monsoon for the present-day and the future climate is investigated. This is done on the basis of a global time-slice experiment (TSL) with the ECHAM4 atmospheric general circulation model (GCM) at a high horizontal resolution of T106. The first time-slice (period: 1970–1999) represents the present-day climate and the second (2060–2089) the future climate. Moreover, observational rainfall data from the Global Precipitation Climatology Project (GPCP, 1997–2002) and rainfall data from the ECMWF re-analysis (ERA, 1958–2001) are considered. ERA reveals serious deficiencies in its representation of the variability and extremes of daily rainfall during the Indian summer monsoon. These are mainly a severe overestimation of the frequency of wet days over the oceans and in the Himalayas, where also the rainfall intensity is overestimated. Further, ERA shows unrealistically heavy rainfall events over the tropical Indian Ocean. The ECHAM4 atmospheric GCM at a horizontal resolution of T106, on the other hand, simulates the variability and extremes of daily rainfall in good agreement with the observations. The only marked deficiencies are an underestimation of the rainfall intensity on the west coast of the Indian peninsula and in Bangladesh, an overestimation over the tropical Indian Ocean, due to an erroneous northwestward extension of the tropical convergence zone, and an overestimation of the frequency of wet days in Tibet. Further, heavy rainfall events are relatively strong in the centre of the Indian peninsula. For the future, TSL predicts large increases in the rainfall intensity over the tropical Indian Ocean as well as in northern Pakistan and northwest India, but decreases in southern Pakistan, in the centre of the Indian peninsula, and over the western part of the Bay of Bengal. The frequency of wet days is markedly increased over the tropical Indian Ocean and decreased over the northern part of the Arabian Sea and in Tibet. The intensity of heavy rainfall events is generally increased in the future, with large increases over the Arabian Sea and the tropical Indian Ocean, in northern Pakistan and northwest India as well as in northeast India, Bangladesh, and Myanmar.  相似文献   

7.
利用美国大气海洋局卫星应用和研究实验室 (The Center for Satellite Applications and Research,STAR) 提供的MSU/AMSU卫星微波亮温资料V3.0版本,结合三套再分析资料数据集,通过对海洋上空不同高度、不同区域及不同季节的适用性分析,来探讨MSU/AMSU资料在热带海洋区域高空大气的温度变化特征,并通过合成分析揭示亮温资料与海洋的响应关系,从而探讨MSU/AMSU资料在热带海洋区域上的适用性和科学性。结果表明:(1)MSU/AMSU亮温资料在30 °E~70 °W,15 °S~15 °N范围的热带海洋区域适用性较好;(2)热带海洋区域对流层上层和中层大气均呈增温趋势,变化速率分别为0.045 K/(10 a) 和0.107 K/(10 a),增温突变现象出现在1980年代末—1990年代初,平流层低层大气呈降温趋势,变化速率为-0.345 K/(10 a),降温突变现象出现在1990年代中期;(3)在热带海洋区域,高空大气温度的变化趋势具有较强的区域性特征,相对于中东太平洋而言,印度洋-西太平洋区域的增、降温趋势变化更显著。对流层的增温幅度随高度的升高而有所降低。平流层低层的降温趋势在季节内变化不大,而对流层则是秋、冬季的增温趋势要明显大于春、夏季,冬季的增温尤为明显;(4)MSU/AMSU亮温资料对热带海洋温度异常有很好的响应关系,能在弥补海洋区域观测资料稀缺的情况下,对海洋区域起着较好的监测作用。   相似文献   

8.
Observations in channel 1 (Ch. 1, 50.3 GHz) and channel 2 (Ch. 2, 53.74 GHz) of the Microwave Sounding Unit (MSU) over the convective areas of tropical oceans are analysed to reveal the nature of extinction (contamination) in these data. From this analysis we find Ch. 2 data are not free from the influence of clouds and rain. Extinction due to clouds and rain manifests primarily as emission in Ch. 1, and as absorption in Ch. 2. Scattering due to hydrometeors in these channels apparently is of secondary importance. Furthermore we show, in the convective areas of tropical oceans, contamination due to hydrometeors in MSU Ch. 2 data is significant and it is extensive in area. Based on this study we conclude Spencer, Christy, and Grody (this issue) underestimate this contamination.  相似文献   

9.
Assessing levels of uncertainty in recent temperature time series   总被引:2,自引:0,他引:2  
 We examine to what degree we can expect to obtain accurate temperature trends for the last two decades near the surface and in the lower troposphere. We compare temperatures obtained from surface observations and radiosondes as well as satellite-based measurements from the Microwave Soundings Units (MSU), which have been adjusted for orbital decay and non-linear instrument-body effects, and reanalyses from the European Centre for Medium-Range Weather Forecasts (ERA) and the National Centre for Environmental Prediction (NCEP). In regions with abundant conventional data coverage, where the MSU has no major influence on the reanalysis, temperature anomalies obtained from microwave sounders, radiosondes and from both reanalyses agree reasonably. Where coverage is insufficient, in particular over the tropical oceans, large differences are found between the MSU and either reanalysis. These differences apparently relate to changes in the satellite data availability and to differing satellite retrieval methodologies, to which both reanalyses are quite sensitive over the oceans. For NCEP, this results from the use of raw radiances directly incorporated into the analysis, which make the reanalysis sensitive to changes in the underlying algorithms, e.g. those introduced in August 1992. For ERA, the bias-correction of the one-dimensional variational analysis may introduce an error when the satellite relative to which the correction is calculated is biased itself or when radiances change on a time scale longer than a couple of months, e.g. due to orbit decay. ERA inhomogeneities are apparent in April 1985, October/November 1986 and April 1989. These dates can be identified with the replacements of satellites. It is possible that a negative bias in the sea surface temperatures (SSTs) used in the reanalyses may have been introduced over the period of the satellite record. This could have resulted from a decrease in the number of ship measurements, a concomitant increase in the importance of satellite-derived SSTs, and a likely cold bias in the latter. Alternately, a warm bias in SSTs could have been caused by an increase in the percentage of buoy measurements (relative to deeper ship intake measurements) in the tropical Pacific. No indications for uncorrected inhomogeneities of land surface temperatures could be found. Near-surface temperatures have biases in the boundary layer in both reanalyses, presumably due to the incorrect treatment of snow cover. The increase of near-surface compared to lower tropospheric temperatures in the last two decades may be due to a combination of several factors, including high-latitude near-surface winter warming due to an enhanced NAO and upper-tropospheric cooling due to stratospheric ozone decrease. Received: 5 May 1999 / Accepted: 15 December 1999  相似文献   

10.
热带地区的湿绝热过程会放大地表的增暖幅度,在约200 hPa高度上产生增暖峰值,该现象被称为“热带对流层放大”。热带对流层放大是气候变化的显著特征之一,是检验气候模式性能的重要指标。本文基于RSS4.0卫星数据和ERA5.1再分析资料,系统分析了FGOALS-g3模式对气温变化特别是热带对流层放大的模拟能力,并通过新旧版本模式(FGOALS-g3与FGOALS-g2)的比较指出了新版本模式模拟技巧的提升;通过比较FGOALS-g3历史模拟试验与GAMIL3单独大气模式AMIP试验结果,研究了海气耦合过程对模拟结果的影响。结果表明,FGOALS-g3能够合理再现观测中的全球对流层显著增温趋势,但模拟的增温趋势偏强,这与气候系统内部变率以及两代气候系统模式所使用的历史气候外强迫差异有关。其对于观测中热带平均增温廓线以及热带对流层放大的空间分布均表现出良好的模拟性能,模拟的热带对流层放大现象的量值大小存在正偏差,与模拟的对流层低层温度变化偏强有关。FGOALS-g3较FGOALS-g2在性能上有一定提升,主要表现为增加了对于火山气溶胶强迫的响应,并在热带对流层放大的空间分布及平均气温趋势廓线...  相似文献   

11.
Trends and variability in column-integrated atmospheric water vapor   总被引:4,自引:0,他引:4  
An analysis and evaluation has been performed of global datasets on column-integrated water vapor (precipitable water). For years before 1996, the Ross and Elliott radiosonde dataset is used for validation of European Centre for Medium-range Weather Forecasts (ECMWF) reanalyses ERA-40. Only the special sensor microwave imager (SSM/I) dataset from remote sensing systems (RSS) has credible means, variability and trends for the oceans, but it is available only for the post-1988 period. Major problems are found in the means, variability and trends from 1988 to 2001 for both reanalyses from National Centers for Environmental Prediction (NCEP) and the ERA-40 reanalysis over the oceans, and for the NASA water vapor project (NVAP) dataset more generally. NCEP and ERA-40 values are reasonable over land where constrained by radiosondes. Accordingly, users of these data should take great care in accepting results as real. The problems highlight the need for reprocessing of data, as has been done by RSS, and reanalyses that adequately take account of the changing observing system. Precipitable water variability for 1988–2001 is dominated by the evolution of ENSO and especially the structures that occurred during and following the 1997–98 El Niño event. The evidence from SSM/I for the global ocean suggests that recent trends in precipitable water are generally positive and, for 1988 through 2003, average 0.40±0.09 mm per decade or 1.3±0.3% per decade for the ocean as a whole, where the error bars are 95% confidence intervals. Over the oceans, the precipitable water variability relates very strongly to changes in SSTs, both in terms of spatial structure of trends and temporal variability (with a regression coefficient for 30°N–30°S of 7.8% K?1) and is consistent with the assumption of fairly constant relative humidity. In the tropics, the trends are also influenced by changes in rainfall which, in turn, are closely associated with the mean flow and convergence of moisture by the trade winds. The main region where positive trends are not very evident is over Europe, in spite of large and positive trends over the North Atlantic since 1988. A much longer time series is probably required to obtain stable patterns of trends over the oceans, although the main variability could probably be deduced from past SST and associated precipitation variations.  相似文献   

12.
胡永云  姜天宇 《大气科学》2009,33(5):1058-1070
观测表明北极平流层自20世纪70年代末以来在冬季早期 (11~12月) 存在变暖的趋势。为了验证该趋势是否是由于海面温度 (SST) 升高造成的, 我们使用观测的全球SST强迫一个全球大气环流模式 (AGCM)。集合模拟的结果表明, 在SST强迫下, 北极平流层呈现统计显著的变暖趋势, 极地对流层也有相对较弱的变暖趋势, 但统计显著性较低。通过对模拟的位势高度进行经验正交函数 (EOF) 分析, 我们发现北半球位势高度第一模态 (EOF1) 的空间结构非常类似于北极涛动 (AO) 或北半球环状模 (NAM), 其平流层主分量时间序列在冬季早期呈现统计显著的负趋势。与负的AO趋势相对应的是, 对流层高纬度和平流层中高纬度波动增强, 说明极区变暖是由于波动增强产生的极区绝热加热增强造成的。另外, 模拟的结果还表明北极平流层不仅在冬季早期出现变暖的趋势, 在冬季晚期 (2~3月) 北极平流层低层也出现弱的变暖趋势。SST强迫导致北极平流层冬季变暖不利于异相臭氧化学反应的发生, 这对极地平流层臭氧恢复有着重要意义。  相似文献   

13.
[Translated by the editorial staff] An analysis of climate trends and return levels for the period 1960–2008, using the ETCCDI-CLIVAR/JCOMM project approach, has been conducted for Chad, where droughts and flooding are recurrent. Using the RClimDex software, we show that almost all rainfall trends are decreasing, as in Central and Northern Africa. Rare extreme rain events (R99p) decrease significantly: 0.85?mm per decade. However, we note a slightly upward trend of 0.5 day per decade, in the number of consecutive dry days (CDD). Temperature indices are all positive except for the frequencies of very hot days (TX90p) and very cold nights (TN10p), which decrease significantly: ?0.39% day per year per decade, as in Central Africa and globally. Sequences of hot or cold days decrease as well, but by about 1% per year per decade. Return periods identified with the generalized extreme value (GEV) distributions show that they are well defined from 1 to 10 years. Extremely rare events from 10 to 50 years are associated with a mean return level of 660?mm of annual precipitation.  相似文献   

14.
The interannual variability of the Madden– Julian Oscillation (MJO) is investigated in an ensemble of 15 experiments performed with the ECHAM4 T30 general circulation model (GCM). The model experiments have been performed with AMIP conditions from January 1979 to December 1993. The MJO signal has been identified applying a principal oscillation pattern (POP) analysis to the 200-mb tropical velocity potential. The results obtained from the model ensemble are compared with 15?y of ECMWF re-analysis and OLR observations. The results suggest that the warm and cold phases of El Niño have some influence on the spatial propagation of the oscillation. Both in the re-analysis and in the model ensemble, the results indicate that during La Niña conditions the MJO is mostly confined west of the date line, with the largest activity located over the Indian Ocean and the western Pacific. In warm El Niño conditions, the convective anomalies associated with the oscillation appear to penetrate farther into the central Pacific. These changes in the MJO convective forcing seem to affect the zonal mean of the rotational component of the flow anomaly, which tends to weaken during warm El Niño periods. Some weak reproducibility of the interannual variability of the MJO activity is found. The results obtained from four-member and eight-member subsamples of the ensemble indicate that the reproducibility of the interannual behaviour of the MJO can be detected by choosing an ensemble of a larger size. Corresponding to the emergence of reproducibility with the increasing size of the sample, the correlation between the MJO activity and the Niño-3 SST anomaly appears to in-tensify.  相似文献   

15.
采用1979—2005年美国大气海洋局(NOAA)的卫星观测资料和IPCC第5次全球气候变化比较试验(CMIP5)的模式资料,对全球对流层和平流层近26 a的气温趋势进行了研究。结果表明,CMIP5模拟的全球平均大气温度趋势与观测结果较一致,能够再现平流层冷却和对流层增温等特点,但是在气温趋势的经纬度分布上,模式资料与观测资料间存在较大差异,同时模式间也存在明显的不一致。与观测资料相比,CMIP5模式资料低估了平流层在热带地区的降温速率,而且明显高估了对流层中部到平流层下层的南极区域的降温趋势。不同CMIP5模式间的最大标准方差出现在平流层的南北极区域,但是在对流层所有纬度上标准方差都保持着较小值。  相似文献   

16.
The statistical analysis of two atmospheric general circulation simulations using the ECHAM3 GCM in permanent January conditions are presented. The two simulations utilize different oceanic surface temperatures in the Atlantic as boundary conditions: the cold simulation has SST representing the anomalous cold conditions during the decade 1904-13 while the warm simulation has SST representative for the decade 1951-60 where anomalous warm conditions have been observed. The analysis concentrates on the simulated differences between both experiments within the tropical belt to test the working hypothesis whether changes in the deep tropical heating initiated by the anomalous SST are responsible for the anomalies in the flow and mass field. We present a method which extracts the significant and dynamically consistent signal of the total difference using a multivariate statistical test based on the amplitudes of an a-priori specified mode expansion. These expansion modes are defined from a variant of the Matsuno-Gill linearized reduced gravity model for the tropical atmosphere. The application of the method shows a clear and well defined tropical signal in the flow and mass field which can be understood as the reponse of the ECHAM3 model to a deep heating anomaly not in the vicinity of the anomalous SST but on the neighboring continents especially South America and with opposite sign in remote areas between Indonesia and the dateline. The signal can be summarized as an enhancement of the GCM's tropical East-West circulation with the ascending branch over South America in the warm simulation compared to the cold run.  相似文献   

17.
A regional climate model is used to investigate the mechanism of interdecadal rainfall variability, specifically the drought of the 1970s and 1980s, in the Sahel region of Africa. The model is the National Center for Environmental Prediction’s (NCEPs) Regional Spectral Model (RSM97), with a horizontal resolution of approximately equivalent to a grid spacing of 50 km, nested within the ECHAM4.5 atmospheric general circulation model (AGCM), which in turn was forced by observed sea surface temperature (SST). Simulations for the July–September season of the individual years 1955 and 1986 produced wet conditions in 1955 and dry conditions in 1986 in the Sahel, as observed. Additional July–September simulations were run forced by SSTs averaged for each month over the periods 1950–1959 and the 1978–1987. These simulations yielded wet conditions in the 1950–1959 case and dry conditions in the 1978–1987 case, confirming the role of SST forcing in decadal variability in particular. To test the hypothesis that the SST influences Sahel rainfall via stabilization of the tropospheric sounding, simulations were performed in which the temperature field from the AGCM was artificially modified before it was used to force the regional model. We modified the original 1955 ECHAM4.5 temperature profiles by adding a horizontally uniform, vertically varying temperature increase, taken from the 1986–1955 tropical mean warming in either the AGCM or the NCEP/National Center for Atmospheric Research Reanalysis. When compared to the 1955 simulations without the added tropospheric warming, these simulations show a drying in the Sahel similar to that in the 1986–1955 difference and to the decadal difference between the 1980s and 1950s. This suggests that the tropospheric warming may have been, at least in part, the agent by which the SST increases led to the Sahel drought of the 1970s and 1980s.  相似文献   

18.
Based on data from the Comprehensive Ocean-Atmosphere Data Set (COADS), objective analyses of the monthly mean sea surface temperature (SST) were prepared at GFDL for each month of the 110-year period 1870–1979. Time series of various indices characterizing the SST anomalies averaged over the eastern equatorial Pacific (EEP), the tropical oceans and the world ocean are presented for monthly, yearly and decadal time-averaging periods. Global correlations maps are given for each decade of the 1870–1979 period. They show the spatial connections between the monthly SST anomalies in the EEP and in other parts of the world ocean and how these connections vary for the different decades. On the intermonthly time scale the SST anomalies in the EEP and those in the tropical and world oceans are found to be highly correlated, with maximum correlations values of 0.91 at zero lag for the tropical oceans during the 1950–1959 decade and 0.81 for the world ocean during the 1970–1979 decade. Positive correlation values of r0.36 persist on average from about 4 months before to about 8 months after the EEP anomalies occur. There is a clear tendency for the tropical and world ocean anomalies to lag behind the EEP anomalies. Comparing different oceans, we find the tendency for the tropical SST anomalies in the Indian and Atlantic Oceans to lag behind those in the EEP region by about 1 and 3 months, respectively. On the interannual time scale the EEP anomalies are also well correlated with those in the other regions, having an average correlation of 0.84 for the tropical oceans and of about 0.7 for the world ocean.  相似文献   

19.
基于1970—2016年Hadley中心海温资料、NCEP/NCAR再分析资料和ECHAM4模式,研究了各海盆海表温度异常(SSTA)对1998和2016年这两个超级厄尔尼诺衰减年8月西北太平洋热带气旋(TC)生成及大尺度环流变化的可能影响。结果表明,热带印度洋和大西洋在1998与2016年几乎相反的SSTA型态是导致TC生成频数显著差异的主要原因之一,而热带和北太平洋SSTA在1998与2016年均分别在珠江三角洲和日本以南形成气旋性环流。1998年8月热带印度洋和大西洋SSTA产生的西北太平洋反气旋环流响应强于太平洋SSTA产生的气旋性环流异常,使西北太平洋受异常反气旋控制,减少TC的生成。2016年在三个大洋SSTA共同作用下,西北太平洋受异常气旋控制导致TC生成频数偏多。太平洋经向SSTA模在北半球副热带强迫出东西反向的跷跷板形势,在西北太平洋对流层产生的响应与实际变化相反,因此太平洋经向模对西北太平洋TC生成没有正的贡献。  相似文献   

20.
Monthly mean sea surface temperature (SST), free air temperature from satellite microwave sounding units (MSU) and oceanic surface energy fluxes are subjected to empirical orthogonal function (EOF) analysis for a common decade to investigate the physical relationships involved. The first seasonal modes of surface solar energy flux and SST show similar inter-hemispheric patterns with an annual cycle. Solar flux appears to control this pattern of SST. The first seasonal mode of MSU is similar with, additionally, land-sea differences; MSU is apparently partly controlled by absorption of solar near-infrared radiation and partly by sensible heat from the land surface. The second and third seasonal eigenvector of SST and solar flux exhibit semi-annual oscillations associated with a pattern of cloudiness in the subtropics accompanying the translation of the Hadley cell rising motion between the hemispheres. The second seasonal mode of MSU is dominated by an El Niño signal. The first nonseasonal EOFs of SST and solar flux exhibit El Niño characteristics with the solar pattern being governed by west-to-east translation of a Walker cell type pattern. The first non-seasonal EOF of MSU shows a tropical strip pattern for the El Niño mode, which is well correlated with the latent heat fluxes in the tropical east Pacific but not in the tropical west Pacific. Two possible explanations are: an increase in subsidence throughout the tropical strip driven by extra evaporation in the tropical east Pacific and consequent additional latent heat liberation; a decrease of meridional heat flux out of the tropics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号