首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
利用国家重大科学研究计划项目"青藏高原沙漠化对全球变化的响应"北麓河站2014-2015年陆面过程观测资料,根据5 cm土壤日最高和最低温度将冻土分为融化过程、完全融化、冻结过程和完全冻结四个阶段,分析了地表感热通量Hs、潜热通量LE、地表土壤热通量G_0和波文比在不同冻融阶段的季节和日变化特征,并探讨了土壤冻融过程对地表能量及其分配的影响。结果表明,波文比和G_0的季节变化受土壤冻融阶段转变的影响显著,其中土壤完全融化使波文比减小,G_0变为正值;土壤冻结使波文比增大,G_0变为负值。冻结过程对Hs和LE变化趋势的影响不明显,但是使波文比显著增大;融化过程使Hs停止增长并出现减小趋势,使LE增大,从而使波文比显著减小。Hs的日变化在不同冻融阶段差异较小。LE的日变化主要与浅层土壤含水量的大小和日变化有关,其中完全融化和完全冻结阶段土壤含水量的日变化较小,土壤含水量越大,LE越大;在融化过程和冻结过程阶段,土壤含水量的日变化较大,且与R_(net)的日变化相反,限制了LE的增长。在冻结过程阶段,受冻融过程的影响,G_0的日变化小于其他阶段。  相似文献   

2.
利用国家重大科学研究计划项目"青藏高原沙漠化对全球变化的响应"北麓河站2014-2015年陆面过程观测资料,根据5 cm土壤日最高和最低温度将冻土分为融化过程、完全融化、冻结过程和完全冻结四个阶段,分析了地表感热通量Hs、潜热通量LE、地表土壤热通量G_0和波文比在不同冻融阶段的季节和日变化特征,并探讨了土壤冻融过程对地表能量及其分配的影响。结果表明,波文比和G_0的季节变化受土壤冻融阶段转变的影响显著,其中土壤完全融化使波文比减小,G_0变为正值;土壤冻结使波文比增大,G_0变为负值。冻结过程对Hs和LE变化趋势的影响不明显,但是使波文比显著增大;融化过程使Hs停止增长并出现减小趋势,使LE增大,从而使波文比显著减小。Hs的日变化在不同冻融阶段差异较小。LE的日变化主要与浅层土壤含水量的大小和日变化有关,其中完全融化和完全冻结阶段土壤含水量的日变化较小,土壤含水量越大,LE越大;在融化过程和冻结过程阶段,土壤含水量的日变化较大,且与R_(net)的日变化相反,限制了LE的增长。在冻结过程阶段,受冻融过程的影响,G_0的日变化小于其他阶段。  相似文献   

3.
《高原气象》2021,40(3):455-471
选取青藏高原(下称高原)东部玛曲、玛多和垭口3个野外站点的观测资料,针对不连续积雪过程,研究高原东部不同季节的积雪过程对地表能量和土壤水热的影响。结果表明:受积雪高反照率的影响,高原东部地区各季节降雪后净短波辐射减小,净辐射较降雪前减小60%~140%;积雪积累期内感热、潜热及土壤热通量均减小,感热通量和土壤热通量出现负值。春、秋两季积雪过程中,能量以感热、潜热和土壤热通量三种形式分配;冬季积雪过程中能量以感热和土壤热通量分配为主,潜热通量较小,日均值在10 W·m~(-2)左右;而夏季积雪消融期潜热通量较大,日均值可达80 W·m~(-2)左右。各季节积雪的反复积累和消融过程对大气及土壤均以降温作用为主。秋季降雪后,气温和浅层土壤温度降低,当土壤温度降到冰点以下时,土壤提前进入冻结期;而春季降雪后,则可能使得正在发生融化的土壤又再次冻结。冬季晴天积雪过程中,在积雪积累期,积雪对土壤起增温作用,0~20 cm土壤温度日均值升高1~2℃,导致浅层冻结土壤融化,土壤含水量略增加,在消融期,积雪对土壤仍起降温作用;而冬季阴天积雪对土壤均为冷却作用。夏季积雪积累期较短,降雪对土壤同样起明显的降温作用。  相似文献   

4.
青藏高原湿地土壤冻结、融化期间的陆面过程特征   总被引:4,自引:0,他引:4       下载免费PDF全文
利用青藏高原中部玉树隆宝湿地2015年7月-2016年7月的观测资料,分析了土壤冻结、融化前后土壤温、湿度和地表能量收支特征,结果表明:冻土持续时期为12月至次年4月,深层土壤的冻结较浅层土壤滞后,融化过程快于冻结过程,5-40 cm土壤全部冻结历时51 d,全部融化历时19 d。土壤体积含水量年变化幅度达0.6 m3/m3。冻结过程5-40 cm土壤体积含水量下降,融化过程5-10 cm土壤体积含水量升高。土壤冻结之后,感热通量白天的值升高,潜热通量白天的值降低,净辐射和土壤热通量均降低,土壤热通量日变化幅度增大。土壤融化之后,潜热通量、净辐射和土壤热通量白天的值升高。地表反照率、鲍恩比、土壤热导率和土壤热扩散率冻结后增大融化后减小,土壤热容量冻结后减小融化后增大。  相似文献   

5.
利用青海玛沁微气象观测站降雪过程的观测数据,探讨了积雪覆盖对土壤温度,土壤体积含水量、土壤热通量及地表能量交换的影响。结果表明:积雪覆盖对浅层土壤温度的影响较为显著,而对深层土壤温度的影响十分微弱。地表有积雪覆盖时,浅层土壤温度日平均值升高,日变化幅度减小,日最低值升高,温度梯度绝对值减小。土壤完全冻结状态下土壤体积含水量几乎不受积雪覆盖影响,土壤融化状态下积雪覆盖会导致浅层土壤体积含水量日变化幅度减小,而对深层土壤体积含水量没有影响。积雪覆盖会减小浅层土壤热通量的日变化幅度。在总辐射相同的晴天条件下,当地表有积雪覆盖时,由于积雪的高反照率导致向上短波辐射增加,净辐射减小,同时感热通量减小而潜热通量增加,感热占比(H/Rn)下降,潜热占比(LE/Rn)升高。  相似文献   

6.
利用青藏高原玛多地区高寒草甸和玉树隆宝地区高寒湿地的观测资料,比较分析了土壤水分、地表反照率和土壤热通量在土壤完全融化期、土壤逐渐冻结期、土壤完全冻结期和土壤逐渐融化期的变化情况,并计算了各月份的感热通量和潜热通量。结果表明:在10~50 cm深处,土壤完全融化期高寒湿地土壤含水量为0.66~0.82 m3·m-3,高寒草甸土壤含水量为0.15~0.18 m3·m-3,土壤完全冻结期高寒湿地土壤含水量为0.13~0.21 m3·m-3,高寒草甸土壤含水量为0.01~0.04 m3·m-3。高寒草甸和高寒湿地地表反照率在土壤冻结期间较高,融化期间较低。高寒草甸土壤热通量年变化幅度小,高寒湿地土壤热通量年变化幅度大。高寒草甸月平均感热通量均高于高寒湿地,高寒湿地月平均潜热通量均高于高寒草甸。  相似文献   

7.
利用中国科学院那曲高寒气候环境观测研究站2013年9月1日至2014年8月31日一个完整年的观测资料,对陆面过程模式CLM4.5在青藏高原(下称高原)高寒草甸下垫面地表能量交换的模拟性能进行了评估。模拟结果表明,CLM4.5能够较好的模拟高原春季、夏季和秋季非冻结期地面长波、反射辐射和地表净辐射、感热和潜热通量以及地表土壤热通量等的季节变化和日循环特征。但对冬季冻结期地表温度的模拟偏低,导致模拟与观测的感热反相,对地面反射辐射模拟偏大。截断冬季降水的敏感性试验进一步指出,模式冬季反射辐射偏大主要是由于积雪引起的地表反照率偏高造成,进而造成地表温度以及感热通量的模拟偏低。因此,高原积雪参数化方案以及与积雪相关的反照率参数化方案还需进一步改进和完善。  相似文献   

8.
张海宏  姜海梅  周秉荣  祁栋林 《气象》2019,45(11):1550-1559
利用玉树隆宝湿地的观测资料,分析了未冻结、冻结和冻结有积雪覆盖三种情况下动量通量和感热通量的日变化情况,计算了三种情况下动量总体输送系数、感热总体输送系数、动力学粗糙度和热力学粗糙度,分析了附加阻尼和粗糙度雷诺数的关系,并将三种附加阻尼的参数化方案进行了比较,结果表明:冻结状态下动量通量和感热通量的日变化幅度最大,冻结有积雪覆盖时,动量通量和感热通量的日变化幅度最小。动量总体输送系数C_D和感热总体输送系数C_H的值在冻结时最大,冻结有积雪覆盖时最小,动力学粗糙度和热力学粗糙度在冻结状况下最小,冻结有积雪覆盖时最大。未冻结、冻结和冻结有积雪覆盖状态下,三种附加阻尼kB~(-1)参数化方案中,幂函数型方案较为合适。  相似文献   

9.
利用2011年10月至2017年12月黄河源区鄂陵湖野外观测数据,对比分析多雪年与少雪年土壤冻结与消融时间、土壤温湿度、地表能量分量的变化特征。结果表明:多雪年地表反照率偏高,净辐射偏低,地表感热输送偏低,土壤由热“源”转为热“汇”的时间晚于少雪年。积雪可减少土壤吸收辐射能量,减少地表感热通量,在土壤完全冻结期与消融期增大地表潜热通量,在完全冻结期,减少土壤向大气的热输送,在消融期,减少大气向土壤的热输送。积雪在冻结期有降温作用,使得多雪年土壤较早发生冻结,且同一时期土壤温度偏低;在完全冻结期有保温作用,使得土壤温度偏高;在消融期有保温(“凉”)作用,使得消融较晚,且同一时期土壤温度偏低。在整个积雪年内,多雪年浅层土壤湿度高于少雪年,积雪对浅层土壤有保湿作用。积雪使土壤开始冻结时间有所提前,开始消融的时间有所滞后,可延长该年土壤完全冻结持续天数。  相似文献   

10.
利用安徽省寿县站边界层综合观测试验资料,对近地面层风、气温、湿度等微气象要素及感热通量、潜热通量、摩擦速度进行综合分析,总结2005年淮河中游雨季开始前后大气边界层的微气象学基本特征及其异同。结果表明:雨季前,气温、相对湿度有明显的日变化,呈单峰单谷型分布;伴随雨季的开始,近地面层气温下降、相对湿度加大,风速波动增大,且各要素日变化减小。6—7月淮河中游的潜热通量远大于感热通量。边界层要素的变化对淮河雨季的开始和结束具有一定的指示意义。  相似文献   

11.
利用2017~2018年黄河源地区野外观测站数据,对黄河源区两个积雪期内土壤温湿及冻融特征进行了分析,并与CLM4.5模式模拟的积雪期土壤温、湿度及辐射分量进行了对比,结果表明:CLM4.5能很好地模拟出整个积雪期土壤温度的变化趋势;对不同土壤层在不同冻结阶段土壤含水量的模拟有所差异:在完全冻结阶段,对5cm土壤层含水量模拟偏高,而80cm偏低,对10~40cm土壤层含水量的模拟偏差较小;由于降雪及土壤冻融过程主要发生在积雪期,积雪反照率使得净辐射模拟在降雪时段偏差较无降雪时段略大。   相似文献   

12.
新疆乌兰乌苏物候变化规律及其对气候变化的响应   总被引:1,自引:0,他引:1  
分析新疆乌兰乌苏农业气象试验站1980—2002年物候与相应气候因子资料,得出乌兰乌苏23a来气温增高,降水增多,气候增暖增湿;候鸟停留时间增长,与积温、日照时数和降水量的年变化趋势一致,除降水外,其他均存在显著正相关关系;木本植物生育期延长,与4—10月平均气温、平均相对湿度、总日照时数和总降水量趋势一致;初霜和终霜均推迟,无霜期缩短;初雪和初次积雪提前,终雪推迟,冬季雪日增长;积雪开始融化提前,完全融化推迟,融化时间增长;土壤表面开始解冻日期趋势提前,而土壤表面开始冻结日期趋势推迟。另外,通过物候与气象因子建立的最优回归方程,获得物候对气候响应的定量关系,为生态环境研究提供一定的理论依据。  相似文献   

13.
高寒草原水热交换的季节性特征显著,土壤冻融过程对地-气水热交换有着重要的影响.本文利用黄河源区汤岔玛小流域2014年5月至2015年5月陆面过程观测数据,将土壤冻融过程划分为完全融化(TT)和完全冻结(FF)两种状态与融冻(T-F)和冻融(F-T)两个过程,并分析了期间高寒草原下垫面净辐射、感热通量、潜热通量和地表热通...  相似文献   

14.
Treatment of frozen soil and snow cover in the land surface model SEWAB   总被引:3,自引:0,他引:3  
Summary  The land surface model SEWAB (Surface Energy and Water Balance) is designed to be coupled to both, atmospheric and hydrological models. Its application in mid and high latitudes requires the inclusion of freezing and thawing processes within the soil and the accumulation and ablation of a snow cover. These winter processes are parameterised with a minimum number of empirical formulations in order to assure reasonable computation times for an application in climate and sensitivity studies yet accounting for all important processes. Meteorological forcing data and measurements of snow depth, soil temperature and liquid soil water content at two locations in the mid-west of North America are used to test the model. Generally the simulated snow depth matches the measurements, remaining differences in snow depth can be explained by uncertainties in snow density, blowing snow and errors in precipitation measurements. The simulated soil temperature and liquid soil water content compare well with the measurements, showing the isolating effect of the snow cover. Received August 25, 2000 Revised January 19, 2001  相似文献   

15.
基于多普勒天气雷达产品的降雪及冻雨综合分析   总被引:3,自引:2,他引:1       下载免费PDF全文
利用常规观测资料、探空资料、多普勒雷达资料从天气背景、温度层结及雷达回波特征等方面对宁波2004-2008年的7次降雪过程进行综合分析。结果表明:中层西南气流、低层逆温、低层转偏北风及地面气温低于4 ℃是宁波降雪的必要条件, 西南气流的强弱与范围很大程度上决定降雪强度; 冻雨要求中低空存在高于0 ℃的融化层, 下垫面温度低于0 ℃, 降雪则要求冻结层厚度远大于融化层或者没有融化层; 降雪回波特征中, 回波强度一般低于30dBz, 与降雪量对应关系不明显, 水平和垂直反射率因子梯度小, 结构均匀, 一般谱宽小于4 m/ s, 回波顶高低于6000 m; 零度层亮带所在高度的降低、消失与雨雪转换时间基本吻合, 可以利用零度层亮带高度的变化来判断降水性质的转变; 600 hPa以下零速度线随高度的变化, 对雪止临近预报有一定的指示意义。  相似文献   

16.
基于2018年12月至2020年3月喀左、沈阳、辽阳、满洲里4个国家级地面气象站人工冻土器与测温式冻土自动观测仪观测的资料,对人工冻土观测获得的冻点与测温式冻土自动观测仪获得的相应深度的温度进行对比分析。结果表明:人工冻土器获取的冻点对应的土壤温度与0℃总体一致,又不完全重合;0—35 cm深度范围,冻点对应的温度变化范围为-2~6℃,呈现跳跃性变化。35 cm以下深度范围,冻土冻点对应的温度变化范围为-0.5~1.0℃;融化过程冻点对应的平均温度高于冻结过程冻点对应的平均温度。从完全融化时间上来看,人工冻土器观测到的完全融化时间晚于测温式冻土仪0℃线完全消失的时间。人工冻土观测的实质是获得土壤温度0℃点所在位置。灌注不同台站水的冻土器内管在相同的温度环境下,冻结与融化状态无明显区别;人工冻土器内管冻结过程是温度和持续时间双重作用的结果,深层土壤温度变化缓慢,使得内管中的水冻结和融化需要的时间长。另外,作为接触式测温设备,减小外因产生的时滞是提高其灵敏度的重要环节,建议测温式冻土仪的外管壁使用温度滞后效应更小的金属外管。  相似文献   

17.
使用青藏高原中部野外22个站点2010-2014年观测数据结合GLDAS-NOAH陆面模式1960-2014年3 h 0.25°×0.25°格网数据,通过线性拟合等方法分析了高原中部的冻结强度变化并探讨了其与气温的关系。选取典型站点资料,结合GLDAS-NOAH数据对四次冻融过程进行分析比较,结果表明:(1)冻结强年和冻结弱年,高原中部季节冻土区各站点冻结、消融过程的持续时间差异大。(2)1960-2014年,高原中部平均气温呈上升趋势,其速率为0.39℃·(10a)-1;冻结起始日以0.91 d·(10a)-1的速率延后,冻结结束日则以2.88 d·(10a)-1的速率提前,冻结结束日对气温变暖的响应更迅速。(3)垂直方向上,不同冻结强度年表层5 cm处土壤温度、湿度差异最大,差值随土壤深度的增加逐渐减小。冻结强、弱年土壤水分相变速率不同引起的热量差使得各层土壤温度的日变化产生明显差异。  相似文献   

18.
青海南部高寒草地土壤冻融交替期水热特征分析   总被引:2,自引:0,他引:2  
为进一步了解高寒草地土壤冻融交替过程及其对水热因子的响应机制,通过2014年8月1日至2015年8月1日不同土层土壤温度和水分观测资料的对比分析,较为系统地探讨了青南高寒草地土壤冻融期不同深度土层土壤温度和水分的变化特征。结果表明,青南高寒草地土壤冻融阶段大体可分为初冻期、稳定冻结中期、稳定冻结后期和消融期4个时期;不同土层土壤温度随气温的变化呈周期性波动,且随着土层的加深变幅减小;不同冻融期表层和亚表层土壤温度和水分波动幅度较大,下层土壤对水热因子的敏感性较小;土壤完全冻结的天数达44~115d,日冻融交替过程主要发生在表层和亚表层土壤。土壤冻融交替增强了土壤的保水性,对该区草地植被提前返青和初级生产力的提高具有促进作用。  相似文献   

19.
地气温差对大气边界层热力交换起着极为重要的作用,对局地气候、城市边界层结构和大气污染有着重要影响,因此有必要对城市下垫面地气温差进行相应研究。本文以典型盆地城市成都为例,利用2014年成都市地表温度、气温逐时观测资料分析了该地区地气温差的变化特征,讨论了中尺度数值模式WRF (Weather Research and Forecasting Model)对盆地城市地气温差的模拟能力。结论表明:成都市平均地气温差为2.20℃,多分布在0~2℃区间,与地表温度和气温变化不同,温差春季最大,夏、冬季次之,秋季最小;各季节温差日变化大致相似,均为中午较大,夜间在0℃左右,但极值大小不同。利用WRF对成都市典型夏季晴天地气温差进行了模拟研究,对比分析三种常用陆面过程参数化方案的模拟结果,三种方案模拟的变化趋势均与观测吻合,其中Noah方案能较好的模拟成都市地气温差的变化特征,通过参数化方案的组合方式,改进了模式对地气温差的WRF模拟能力。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号