首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
海洋锋是典型的海洋中尺度现象之一。目前卫星遥感主要利用海表温度数据分析海洋锋,但由于西北太平洋海域夏季海表温度的趋同特性,不能进行有效的锋面监测;而不同水团所具有的生物光学特性往往是不同的,且不具有太阳辐射引起的显著性季节变化,因此海色资料也成为检测海洋锋的有效数据源。文中以东海黑潮为例,详细说明了基于叶绿素a浓度融合数据,采用梯度法进行海洋锋面检测的过程,通过比较不同季节不同梯度阈值得到的东海黑潮锋结果,从保持锋面的完整性及对零碎锋区的剔除效应方面,选取了不同季节较优的梯度阈值。总体来说,文中检测出的东海黑潮区域海色锋与海流黑潮强流区较吻合,12月至4月东海黑潮海色锋检测结果不如海温锋,而5-11月东海黑潮海色锋检测结果优于海温锋,特别是台湾以东黑潮区域,不论什么季节海温锋都没有体现,而海色锋始终很明显。利用文中提出的海洋锋检测算法、分析方法及选择的梯度阈值可以有效地检测东海黑潮区域的海洋锋面,结合海色锋和海温锋,可以监测分析东海黑潮强流区的时空变化。  相似文献   

3.
A lower trophic level NPZD ecosystem model with explicit iron limitation on nutrient uptake is coupled to a three-dimensional coastal ocean circulation model to investigate the regional ecosystem dynamics of the northwestern coastal Gulf of Alaska (CGOA). Iron limitation is included in the NPZD model by adding governing equations for two micro-nutrient compartments: dissolved iron and phytoplankton-associated iron. The model has separate budgets for nitrate (the limiting macro-nutrient in the standard NPZD model) and for iron, with iron limitation on nitrate uptake being imposed as a function of the local phytoplankton realized Fe:C ratio. While the ecosystem model represents a simple approximation of the complex lower trophic level ecosystem of the northwestern CGOA, simulated chlorophyll concentrations reproduce the main characteristics of the spring bloom, high shelf primary production, and “high-nutrient, low-chlorophyll” (HNLC) environment offshore. Over the 1998–2004 period, model-data correlations based on spatially averaged, monthly mean chlorophyll concentrations are on average 0.7, with values as high as 0.9 and as low as 0.5 for individual years. The model also provides insight on the importance of micro- and macro-nutrient limitation on the shelf and offshore, with the shelfbreak region acting as a transition zone where both nitrate and iron availability significantly impact phytoplankton growth. Overall, the relative simplicity of the ecosystem model provides a useful platform to perform long-term simulations to investigate the seasonal and interannual CGOA ecosystem variability, as well as to conduct sensitivity studies to evaluate the robustness of simulated fields to ecosystem model parameterization and forcing. The ability of the model to differentiate between nitrate-limited, and iron-limited growth conditions, and to identify their spatial and temporal occurrences, is also a first step towards understanding the role of environmental gradients in shaping the complex CGOA phytoplankton community structure.  相似文献   

4.
Ocean ecosystems play an important role in the global carbon cycle. In this paper, we develop and calibrate a pelagic ocean ecosystem model by simultaneously fitting data from two sites in the North Atlantic: the site of the Bermuda Atlantic Time-series Study (BATS, 32°N, 64°W) and Ocean Weather Ship Station “I” (OWSI, 59°N, 20°W). These sites differ dramatically in the magnitude and timing of primary production, chlorophyll concentrations, and light and nutrient availabilities. We find that a relatively simple model can be simultaneously fit to ecosystem data at both sites. As in the model of Hurtt and Armstrong (1996, Deep-Sea Research II 43(2–3): 653–683), the fit largely depends on the inclusion of multiple size classes of phytoplankton and detritus and a variable chlorophyll-to-biomass (nitrogen) ratio for phyto-plankton. The inclusion of these features in the model enables it to adjust to predict important biological differences temporally within sites and spatially between sites. In addition, the model also includes a phytoplankton self-shading parameter to capture differences in water clarity between sites, and the parameterization of iron limitation at OWSI as a hypothesis for the moderately HNLC condition there. Finally, we suggest that the model performs reasonably well at the Hawaii Ocean Time-series (HOT, 23°N, 158°W), a site where no model calibration was done.  相似文献   

5.
The impact of bio-optical heating on the properties of the upper Labrador Sea water was investigated by considering changes in light attenuation in water associated with the seasonal change of chlorophyll distribution. The time- and depth-dependent attenuation coefficients were obtained from remotely sensed SeaWiFS ocean-colour data. Sea-surface temperature (SST) and mixed-layer depth (MLD) were computed from a three-dimensional ocean circulation model. The model was integrated from 1999 to 2003 with 6-hourly atmospheric forcing. The changes in SST and MLD attributable to bio-optical heating were determined by comparing the model results using the observed attenuation coefficients (chlorophyll) to those using a weak and constant attenuation (clear water). The model results show that bio-optical heating is controlled mainly by chlorophyll concentration and MLD. The increase in SST is around 1 °C in most parts of the Labrador Sea and the shelves, and up to 2.7 °C in areas of shallow MLD and high chlorophyll concentrations (the Grand Banks and Northeastern Newfoundland Shelf). The increase is much higher than that found in previous studies, which was typically a fraction of a degree. Bio-optical heating also can enhance the stratification of the upper ocean and reduce the MLD by 20–50%.  相似文献   

6.
次表层叶绿素最大值(subsurface chlorophyll maxima, SCMs)广泛存在于全球各海域, 该最大值层往往具有较高的海洋初级生产力和新生产力, 因此研究其年际变化特征对深入理解气候变化影响下海洋生态系统变化有重要意义。本文采用一维物理-生态耦合模型(one-dimensional physical-biological coupled model, MEM-1D)较好地模拟了1994—2019年南海北部海盆区海温、盐度、营养盐和叶绿素的垂向分布, 并采用3种统计方法, 分别从整体趋势、不同时间尺度及显著变化三方面分析了SCMs特征因子(强度、深度和厚度)的年际变化特征。总体而言1994—2019年SCMs强度整体减小趋势较弱(趋势斜率S<0), 具体表现为先减小(1994—2004年)后增大(2005—2012年)再减小(2013—2019年), 其中1999—2004年显著变小; SCMs深度呈变深趋势(趋势斜率S>0), 1994—2011年逐渐变深, 之后逐渐变浅, 但变化不显著; SCMs厚度整体呈增大趋势, 1999年起显著变大。相关分析发现, 海表面温度在年际变化上与SCMs特征因子间不存在相关性(P>0.05); 海表面温度对SCMs的影响主要表现在季节尺度上, SCMs深度和强度均与海表面温度呈一致性变化。季节性差分自回归滑动平均模型对SCMs三个特征因子的拟合效果较好, 平均绝对百分比误差分别为5.33%(强度)、0.62%(深度)、2.49%(厚度), 模型可用于对SCMs特征因子变化趋势的预测。  相似文献   

7.
高永丽 《海洋科学》2019,43(2):34-40
深层叶绿素最大值(Deep Chlorophyll Maximum,DCM)现象的数值模拟是研究海洋表层生态系统和全球碳循环的重要组成部分之一。但是由于自身的复杂性和观测的局限性,数值模式中物理参数的不确定性给模拟结果带来了一定程度的误差。其中,垂向湍流扩散系数(vertical turbulence diffusion)是模式所包含的物理参数中很难直接通过观测来确定的参数,它在模式中的来源和取值往往具有很大的不确定性。本文通过条件非线性最优(参数)扰动(Conditional nonlinear optimal perturbation related to parameter,CNOP-P)方法,研究了垂向湍流扩散系数的不确定性对模式模拟结果的影响。我们发现,垂向湍流扩散系数对DCM模拟产生最大影响的CNOP型扰动位于生产力层的上半部分。并且,去掉生产力层内湍流扩散系数的误差,模式模拟的改进程度最高达到了80%。可见,垂向湍流扩散对生态系统的发展和保持起着极其重要的作用,改进垂向湍流扩散系数的不确定性,对DCM的数值模拟有着重要意义。  相似文献   

8.
The mean seasonal cycle of mixed layer depth (MLD) in the extratropical oceans has the potential to influence temperature, salinity and mixed layer depth anomalies from one winter to the next. Temperature and salinity anomalies that form at the surface and spread throughout the deep winter mixed layer are sequestered beneath the mixed layer when it shoals in spring, and are then re-entrained into the surface layer in the subsequent fall and winter. Here we document this ‘re-emergence mechanism’ in the North Pacific Ocean using observed SSTs, subsurface temperature fields from a data assimilation system, and coupled atmosphere–ocean model simulations. Observations indicate that the dominant large-scale SST anomaly pattern that forms in the North Pacific during winter recurs in the following winter. The model simulation with mixed layer ocean physics reproduced the winter-to-winter recurrence, while model simulations with observed SSTs specified in the tropical Pacific and a 50 m slab in the North Pacific did not. This difference between the model results indicates that the winter-to-winter SST correlations are the result of the re-emergence mechanism, and not of similar atmospheric forcing of the ocean in consecutive winters. The model experiments also indicate that SST anomalies in the tropical Pacific associated with El Niño are not essential for re-emergence to occur.The recurrence of observed SST and simulated SST and SSS anomalies are found in several regions in the central North Pacific, and are quite strong in the northern (>50°N) part of the basin. The winter-to-winter autocorrelation of SSS anomalies exceed those of SST, since only the latter are strongly damped by surface fluxes. The re-emergence mechanism also has a modest influence on MLD through changes in the vertical stratification in the seasonal thermocline.  相似文献   

9.
High-resolution (1km) satellite data from the NOAA AVHRR (Advanced Very High Resolution Radiometer) and OrbView-2 SeaWiFS (Sea-viewing Wide Field-of-view Sensor) are used to investigate the upper layer dynamics of the southern Benguela ecosystem in more detailed space and time scales than previously undertaken. A consistent time-series of daily sea surface temperature (SST) and chlorophyll a concentration images is generated for the period July 1998–June 2003, and a quantitative analysis undertaken. The variability in SST, upwelling and phytoplankton biomass is explored for selected biogeographic regions, with particular focus on intra-seasonal time scales. The location and emergence of upwelling cells are clearly identified along the length of the southern Benguela, being distinct on the narrow inner and the mid-continental shelves. Most notable is the rapidly pulsating nature of the upwelling, with intense warm/cold events clearly distinguished. The phytoplankton response to this physical forcing is described. Chlorophyll concentration on the inner shelf largely mirrors the pattern of SST variability, similarly dominated by event-scale processes. Over the mid-shelf, higher chlorophyll is observed throughout all seasons, although low biomass occurs during winter. The variability of the offshore extent of SST and chlorophyll is identified at locations of differing shelf width. Cooler upwelled water is confined primarily to the narrow inner-shelf, with event-scale pulses extending considerable distances offshore. Agulhas Current influences are readily observed, even on the Cape Peninsula inner-shelf. Chlorophyll concentrations vary considerably between the locations of differing shelf width. SST, upwelling and phytoplankton indices are derived for selected locations to quantify the intra-seasonal variations. The SST indices show marked temperature changes associated with rapid pulsation on the event scale. No strong seasonal signal is evident. In contrast, the upwelling indices display a strong seasonal signal, with most intense upwelling occurring in spring/summer in the south. The phytoplankton response to the seasonal upwelling index differs between the selected locations. This study concludes that, although low-resolution SST and chlorophyll data may be useful for investigating general patterns over large scales, higher resolution data are necessary to identify finer scale spatial and temporal variability, especially in the inshore coastal zones.  相似文献   

10.
This paper evaluates whether a thermodynamic ocean-carbon model can be used to predict the monthly mean global fields of the surface-water partial pressure of CO2 (pCO2SEA) from sea surface salinity (SSS), temperature (SST), and/or nitrate (NO3) concentration using previously published regional total inorganic carbon (CT) and total alkalinity (AT) algorithms. The obtained pCO2SEA values and their amplitudes of seasonal variability are in good agreement with multi-year observations undertaken at the sites of the Bermuda Atlantic Timeseries Study (BATS) (31°50’N, 60°10’W) and the Hawaiian Ocean Time-series (HOT) (22°45’N, 158°00’W). By contrast, the empirical models predicted CT less accurately at the Kyodo western North Pacific Ocean Time-series (KNOT) site (44°N, 155°E) than at the BATS and HOT sites, resulting in greater uncertainties in pCO2SEA predictions. Our analysis indicates that the previously published empirical CT and AT models provide reasonable predictions of seasonal variations in surface-water pCO2SEA within the (sub) tropical oceans based on changes in SSS and SST; however, in high-latitude oceans where ocean biology affects CT to a significant degree, improved CT algorithms are required to capture the full biological effect on CT with greater accuracy and in turn improve the accuracy of predictions of pCO2SEA.  相似文献   

11.
Strong seasonal patterns in upper ocean total carbon dioxide (TCO2), alkalinity (TA) and calculated pCO2 were observed in a time series of water column measurements collected at the US Joint Global Ocean Flux Study (JGOFS) BATS site (31 °50′N, 64 °10′W) in the Sargasso Sea. TA distribution was a conservative function of salinity. However, in February 1992, a non-conservative decrease in TA was observed, with maximum depletion of 25–30 μmoles kg−1 occuring in the surface layer and at the depth of the chlorophyll maximum (˜ 80–100 m). Mixed-layer TCO2 also decreased, while surface pCO2 increased by 25–30 μatm. We suggest these changes in carbon dioxide species resulted from open-ocean calcification by carbonate-secreting organisms rather than physical processes. Coccolithophore calcification is the most likely cause of this event although calcification by foraminifera or pteropods cannot be ruled out. Due to the transient increase in surface pCO2, the net annual transfer of CO2 into the ocean at BATS was reduced. These observations demonstrate the potential importance of open-ocean calcification and biological community structure in the biogeochemical cycling of carbon.  相似文献   

12.
再谈海冰边缘区域中尺度涡旋形成机制——非线性平流   总被引:1,自引:1,他引:0  
利用三维海洋模式与二维海冰模式耦合,研究海冰边缘区域中尺度涡旋形成最重要的机制之一——非线性平流机制。二维海洋模型模拟结果表明,非线性平流机制在水深比较浅的时候更加重要。不同于把海洋考虑成一个正压流体的二维模型,三维海洋模型中海冰通过海-冰相互作用直接影响海洋表层。我们发现在三维海洋模型实验中,中尺度涡旋和海洋表面抬升都对水深变化敏感。海流速度的垂直结构表面,当海水变浅,各层海流都变得更快。相同风应力作用相同时间之后,表面抬升与海水深度成反比关系。同时我们还发现由于垂直运动,在三维海洋模型实验结果中,海面抬升非常小,只有二维海洋模型实验结果的1%。垂直运动是三维海洋模型和二维海洋模型实验结果不同的根本原因。  相似文献   

13.
渤海海温与叶绿素季节空间变化特征分析   总被引:4,自引:0,他引:4  
以2003年MODIS数据为数据源,在图像处理、空间插值的基础上作海温与叶绿素浓度的空间相关分析。结果表明,整个海域的叶绿素浓度和海温的分布具有明显的区域和季节变化特征。基本规律是叶绿素浓度从近岸向渤海中央递减;温度则随季节发生变化,随着温度升高,近海叶绿素浓度增高,而渤海中央区域叶绿素浓度降低。渤海叶绿素浓度的分布与河口径流、季节等因素有关。从空间关系看,海温与叶绿素浓度不存在很明显的空间分布相关性,但不同季节有不同的相关性。上述研究可用于估算海洋初级生产力。  相似文献   

14.
Contrasting decrease and increase trends of sea surface temperature(SST) have been documented in the western Subarctic(WSA) and the rest of the Northwest Pacific(NWP) from 1958 to 2017, respectively. Consequently, more(less) total carbon dioxide(TCO2) due to ocean cooling(warming) is transported to the surface, which leads to increase(decrease) of oceanic surface partial pressure of carbon dioxide(pCO2). With the combined influence of the rising atmospheric carbon dioxide(C...  相似文献   

15.
The effects of biological heating on the upper-ocean temperature of the global ocean are investigated using two ocean-only experiments forced by prescribed atmospheric fields during 1990–2007, on with fixed constant chlorophyll concentration, and the other with seasonally varying chlorophyll concentration. Although the existence of high chlorophyll concentrations can trap solar radiation in the upper layer and warm the surface, cooling sea surface temperature (SST) can be seen in some regions and seasons. Seventeen regions are selected and classified according to their dynamic processes, and the cooling mechanisms are investigated through heat budget analysis. The chlorophyll-induced SST variation is dependent on the variation in chlorophyll concentration and net surface heat flux and on such dynamic ocean processes as mixing, upwelling and advection. The mixed layer depth is also an important factor determining the effect. The chlorophyll-induced SST warming appears in most regions during the local spring to autumn when the mixed layer is shallow, e.g., low latitudes without upwelling and the mid-latitudes. Chlorophyll-induced SST cooling appears in regions experiencing strong upwelling, e.g., the western Arabian Sea, west coast of North Africa, South Africa and South America, the eastern tropical Pacific Ocean and the Atlantic Ocean, and strong mixing (with deep mixed layer depth), e.g., the mid-latitudes in winter.  相似文献   

16.
The seasonal variability of surface chlorophyll in the northern Humboldt Current System is studied using satellite data, in situ observations and model simulations. The data show that surface chlorophyll concentration is highest in austral summer and decreases during austral winter, in phase opposition with coastal upwelling intensity. A regional model coupling ocean dynamics and biogeochemical cycles is used to investigate the processes which control this apparently paradoxical seasonal cycle. Model results suggest that the seasonal variability of the mixed layer depth is the main controlling factor of the seasonality. In winter, the mixed layer deepening reduces the surface chlorophyll accumulation because of a dilution effect and light limitation. In summer, biomass concentrates near the surface in the shallow mixed layer and nitrate limitation occurs, resulting in a biomass decrease in the middle of summer. Intense blooms occur during the spring restratification period, when winter light limitation relaxes, and during the fall destratification period, when the surface layer is supplied with new nutrients. Model sensitivity experiments show that the seasonal variations in insolation and surface temperature have little impact on the surface chlorophyll variability.  相似文献   

17.
Phytoplankton standing stocks and carbon assimilation were measured during four cruises to the southern Ross Sea, Antarctica during 1996 and 1997 in order to assess the details of the seasonal cycle of biomass and productivity. The seasonal composite showed that phytoplankton biomass increased rapidly during the austral spring, and integrated chlorophyll reached a maximum during the summer (January 15) and decreased thereafter. Particulate matter ratios (carbon:nitrogen, carbon:chlorophyll) also showed distinct seasonal trends with summer minima. Carbon assimilation increased rapidly in the spring, and reached a maximum of 231 mmol C m−2 d−1, ca. four weeks earlier than the maximum observed biomass (during early December). It decreased rapidly thereafter, and in austral autumn when ice formed, it approached zero. The time of maximum growth rate coincided with the maximum in C-assimilation, and at 0.66 d−1 equaled predictions based on laboratory cultures. Growth rates over the entire growing season, however, were generally much less. Deck-board incubations suggested that photoinhibition occurred at the greatest photon flux densities, but in situ incubations revealed no such surface inhibition. We suggest that due to the nature of the irradiance field in the Antarctic, assemblages maintained in on-deck incubators received more light than those in situ, which resulted in photoinhibition. This in turn resulted in a 17% underestimate in on-deck productivity relative to in situ determinations. The phytoplankton bloom appeared to be initiated when vertical stability was imparted in austral spring, coincident with greater daily photon flux densities. Conversely, decreased productivity likely resulted from trace metal limitation, whereas biomass declines likely resulted from enhanced loss rates, such as aggregate formation and enhanced vertical flux of larger particles. The seasonal progression of productivity and biomass in the southern Ross Sea was similar to other areas in the ocean that experience blooms, and the cycling of carbon in this region is extensive, despite the fact that the growing season extends no more than five months.  相似文献   

18.
Mesoscale perturbations (with a size of 100–1000 km) of wind stress magnitude, divergence and curl in the Kuroshio Extension (KE) are observed to tightly link to those of sea surface temperature (SST), and downwind and crosswind SST gradients, respectively. Based on long-term satellite observational data, their empirical relationships are established, which are further used to represent mesoscale wind stressSST coupling in an ocean model that is based on the Regional Oceanic Modelling Systems (ROMS). The strength of mesoscale perturbations of wind stress and SST is observed to display a consistent seasonal variability, with the maximum appeared in winter while the minimum appeared in summer. This seasonal variability characteristic is also successfully simulated by ROMS with high resolution. Through comparing two experiments with and without the mesoscale wind stressSST coupling, it is found that the mesoscale wind stress perturbation (τ MS) has a negative feedback on SST perturbation (SSTMS). Analyses of sensitivity experiments suggest that the τ MS acts to inhibit SSTMS mainly by means of surface heat flux. The τ MS SSTMS coupling also exerts influences on the ocean mean state and seasonal variability of SST in the KE. The effect of τ MS on the SST is distinct in autumn and winter when the mesoscale perturbations are most active. Analyses of sensitivity experiments demonstrate that the τ MS can affect the long term mean SST through either way of surface heat flux or momentum flux.  相似文献   

19.
We compared in-situ and satellite-derived measures of the biological carbon pump efficiency at the two seemingly similar subtropical North Atlantic gyre time series sites, the Bermuda time series (BATS, Bermuda Atlantic time-series study and OFP, ocean flux program) in the western gyre and the ESTOC time series (European station for time-series in the ocean, Canary Islands) in the eastern gyre. Satellite-derived surface chlorophyll a was slightly lower at Bermuda compared to ESTOC (annual average of 0.10±0.04 vs. 0.14±0.05-mg-m?3), as was satellite-derived primary production (annual average of 380±77 vs. 440±80-mg C-m?2 d?1). However, export production normalized to primary production (export ratio) was higher at Bermuda by a factor of 2–3 when estimated using mesopelagic traps moored at 500-m depth and by a factor of 3–4 when estimated using surface-tethered drifting traps. When averaged seasonally, flux at BATS was highest in spring (March, April, May) at all depths followed by summer (June, July, August) and decreasing towards fall, but this seasonality was less visible at ESTOC. Seasonal comparison showed the fastest flux attenuation at Bermuda in winter and spring, coinciding with the highest POC flux. POC/PIC ratios derived from the moored traps were significantly higher at BATS than at ESTOC in fall and winter, but this difference was not significant in spring (p>0.05). This study shows that while the western and eastern Atlantic subtropical gyres have similar rates of primary production, the biological carbon pump differs between the two provinces. Higher new nutrient input observed at Bermuda compared to ESTOC might explain part of the difference in export ratio but alone is insufficient. Greater winter mixed-layer depths and higher mesoscale eddy activity at Bermuda resulting in pulsed production events of labile organic matter might explain both the higher export flux and export ratios found at Bermuda.  相似文献   

20.
Planktic foraminiferal (PF) flux and faunal composition from three sediment trap time series of 2002–2004 in the northeastern Atlantic show pronounced year-to-year variations despite similar sea surface temperature (SST). The averaged fauna of the in 2002/2003 is dominated by the species Globigerinita glutinata, whereas in 2003/2004 the averaged fauna is dominated by Globigerinoides ruber. We show that PF species respond primarily to productivity, triggered by the seasonal dynamics of vertical stratification of the upper water column. Multivariate statistical analysis reveals three distinct species groups, linked to bulk particle flux, to chlorophyll concentrations and to summer/fall oligotrophy with high SST and stratification. We speculate that the distinct nutrition strategies of strictly asymbiontic, facultatively symbiontic, and symbiontic species may play a key role in explaining their abundances and temporal succession. Advection of water masses within the Azores Current and species expatriation result in a highly diverse PF assemblage. The Azores Frontal Zone may have influenced the trap site in 2002, indicated by subsurface water cooling, by highest PF flux and high flux of the deep-dwelling species Globorotalia scitula. Similarity analyses with core top samples from the global ocean including 746 sites from the Atlantic suggest that the trap faunas have only poor analogs in the surface sediments. These differences have to be taken into account when estimating past oceanic properties from sediment PF data in the eastern subtropical North Atlantic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号