首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 630 毫秒
1.
Plagioclase separates from the Layered Series (LS), Upper Border Series (UBS), and Marginal Border Series (MBS) of the Skaergaard intrusion were analyzed to examine major and trace element variations. In general, plagioclase from the LS, UBS, and MBS show similar trends in major elements vs. crystallization: SiO2, Na2O, and K2O progressively increase, and CaO and MgO progressively decrease with fractionation. No abrupt changes in the trends of major components of Skaergaard plagioclase during the differentiation of the intrusion are observed. Trace elements in plagioclase reflect changes in the Skaergaard magma and changes in plagioclase distribution coefficients with differentiation. Sr, Ga, and probably Ba are included elements in Skaergaard plagioclase, but were excluded from the other cumulus phases, and as a result systematically increased in the magma and plagioclase during differentiation. Be, Cs, Hf, Rb, Ta, U, and Zr, and the transition metals Co, Cr, Cu, Ni, Sc, V, and Zn were excluded elements in Skaergaard plagioclase, and remained low in plagioclase during differentiation. Changes in the abundances of these elements in plagioclase during differentiation reflect changes in their abundance in the magma. With the exception of the lower zone, which is enriched in the light rare earth elements, rare earth elements in LS plagioclase, in general, increase with differentiation of the Skaergaard intrusion, but decrease dramatically at the UZa/UZb boundary where abundant apatite first appears. Rare earth elements in UBS plagioclase followed a similar trend to LS plagioclase, except during the initial and final stages of differentiation. UBS plagioclase is much more enriched in rare earth elements during the final 20% of crystallization, except for Eu, which is similar in plagioclase from the two series. The observed trends suggest that the floor and roof sequences became isolated from each other and that the floor sequence may have been more reducing and the roof sequence more oxidizing during the final 20% of crystallization. As the Skaergaard magma ceased convection, or convected as isolated cells, during the final stages of differentiation, volatile elements may have accumulated in the UBS magma, resulting in an increase in ƒO2, and a decrease in Eu/Sm in UBS plagioclase. The observed trends of rare earth elements in plagioclase from the LS and UBS fit well with theoretical calculations that assume closed-system crystallization, and would be difficult to reconcile with any model requiring significant discharge of magma from the chamber during the final 20% of crystallization. The enrichment of light rare earth elements in plagioclase, suggests that the lower part of the intrusion re-equilibrated with a late, light rare earth element-rich fluid or melt. The recharge model proposed by earlier workers to explain anomalous Sr and Nd isotopes appears unlikely in light of the two to fourfold enrichment of light rare earth elements in these samples. Received: 1 October 1999 / Accepted: 14 May 2000  相似文献   

2.
Trace elements and rare earth elements (REEs) of Lias-aged cherts in the Gumushane area were studied in order to understand their origin and depositional environment. Twenty three chert samples from five stratigraphic sections were analysed by inductively coupled plasma-mass spectrometry, X-ray diffraction, and mineralogical investigation. Lias cherts in the study area are microcrystalline, cryptocrystalline quartz, and megaquartz depending on mineralogical content. Trace elements of the cherts were compared with PAAS, Co, Y, and Th had stronger depletions in the five sections, whereas V, Ni, Zr, Nb, and Hf had smaller depletions. The distribution of Zr, Hf, and Ta yields Zr/Hf, Zr/Ta and Hf/Ta ratios (25/645, 37/665, and 0.18/3, respectively) that differ from those of chondrites and average upper continental crust, suggesting that these elements are likely non-detrital but are sourced from seawater. Th/U ratios range from 0.04 to 0.45 and are lower than those of the upper continental crust (average: 3.9). Lias-aged cherts have low total REE abundances and stronger depletions in five sections of the PAAS and chondrite-normalised plots. The cherts are characterised by a positive Eu anomaly (average: 4.9) and LREE-enrichment (LaN/YbN = average: 3.5). In addition, about one-half of the cherts exhibit positive Ce anomaly (range: 0.25–2.58), chondritic Y/Ho values (range: 3.3–60), and low (La/Ce)N values (average: 1.8). REE and trace element abundance in Lias cherts indicate that these elements were likely derived from hydrothermal solutions, terrigenous sources, and seawater. The REE patterns of the cherts show that they were probably deposited close to a continental margin.  相似文献   

3.
黔中早石炭世九架炉组铝土矿含矿岩系富集Ti、Li、Sc、V、Ga、Nb、Ta、Zr、Hf、Th和稀土(REEs)等"三稀金属",具有成为独立矿床或伴生资源的潜力。这些元素大部分与九架炉组共有同一母岩,且富集程度受母岩的成分和风化作用控制。本研究选取九架炉组母岩乌当娄山关群白云岩和纳雍牛蹄塘组泥质白云岩的现代风化剖面为研究对象,研究元素在风化作用过程中的迁移特征及分布规律,进而为九架炉组微量元素的富集机制提供启示。研究获得以下认识:1)依据剖面结构、ZrHf、Nb-Ta、Y-Ho二元图特征及REE配分曲线和Eu/Eu*值的相似性表明研究区土层主要来源于基底或母岩的风化; 2)白云岩风化成土过程中Si、Fe、Cr、As、Sb、Ti、Nb、Ta、Zr、Hf、Th、REEs等元素化学性质相对稳定,富集程度较高,而Ca、Mg、Na、K、Sr、P、Mo、Cd等元素化学性质活泼,容易淋失亏损; 3)纳雍剖面REEs~(3+)和Ca~(2+)半径差与REEs富集系数相关性良好,表明碳酸盐岩风化过程中,含钙矿物磷灰石是稀土元素分配的重要控制因素; 4)九架炉组的母岩也是Ti、Li、Sc、V、Ga、Nb、Ta、Zr、Hf、Th等微量元素的主要物质来源,母岩风化过程中,这些微量元素首先在副矿物、黏土矿物、铝矿物及磷灰石等矿物相中初步富集,之后随风化碎屑物一起沉积形成微量元素超常富集地层; 5)纳雍剖面地表和地下水提供了部分P、Be、Zn、Sb、Pb、Y及REEs来源,指示水体迁入作用也是九架炉组REEs富集的重要原因。研究表明黔中九架炉组微量元素的来源较复杂,风化-沉积过程中,化学性质稳定的元素残留在风化碎屑物中并被搬运-沉积在负地形中,而化学性质活泼的元素首先被带入水体,在沉积-成岩过程中特定条件下发生二次富集作用(例如次生矿物的形成及吸附)形成微量元素富集的地层。  相似文献   

4.
Major and trace element and modal analyses are presented for unaltered, epidotized, and carbonated tholeiite flows from the Barberton greenstone belt. Au, As, Sb, Sr, Fe+3, Ca, Br, Ga, and U are enriched and H2O, Na, Mg, Fe+2, K, Rb, Ba, Si, Ti, P, Ni, Cs, Zn, Nb, Cu, Zr, and Co are depleted during epidotization. CO2, H2O, Fe+2, Ti, Zn, Y, Nb, Ga, Ta, and light REE are enriched and Na, Sr, Cr, Ba, Fe+3, Ca, Cs, Sb, Au, Mn, and U are depleted during carbonization-chloritization. The elements least affected by epidotization are Hf, Ta, Sc, Cr, Th, and REE; those least affected by carbonization-chloritization are Hf, Ni, Co, Zr, Th, and heavy REE. Both alteration processes can significantly change major element concentrations (and ratios) and hence caution should be used in distinguishing tholeiites from komatiites based on major elements alone. The amount of variation of many of the least mobile trace elements in the altered flows is approximately the same as allowed by magma model calculations. Hence, up to about 10% carbonization and 60% epidotization of tholeiite do not appreciably affect the interpretation of trace-element models for magma generation.  相似文献   

5.
小兴安岭北部二龙山林场辉长岩的主量、微量和稀土元素的测试分析结果显示: 二龙山辉长岩为钙碱性系列、偏铝质岩石; δEu 正异常,Sr 元素含量富集明显,具有堆晶辉长岩特征; Rb /Sr、Nb / Ta、LILE/HFSE、Th /Ta、Nb /U 和Nb /La 比值特征均显示,辉长岩岩浆来自受到俯冲流体交代的地幔源区。Nb /Zr、Th /Nb、Th /Ta 和Ta /Hf 比值特征及对Th /Hf --Ta /Hf 构造环境判别图解投点表明,二龙山辉长岩形成于陆内拉张环境。  相似文献   

6.
云南个旧碱性杂岩体由边缘相碱长正长岩和中心相霞石正长岩组成。全岩地球化学分析表明,该碱性杂岩体具有高碱、富钾、富铁、低镁、高分异的碱性-过碱性岩石特征,晚期更富集碱金属元素; LREE/HREE值为20~59,(La/Sm)N=8~50,(Sm/Yb)N=1.2~5.0,富集轻稀土元素,轻稀土元素较重稀土元素分馏程度高,具Eu负异常,亏损Ti、Nb、P、K、Sr等元素,富集Zr、Hf、Th、La、Ce、Nd、U、Rb等元素,岩浆来源与幔源物质有关;碱长正长岩和霞石正长岩具有相似的微量元素和稀土元素特征,具有同源岩浆分异演化的特点; Rb/Sr、Nb/Ta、Zr/Hf等比值均高于或接近于原始地幔的相应值; CIPW标准矿物计算结果表明边缘相碱长正长岩中出现紫苏辉石、锥辉石、橄榄石,中心相霞石正长岩中出现橄榄石。结合(Th/Nb)N和Nb/La值特征以及前人Sr-Nd同位素研究成果,认为个旧碱性杂岩体的岩浆来源于遭受交代作用的富集地幔部分熔融,同时受有限的地壳混染作用而成,形成于后碰撞的伸展环境。碱性岩浆演化晚期更加富碱、经历了更高程度的结晶分异作用是稀土元素、Nb、Ga和Zr元素超常富集的重要原因。  相似文献   

7.
In this paper we report the results of the analysis of rare earth (REE), large-ion lithophile (LILE), and high field strength (HFSE) elements in minerals from the alkaline lamprophyre dikes of the Kola region and the Kaiserstuhl province by the local method of laser ablation inductively coupled plasma mass spectrometry. The contents of Y, Li, Rb, Ba, Th, U, Ta, Nb, Sr, Hf, Zr, Pb, Be, Sc, V, Cr, Ni, Co, Cu, Zn, Ga, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu were measured in olivine, melilite, clinopyroxene, amphibole, phlogopite, nepheline, apatite, perovskite, and the host fine-grained groundmass. The obtained data on trace element partitioning among the mineral phases of the alkaline ultrabasic rocks of the dike series indicate that the main mineral hosts for the HFSEs and REEs in alkaline picrites, olivine melanephelinites, and melilitites are perovskite and apatite comprising more than 90% of these elements. Among major rock-forming minerals, melilite, clinopyroxene, and highly magnesian amphibole make a significant contribution to the balance of REEs during the evolution of melanephelinite melts. The partition coefficients of Ni, Co, Cu, Zn, Sc, V, Cr, Ga, Y, Li, Rb, Ba, Th, U, Ta, Nb, Sr, Hf, Zr, Pb, Be, and all of the REEs were calculated for olivine, clinopyroxene, amphibole, phlogopite, nepheline, perovskite, and apatite on the basis of mineral/groundmass ratios. Variations in the composition of complex zoned clinopyroxene phenocrysts reflect the conditions of polybaric crystallization of melanephelinite melt, which began when the magmas arrived at the base of the lower crust and continued during the whole period of their ascent to the surface. The formation of green cores in clinopyroxene is an indicator of mixing between primary melanephelinite melts and phonolite magmas under upper mantle conditions. The estimation of the composition of primary melts for the rocks of the alkaline ultrabasic series of the Kola province indicated a single primary magma for the whole series. This magma produced pyroxene cumulates and complementary melilitolites, foidolites, and nepheline syenites.  相似文献   

8.
Recently measured high gamma ray values in the Yanchang Formation of the Upper Triassic in the Ordos Basin have added an interesting and controversial twist to the study of the formation’s uranium enrichment and genesis. High uranium and thorium contents in the tuffaceous layer cause high gamma ray values in the Yanchang Formation. Petrographic studies, major elements, rare earth elements (REEs), and trace elements have been systematically analyzed to determine the composition, geochemical environment, and diagenetic processes of the layer. The observed color of the tuffaceous layer in the study area varies from yellow to yellowish brown. The tuff consists of matrix supported with sub-rounded to sub-angular lithic fragments. These lithic fragments probably derived from pre-existing rocks and incorporated into the tuffaceous layer during volcanic eruption. Quartz, plagioclase, and biotite were observed in well to poorly sorted form, in addition to framboidal pyrite and organic laminae. Measured ratios of SiO2/Al2O3 ranged from 3.277 to 6.105 with an average of 3.738. The ratio of TiO2/Al2O3 varied from 0.037 to 0.201 with an average of 0.061, indicating that the sediments of the tuffaceous layer originated from an intermediate magma. REE distribution patterns show sharp negative Eu anomalies, indicating a reducing environment, which is suitable for uranium deposition. A reducing environment was confirmed by black shale in the base of the Yanchang Formation. Such black shale has high organic matter content that can take kerogene from mudstone and provide a reducing environment for uranium enrichment in the tuffaceous layer. Moreover, negative Eu anomalies and the REE patterns indicate a subduction-related volcanic arc environment as the magma source of the tuffaceous layers. High values of Rb, Ba, and Sr might be the result of fluid phase activities; low values of Hf and Eu indicate the involvement of crustal material during diagenesis of the tuff. Discrimination diagrams (Th/Yb vs Ta/Yb, Th/Hf vs Ta/Hf) suggest an active continental margin as the tectonic setting of source volcanoes. Plots of Nb versus Y, Rb versus Y + Nb, TiO2 versus Zr, and Th/Yb versus Nb/Yb of the tuffaceous content point to calc-alkaline continental arc-related magmatism. We concluded that uranium enrichment in the tuffaceous layer was supported by oxidation–reduction.  相似文献   

9.
青海泽库东南赛日迪附近产出的印支期中基性岩体前人研究较少.对该岩体进行地球化学、构造背景及岩浆演化方面研究,结果表明,赛日迪岩体硅量中等、高镁铁、低铝、低钾钠,属准铝质钙碱性系列.富集Rb,K,Pb等大离子亲石元素(LILE)和Th,U,Ta,Nb,Hf等高场强元素(HFSE).普遍贫Ba,Sr等大离子亲石元素(LILE)和P,Zr,Ti等高场强元素(HFSE).稀土元素含量较低,轻稀土元素相对富集,轻稀土元素较重稀土元素分馏明显.Eu略显负异常,表现为同源岩浆成分特征.LREE与SiO2相关性不强,Nb/U、Nb/La远低于全球MORB、OIB值,Nb/Ta和Zr/Hf与原始地幔值相当,低Sm/Yb值,La/Nb和La/Ta指数指示赛日迪中基性岩可能为地幔源,岩浆经历部分熔融岩浆演化过程,上升过程中未受地壳物质混染.构造环境判别赛日迪中基性岩为钙碱性玄武岩,形成于板内环境,与板块碰撞作用有一定联系.  相似文献   

10.
张辉  刘丛强 《地球化学》2001,30(4):323-334
新疆阿尔泰可可托海3号伟晶岩脉磷灰石矿物中稀土元素(REE)和其他微量元素的ICP-MS分析结果表明,Y/Ho,Zr/Hf和Nb/Ta明显偏离球粒陨石中对应的比值,并存在显著的REE“四分组效应”,REE“四分组效应”量化特征参数TE3,4主要与Y/Ho,Nb/Ta分异程度有关,与δEu负异常演化程度相一致,锰铝榴石也呈现REE“四分组效应”和Y/Ho,Nb/Ta显著分异,指示REE“四分组效应”是形成伟晶岩熔体的一个基本特征,并不是由富LREE矿物(如独居石)和富HREE矿物(如四榴子石)结晶引起的残余熔体REE含量的异常变化,其机制可能是富F,B和P的过铝质窝本与含水流体间相互作用,REE在流体相/熔体相的分配受温度,压力和流体相组成复合控制的综合结果。  相似文献   

11.
Data are reported for rare earth elements (REE), Y, Th, Zr, Hf, Nb and Ta in four geological reference materials using sodium peroxide (Na2O2) sintering and inductively coupled plasma-mass spectrometry. The described procedure was used by students during their thesis work. A compilation of their reference material data acquired over one year of laboratory work demonstrates the ease and reliability of the method and the high reproducibility of the analytical results. Relative standard deviations of up to thirty six measurements of one reference material were lower than 5% for Y and the REE. Reproduciblities of Zr, Hf, Nb, Ta and Th were higher at between 5% and 10%, and can be attributed to the inhomogeneous distribution of zircon and other trace mineral phases and uncorrected drift effects. The concentration data are compared to reference and literature values and demonstrate that the procedure is also accurate. New data on G-3 show some systematic deviations from G-2, which are statistically significant.  相似文献   

12.
佛冈高分异I型花岗岩的成因:来自Nb-Ta-Zr-Hf等元素的制约   总被引:12,自引:8,他引:4  
陈璟元  杨进辉 《岩石学报》2015,31(3):846-854
华南南岭地区发育有大面积的与钨锡成矿相关的侏罗纪花岗岩,然而其中有些花岗岩的成因类型却难以确定。本文以佛冈岩体为例,结合前人已发表数据,对佛冈花岗岩体中Nb、Ta、Zr和Hf等元素的迁移特征及其原理进行探讨,并对佛冈花岗岩的成因类型进行了厘定。随着分异程度增加,佛冈花岗岩Nb和Ta含量增加,Nb/Ta(3.6~15.3)和Zr/Hf(17.3~38.9)比值降低并发生分异。随着Zr含量的降低,佛冈花岗岩的Zr/Hf比值降低,这一特征表明锆石的分离结晶作用使得佛冈花岗岩的Zr/Hf比值分异。Nb/Ta比值分异可能与角闪石和黑云母的分离结晶作用有关。随着Nb/Ta比值降低,Y/Ho比值增加,这一特征表明佛冈花岗岩Nb/Ta比值的分异也和岩浆演化后期的流体有关。佛冈花岗岩不含原生的富铝矿物,为准铝质到弱过铝质岩石。随着分异程度增加,佛冈花岗岩P2O5含量降低,表明它不是S型花岗岩。随着Y/Ho比值增加和Nb/Ta和Zr/Hf比值降低,佛岗花岗岩Ga/Al和Fe OT/Mg O比值增加,从典型I型花岗岩特征演化到类似A型花岗岩的地球化学特征。因此,我们认为佛冈花岗岩不是A型花岗岩而是高分异的I型花岗岩。区域上与成矿相关的流体和花岗质岩浆的相互作用和分离结晶作用,使得华南南岭地区的花岗岩地球化学特征复杂,所以其成因类型也变的难以确定。  相似文献   

13.
High sensitivity and low detection limits would seem to make inductively coupled plasma-mass spectrometry (ICP-MS) an ideal analytical tool for determining low (sub-μg g-1) concentrations of the rare earth elements (REE), Y, Zr, Nb, Hf, Ta, Sn, W, Mo, Th, and U in most mafic materials (e.g. Hall and Plant 1992). However, the generally "sticky" nature exhibited by most of the high field strength elements (HFSEs: Zr, Nb, Hf, Ta, Th and U) as well as Sn, W and Mo can result in spurious results due to memory effects transmitted between unknowns and calibration samples. This, in turn, can seriously compromise the sensitivity, accuracy, and precision of ICP-MS analyses for these elements in geological materials. Data resulting from analyses with poor accuracy and precision can lead to erroneous interpretation and misleading petrogenetic modelling. To resolve this problem, we propose an effective wash protocol for these critical trace elements.  相似文献   

14.
为辨识黄河和长江入海沉积物中角闪石的物源差异,对采自黄河口段、长江口段以及废黄河口和苏北沿岸,共26个样点、38组粒度粗细不同的碎屑角闪石进行了矿物元素地球化学测试,获得了这些角闪石群体的50种常量和微量元素含量值.结果表明:不同粒级测量的同源角闪石元素含量除少数大离子活泼元素相对偏差较大之外,大部分元素含量差异性较小...  相似文献   

15.
峨眉山溢流玄武岩省高钛玄武岩的两种不同地幔源特征   总被引:1,自引:0,他引:1  
为探讨和揭示峨眉山高钛玄武岩的幔源特征,以二滩高钛玄武岩为研究对象进行了主要元素、微量元素和Sr-Nd-Pb同位素的系统研究。研究表明:二滩高钛玄武岩可分为A和B两组玄武岩;两组岩石间的微量元素(Rb﹑K﹑Ba﹑Th﹑Nb和Ta)富集程度和微量元素比值(Ba/Nb﹑Ba/Th﹑Zr/Nb﹑Th/La、Zr/Hf)以及同位素比值(87Sr/86Sr、208Pb*/206Pb*)均存在较为明显的差异。造成这种差异的原因不是岩浆过程(结晶分异、地壳混染、部分熔融)的不同,而是A组和B组具有不同的地幔源。A组具有EM II特征,可能为富含辉石岩的交代地幔部分熔融所形成;B组则具有EM I和C组分的混合特征,可能为交代谱系较宽的地幔物质熔融所形成。  相似文献   

16.
王超  刘志宏  宋健  高翔  孙理难 《岩石学报》2016,32(9):2856-2866
近年来古太平洋构造域的构造演化备受学者关注。本文报道的延边开山屯地区花岗闪长岩-石英闪长岩体LAICP-MS U-Pb年龄表明其形成时间为早侏罗世早期(198±1Ma),所采样品可根据Zr/Hf值分为高Zr/Hf值组花岗闪长岩和低Zr/Hf值组石英闪长岩。高Zr/Hf值组花岗闪长岩起源深度浅,富集Rb、Th、U、K等大离子亲石元素(LILEs),贫Nb、Ta、Ti等高场强元素(HFSEs),具壳源岩浆的特点。低Zr/Hf值组为壳源岩浆与来自深部的亏损地幔岩浆混合而成,岩石亏损Nb、Ta、Zr、Hf、Ti等高场强元素,具有典型的弧型岩浆地球化学特征。岩体中存在细粒闪长质包体,镜下可见针柱状磷灰石。开山屯岩体属钙碱性系列岩石,结合前人资料,认为其与该地区同时代火成岩组成北-东向分布的早侏罗世活动大陆边缘型火成岩带,而位于该带西侧的小兴安岭-张广才岭地区存在同时代弧后拉张带,两者构成典型的大陆弧与弧后拉张带模型,共同揭示了早侏罗世早期古太平洋板块对东北地区的俯冲作用。  相似文献   

17.
金沙江蛇绿岩带蛇纹岩中浅色岩类的成因   总被引:4,自引:0,他引:4  
浅色岩类的岩石类型包括斜长岩和斜长花岗岩,它们均呈岩块状包裹于蛇纹岩中。浅色岩的正Eu异常明显,REE参数图解、Nb/Ta和Zr/Hf值等均呈现分离结晶趋势,不相容元素Sr、Ba、Nb、Ta、Zr、Hf富集,相容元素Sc、V、Co、Ni亏损,并与其寄主岩-蛇纹岩形成强烈的互补关系。这些特征表明,浅地是幔源超基性岩浆晚期结晶分异的产物。  相似文献   

18.
The Guangou bauxite deposit in western Henan, China, is located in the North China Block and to the north of the North Qinling orogenic belt. The orebody is hosted within the lower member of the Carboniferous Benxi Formation, which overlies unconformably upon the Ordovician Majiagou Formation. In the lower member of the Benxi Formation, the bauxite orebody (with a diaspore–illite–anatase mineral assemblage) is sandwiched between underlying ferric clay (illite–hematite–goethite) and overlying top clay (kaolinite–quartz–goethite). According to field observations and geochemical evidence including trace- and rare-earth-element (REE) compositions, especially Zr/Hf ratios, the ferric clays were weathered from the underlying argillaceous limestones in the Majiagou Formation. During this weathering process, trace elements S, Zn, Ni, Cr, V, Sc, F, Ba, and Be are depleted; Li, Rb, and B are enriched; and Zr, Hf, Bi, Ta, Ga, Nb, and Th are relatively immobile. REEs exhibit evident differentiation with enrichment of La, Ce, Pr, and Nd and depletion of Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. The bauxite formed in weak reducing, slightly basic water conditions according to the geneses of coexisting diaspore and anatase, and it was altered during the epigenetic and second exposure periods, forming kaolinite and goethite, respectively. Interelemental relationship analyses of the ores suggest that the elemental behaviors of trace elements and REEs in the bauxitization process are mainly controlled by the mineral compositions in bauxite ore and chemical properties of the elements. For instance, zircon, rutile, and anatase contain Zr, Hf, Nb, Ta, W, and U. Based on geochemical evidence, together with age data and chemical compositions of the detrital minerals, both distant igneous rocks in the plate margin and Paleozoic carbonates and Precambrian rocks inside North China Block provide the miscellaneous material for the bauxite ore and the top clay.  相似文献   

19.
Mineral/melt trace element partition coefficients were determined for rutile (TiO2) for a large number of trace elements (Zr, Hf, Nb, Ta, V, Co, Cu, Zn, Sr, REE, Cr, Sb, W, U, Th). Whilst the high field strength elements (Zr, Hf, Nb, Ta) are compatible in rutile, other studied trace elements are incompatible (Sr, Th, REE). In all experiments we found DTa > DNb, DHf > DZr and DU > DTh. Partition coefficients for some polyvalent elements (Sb, W, and Co) were sensitive to oxygen fugacity. Melt composition exerts a strong influence on HFSE partition coefficients. With increasing polymerization of the melt, rutile/melt partition coefficients for the high field strength elements Zr, Hf, Nb and Ta increase about an order of magnitude. However, DNb/DTa and DHf/DZr are not significantly affected by melt composition. Because DU ? DTh, partial melting of rutile-bearing eclogite in subducted lithosphere may cause excesses of 230Th over 238U in some island arc lavas, whereas dehydration of subducted lithosphere may cause excesses of 238U over 230Th. From our partitioning results we infer partition coefficients for protactinium (Pa) which we predict to be much lower than previously anticipated. Contrary to previous studies, our data imply that rutile should not significantly influence observed 231Pa-235U disequilibria in certain volcanic rocks.  相似文献   

20.
攀枝花二叠纪火山岩发育有玄武岩和粗面岩的基性和碱性两个端元,区域上明显缺失中间过渡类型。玄武岩SiO_2含量处于45.65%~49.32%范围内,粗面岩SiO_2含量介于64.39%~69.17%之间,构成经典的"双峰式"火山岩特征组合。两者均具有富Na、贫K、轻稀土富集、轻重稀土明显分馏的特征。特征微量元素Nb/Ta、Th/Ta、Th/U比值变化相对较小,玄武岩分别为15.16、2.70和4.13,粗面岩分别为15.40、2.55和4.12,显示两者具有相似的地球化学属性。微量元素特征显示,除了Ti和Y等少数高场强元素不协调以外,玄武岩与粗面岩绝大多数微量元素变化规律相似,且Rb、Ce、Y、Nb、Hf、Ta等元素与洋岛玄武岩(OIB)特征一致,说明它们具有地幔柱构造系统下的岩浆属性,岩浆源于石榴石二辉橄榄岩岩石圈地幔的部分熔融。结合前人资料,攀枝花二叠纪双峰式火山岩的厘定,不仅暗示了岩浆形成于拉张的裂谷构造环境,也为西南地区二叠纪峨眉山大火成岩地幔柱成因提供支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号