首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Observations and numerical magnetohydrodynamic (MHD) simulations indicate the existence of outflows and ordered large-scale magnetic fields in the inner region of hot accretion flows. In this paper, we present the self-similar solutions for advection-dominated accretion flows (ADAFs) with outflows and ordered magnetic fields. Stimulated by numerical simulations, we assume that the magnetic field has a strong toroidal component and a vertical component in addition to a stochastic component. We obtain the self-similar solutions to the equations describing the magnetized ADAFs, taking into account the dynamical effects of the outflow. We compare the results with the canonical ADAFs and find that the dynamical properties of ADAFs such as radial velocity, angular velocity and temperature can be significantly changed in the presence of ordered magnetic fields and outflows. The stronger the magnetic field is, the lower the temperature of the accretion flow will be and the faster the flow rotates. The relevance to observations is briefly discussed.  相似文献   

2.
3.
We considered the effects of convection on the radiatively inefficient accretion flows (RIAF) in the presence of resistivity and toroidal magnetic field. We discussed the effects of convection on transports of angular momentum and energy. We established two cases for the resistive and magnetized RIAFs with convection: assuming the convection parameter as a free parameter and using mixing-length theory to calculate convection parameter. A self-similar method is used to solve the integrated equations that govern the behavior of the presented model. The solutions show that the accretion and rotational velocities decrease by adding the convection parameter, while the sound speed increases. Moreover, by using mixing-length theory to calculate convection parameter, we found that the convection can be important in RIAFs with magnetic field and resistivity.  相似文献   

4.
In this paper, we explore the radial structure of radiatively inefficient accretion flows (RIAFs) in the presence of an ordered magnetic field and convection. We assume the magnetic field has the toroidal and vertical components. We apply the influences of convection on equations of angular momentum and energy. The convective instability can transport the angular momentum inward or outward. We establish two cases for consideration of the effects of convection parameter on magnetized RIAFs. In the first case, we assume the convection parameter as a free parameter and in the other case we calculate convection parameter through use of mixing length theory. In both cases, the solutions show that a magnetized RIAF is very sensitive to the convection parameter and transport direction of angular momentum due to convection. Moreover, we show that the convection strength strongly depends on magnetic field and viscosity.  相似文献   

5.
The observation of the hot gas surrounding Sgr A * and a few other nearby galactic nuclei imply that electron and proton mean free paths are comparable to the gas capture radius. So, the hot accretion flows are likely to proceed under week-collision conditions. Hence, thermal conduction has been suggested as a possible mechanism by which the sufficient extra heating is provided in hot advection-dominated accretion flow (ADAF) accretion discs. We consider the effects of thermal conduction in the presence of a toroidal magnetic field in an ADAF around a compact object. For a steady-state structure of such accretion flows, a set of self-similar solutions are presented. We find two types of solutions which represent high and slow accretion rate. They have different behaviours with saturated thermal conduction parameter, φ.  相似文献   

6.
We present self-similar solutions for advection-dominated accretion flows with thermal conduction in the presence of outflows. Possible effects of outflows on the accretion flow are parametrized and a saturated form of thermal conduction, as is appropriate for the weakly-collisional regime of interest, is included in our model. While the cooling effect of outflows is noticeable, thermal conduction provides an extra heating source. In comparison to accretion flows without winds, we show that the disc rotates faster and becomes cooler because of the angular momentum and energy flux which are taking away by the winds. But thermal conduction opposes the effects of winds and not only decreases the rotational velocity, but increases the temperature. However, reduction of the surface density and the enhanced accretion velocity are amplified by both of the winds and the thermal conduction. We find that for stronger outflows, a higher level of saturated thermal conduction is needed to significantly modify the physical profiles of the accretion flow.  相似文献   

7.
A study is made of axisymmetric, low sonic-Mach-number flows of a viscous fluid with angular momentum outside of a black-hole. The viscosity is an eddy viscosity due to turbulence in the sheared flows. Self-similar solutions arise naturally, reducing the Navier-Stokes equations to a set of nonlinear ordinary differential equations. These equations are solved analytically for flows of constant specific angular momentum and numerically for more general flows. For flows with non-constant specific angular momentum, the momentum flux density includes a planar discontinuity which is interpreted as an accretion disc. In general, two flow regions appear on each side of the disk, corresponding to accretion onto the disk and jet-like outflows along the ±z-axes. Physical interpretations of the solutions show that these flows arise in response to point sources of axial momentum at the origin directed in the ±z-directions. The power needed to maintain this momentum input is assumed to come from the mass accretion onto the black hole.The hydrodynamic flows are generalized to include a magnetic field. In the limit of infinite electrical conductivity, the possible types of flow patterns are the same as in hydrodynamic case. The magnetic field alters the relative amounts of reversible and irreversible momentum and angular momentum transport by the flow. For a flow with turbulent viscosity, the magnetic field acts to reduce the level of the turbulence and the effective value of the eddy viscosity.  相似文献   

8.
9.
The aim of this work is to investigate the effect of the presence of a magnetic Prandtl number on the structure of an accretion flow with a bipolar outflow by focusing on the density structure. Two cold and hot classes are considered for accretion flows. According to the self-similar assumptions in the radial direction and boundary conditions as well, we solve the MHD equations along the θ-direction to obtain the density structure. In addition, we consider the results in two gas-pressure-dominated and radiation-pressure-dominated regions. The obtained results show that the existence of a magnetic prandtl number may lead to bump formation in hot accretion flows, which may have consequences for planet formation. Furthermore, some discontinuations in the density structure are seen at some regions resulting in the production of a gap in the case of cold accretion flows. The results of this work may be useful in the consideration of the Rossby wave instability in both classes of accretion flows.  相似文献   

10.
We briefly review recent developments in black hole accretion disk theory, emphasizing the vital role played by magnetohydrodynamic (MHD) stresses in transporting angular momentum. The apparent universality of accretion-related outflow phenomena is a strong indicator that large-scale MHD torques facilitate vertical transport of angular momentum. This leads to an enhanced overall rate of angular momentum transport and allows accretion of matter to proceed at an interesting rate. Furthermore, we argue that when vertical transport is important, the radial structure of the accretion disk is modified at small radii and this affects the disk emission spectrum. We present a simple model demonstrating how energetic, magnetically-driven outflows modify the emergent disk emission spectrum with respect to that predicted by standard accretion disk theory. A comparison of the predicted spectra against observations of quasar spectral energy distributions suggests that mass accretion rates inferred using the standard disk model may be severely underestimated.  相似文献   

11.
We have studied the structure of hot accretion flow bathed in a general large-scale magnetic field. We have considered magnetic parameters , where are the Alfvén sound speeds in three direction of cylindrical coordinate (r,φ,z). The dominant mechanism of energy dissipation is assumed to be the magnetic diffusivity due to turbulence and viscosity in the accretion flow. Also, we adopt a more realistic model for kinematic viscosity (ν=αc s H), with both c s and H as a function of magnetic field. As a result in our model, the kinematic viscosity and magnetic diffusivity (η=η 0 c s H) are not constant. In order to solve the integrated equations that govern the behavior of the accretion flow, a self-similar method is used. It is found that the existence of magnetic resistivity will increase the radial infall velocity as well as sound speed and vertical thickness of the disk. However the rotational velocity of the disk decreases by the increase of magnetic resistivity. Moreover, we study the effect of three components of global magnetic field on the structure of the disk. We found out that the radial velocity and sound speed are Sub-Keplerian for all values of magnetic field parameters, but the rotational velocity can be Super-Keplerian by the increase of toroidal magnetic field. Also, Our numerical results show that all components of magnetic field can be important and have a considerable effect on velocities and vertical thickness of the disk.  相似文献   

12.
We present the first-ever simulations of non-ideal magnetohydrodynamical (MHD) stellar winds coupled with disc-driven jets where the resistive and viscous accretion disc is self-consistently described. The transmagnetosonic, collimated MHD outflows are investigated numerically using the VAC code. Our simulations show that the inner outflow is accelerated from the central object hot corona thanks to both the thermal pressure and the Lorentz force. In our framework, the thermal acceleration is sustained by the heating produced by the dissipated magnetic energy due to the turbulence. Conversely, the outflow launched from the resistive accretion disc is mainly accelerated by the magneto-centrifugal force. We also show that when a dense inner stellar wind occurs, the resulting disc-driven jet have a different structure, namely a magnetic structure where poloidal magnetic field lines are more inclined because of the pressure caused by the stellar wind. This modification leads to both an enhanced mass ejection rate in the disc-driven jet and a larger radial extension which is in better agreement with the observations besides being more consistent.  相似文献   

13.
In this paper we review the possibilities for magnetohydrodynamic processes to handle the angular momentum transport in accretion disks. Traditionally the angular momentum transport has been considered to be the result of turbulent viscosity in the disk, although the Keplerian flow in accretion disks is linearly stable towards hydrodynamic perturbations. It is on the other hand linearly unstable to some magnetohydrodynamic (MHD) instabilities. The most important instabilities are the Parker and Balbus-Hawley instabilities that are related to the magnetic buoyancy and the shear flow, respectively. We discuss these instabilities not only in the traditional MHD framework, but also in the context of slender flux tubes, that reduce the complexity of the problem while keeping most of the stability properties of the complete problem. In the non-linear regime the instabilities produce turbulence. Recent numerical simulations describe the generation of magnetic fields by a dynamo in the resulting turbulent flow. Eventually such a dynamo may generate a global magnetic field in the disk. The relation of the MHD-turbulence to observations of accretion disks is still obscure. It is commonly believed that magnetic fields can be highly efficient in transporting the angular momentum, but emission lines, short-time scale variability and non-thermal radiation, which a stellar astronomer would take as signs of magnetic variability, are more commonly observed during periods of low accretion rates. Received October 12, 1995 / Accepted November 16, 1995  相似文献   

14.
15.
we examine the effect of thermal conduction on the observational properties of a super critical hot magnetized flow. We obtained self-similar solution of a magnetized disc when the thermal conduction plays an important role. Follow of our first paper (Ghasemnezhad et al. in Astrophys. J. 750, 2012 (hereafter GKA12)) we have extended our solution on the observational appearance of the disc to show how physical condition such as thermal conduction, viscosity, and advection will change the observed luminosity of the disc, Continuous spectra and surface temperature of such discs was plotted. We apply the present model to black-hole X-ray binary LMC X-3 and narrow-line seyfert 1 galaxies, which are supposed to be under critical accretion rate. Our results show clearly that the surface temperature is strongly depends on the thermal conduction, the magnetic field and advection parameter. However we see that thermal conduction acts to oppose the temperature gradient as we expect and observed luminosity of the disc will reduce when thermal conduction is high. We have shown that in this model the spectra of critical accretion flows strongly depends on the inclination angle.  相似文献   

16.
本文绘出了计算吸积盘边缘物质和角动量损失,以及它们对激变双星演化影响的理论模型.计算结果表明,紫外天文卫星(IUE)观测到的高速物质流是来源于吸积盘边缘,吸积盘边缘的角动量损失可以成为周期大于3小时的激变双星演化的物理机制.  相似文献   

17.
We study the effects of outflow/wind on the gravitational stability of accretion discs around supermassive black holes using a set of analytical steady-state solutions. Mass-loss rate by the outflow from the disc is assumed to be a power-law of the radial distance and the amount of the energy and the angular momentum which are carried away by the wind are parameterized phenomenologically. We show that the mass of the first clumps at the self-gravitating radius linearly decreases with the total mass-loss rate of the outflow. Except for the case of small viscosity and high accretion rate, generally, the self-gravitating radius increases as the amount of mass-loss by the outflow increases. Our solutions show that as more angular momentum is lost by the outflow, then reduction to the mass of the first clumps is more significant.  相似文献   

18.
The accretion of hot slowly rotating gas onto a supermassive black hole is considered. The important case where the velocities of turbulent pulsations at the Bondi radius r B are low, compared to the speed of sound c s, is studied. Turbulence is probably responsible for the appearance of random average rotation. Although the angular momentum at r B is low, it gives rise to the centrifugal barrier at a depth r c = l 2 /GM BHr B, that hinders supersonic accretion. The numerical solution of the problem of hot gas accretion with finite angular momentum is found taking into account electron thermal conductivity and bremsstrahlung energy losses of two temperature plasma for density and temperature near Bondi radius similar to observed in M87 galaxy. The saturation of the Spitzer thermal conductivity was also taken into account. The parameters of the saturated electron thermal conductivity were chosen similar to the parameters used in the numerical simulations of interaction of the strong laser beam radiation with plasma targets. These parameters are confirmed in the experiments. It is shown that joint action of electron thermal conductivity and free-free radiation leads to the effective cooling of accreting plasma and formation of the subsonic settling of accreting gas above the zone of a centrifugal barrier. A toroidal condensation and a hollow funnel that separates the torus from the black hole emerge near the barrier. The barrier divides the flow into two regions: (1) the settling zone with slow subKeplerian rotation and (2) the zone with rapid supersonic nearly Keplerian rotation. Existence of the centrifugal barrier leads to significant decrease of the accretion rate in comparison with the critical Bondi solution for γ = 5/3 for the same values of density and temperature of the hot gas near Bondi radius. Shear instabilities in the torus and related friction cause the gas to spread slowly along spirals in the equatorial plane in two directions.As a result, outer (r > r c) and inner (r < r c) disks are formed. The gas enters the immediate neighborhood of the black hole or the zone of the internal ADAF flow along the accretion disk (r < r c). Since the angular momentum is conserved, the outer disk removes outward an excess of angular momentum along with part of the matter falling into the torus. It is possible, that such outer Keplerian disk was observed by Hubble Space Telescope around the nucleus of the M87 galaxy in the optical emission lines. We discuss shortly the characteristic times during which the accretion of the gas with developed turbulence should lead to the changes in the orientation of the torus, accretion disk and, possibly, of the jet.  相似文献   

19.
Jets and outflows are thought to be an integral part of accretion phenomena and are associated with a large variety of objects. In these systems, the interaction of magnetic fields with an accretion disk and/or a magnetized central object is thought to be responsible for the acceleration and collimation of plasma into jets and wider angle flows. In this paper we present three-dimensional MHD simulations of magnetically driven, radiatively cooled laboratory jets that are produced on the MAGPIE experimental facility. The general outflow structure comprises an expanding magnetic cavity which is collimated by the pressure of an extended plasma background medium, and a magnetically confined jet which develops within the magnetic cavity. Although this structure is intrinsically transient and instabilities in the jet and disruption of the magnetic cavity ultimately lead to its break-up, a well collimated, “knotty” jet still emerges from the system; such clumpy morphology is reminiscent of that observed in many astrophysical jets. The possible introduction in the experiments of angular momentum and axial magnetic field will also be discussed.  相似文献   

20.
A time-independent solar-wind model is considered in the case of spherical symmetry and of radial magnetic field at the sun's surface. The energy equation includes besides the usual terms also the heat conduction and magnetic-energy convection (Poynting vector) terms. The dependence of the thermal conductivity on the magnetic field is taken into account. Numerical integrations of the basic equations were performed under the following assumptions: (i) close to the sun the magnetic field is the dominant azimuthal term and solid-body rotation is enforced; (ii) beyond the Alfvénic point the terms quadratic inB are neglected. The model leads to azimuthal velocity at earth between 0.6 and 2.7 km/sec, to radial velocity at earth between 350 and 500 km/sec, and to angular momentum loss of 5×1018 cm2/sec per unit mass of gas leaving the solar equator. The dependence of the solutions on the reduction of the effective thermal conductivity caused by the micro-structures in the solar wind suggests that the conditions at earth may be largely determined by a transition region in the solar wind, in which the conduction régime changes into an almost adiabatic flow.Presented at the Trieste Colloquium on Mass Loss from Stars, September 12–16, 1968.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号