首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Fragility analysis for highway bridges has become increasingly important in the risk assessment of highway transportation networks exposed to seismic hazards. This study introduces a methodology to calculate fragility that considers multi-dimensional performance limit state parameters and makes a first attempt to develop fragility curves for a multi-span continuous (MSC) concrete girder bridge considering two performance limit state parameters: column ductility and transverse deformation in the abutments. The main purpose of this paper is to show that the performance limit states, which are compared with the seismic response parameters in the calculation of fragility, should be properly modeled as randomly interdependent variables instead of deterministic quantities. The sensitivity of fragility curves is also investigated when the dependency between the limit states is different. The results indicate that the proposed method can be used to describe the vulnerable behavior of bridges which are sensitive to multiple response parameters and that the fragility information generated by this method will be more reliable and likely to be implemented into transportation network loss estimation.  相似文献   

2.
为研究不同设计参数对曲线梁桥地震响应的影响以指导结构抗震设计,对不同支承约束曲线梁桥地震响应及地震需求敏感性进行分析。采用增量动力分析(IDA)方法对比分析了不同支承约束曲线梁桥的结构地震响应变化趋势;采用Tornado图形法对不同结构参数影响程度进行了排序,找出了对结构地震需求影响显著的参数。结果表明:采用板式橡胶支座桥梁因支座易发生滑移而导致上部结构位移较大,但降低了下部结构响应,设置固定墩后,下部结构损伤显著增加;对于采用板式橡胶支座和铅芯橡胶支座的曲线梁桥,墩高及跨径对墩底曲率需求影响较大,而对于固定墩为墩梁固结形式和采用盆式橡胶支座的曲线梁桥,跨径及跨数对墩底曲率需求影响较大;对于采用不同支承约束的曲线梁桥,墩高和曲率半径对桥台位移需求影响较大,仅次于地震动参数PGA。  相似文献   

3.
为进一步评估隔震曲线梁桥在地震激励下的抗震性能,从地震易损性角度出发并兼顾考虑地震激励方向对其易损性的影响。利用APDL建立采用板式橡胶支座的隔震曲线梁桥有限元模型,从PEER中选取同一地震事件中的近断层地震动,按规范规定比例输入水平双向地震动进行非线性动力时程分析,结合地震响应与损伤指标计算得到各构件地震易损性曲线;考虑地震激励方向的变化,通过MATLAB编程绘制得到桥梁结构构件(桥墩与支座)以及整体系统的地震易损性曲面,分析探讨地震激励方向对隔震曲线梁桥易损性的影响。结果表明:不同极限状态下各桥墩切向损伤条件概率明显大于其径向,各支座的切向与径向易损性相差不大,但仍是各支座的切向易损性略大于径向易损性;桥梁各构件(桥墩与支座)切向易损性对地震激励方向均表现出很强依赖性,而径向易损性对其的依赖性相对较弱,且伴随损伤等级的提高,构件易损性对地震激励方向更加敏感;桥梁整体系统易损性对地震激励方向的变化不太敏感,且因各构件响应之间的相关性较高,其系统易损性更接近于易损性最大的构件——易损性下限;当进行隔震曲线梁桥抗震性能评估时,应考虑不同地震激励方向对其地震易损性的影响,从而使得易损性分析...  相似文献   

4.
碰撞作用直接影响到桥梁不同构件的地震响应,是桥梁抗震研究中一直关注的问题。针对地震作用下曲线梁桥因主梁面内转动而发生主梁与切向桥台和径向挡块碰撞的现象,以1座3跨预应力混凝土连续梁桥为例,采用非线性时程分析方法,对曲线连续梁桥的双向碰撞作用影响进行研究,并分析了不同减撞措施的效果。结果表明:考虑双向碰撞作用后,下部结构响应有明显增加,主梁转动现象变得复杂,曲线梁桥地震响应分析中应通过建立精细化模型来考虑主梁双向碰撞作用的影响;在切向桥台处设置限位拉锁装置能起到较好的减轻双向碰撞作用的影响,以及采用减隔震设计后,减撞效果更明显,桥梁抗震性能明显改善,但合理减撞措施设计参数应结合曲线梁桥约束体系及结构设计参数进行体系分析确定。  相似文献   

5.
曲线梁桥只有在某一特定方向输入地震动时,结构某点或某截面的内力(或应力)才能达到最大值,需要沿多个可能方向输入计算才能确定地震动最不利输入方向。根据隔震曲线梁桥受力特点,将桥梁上部结构和桥墩简化均具有两个水平自由度和一个围绕质量中心轴扭转自由度的堆积质量模型,建立双质点六自由度简化分析模型,通过求解曲线梁桥的动力学方程研究结构的动力特性和地震动行为。算例表明,双质点模型计算结果与传统的有限元模型基本一致,且计算方法简单,可以考虑各种敏感因素的影响,借助编程更适合提出规律性的设计方法。进而在双质点模型基础上应用MATLAB编程探讨多维地震作用下曲线梁桥地震波最不利输入方向的问题,针对不同参数的隔震曲线梁桥,改变相关参数后只需运行一次就可以实现最不利输入角度的确定,可为有限元法最不利地震波输入方向的确定提供参考,并大大减少多个方向输入试算的工作量。  相似文献   

6.
为研究曲率半径和近断层脉冲效应对大温差地区小半径曲线梁桥在地震作用下的动力响应和碰撞效应的影响规律,以某大温差地区曲线梁桥为研究对象,建立不同曲率半径的全桥非线性有限元模型,考虑温度变化对支座性能和伸缩缝间距的影响,开展桥梁地震响应分析.结果表明:随着主梁曲率半径增大,墩底内力响应逐渐增加,邻梁间碰撞效应逐渐增强;温度...  相似文献   

7.
为研究曲线桥梁在多维地震激励下考虑桩-土动力相互作用的地震响应特性,本文建立了空间桩-土脱离、摩阻和土体压缩非线性理论分析模型。为简化计算将该非线性弹簧模型进行线性化处理,结合有限元ANSYS分析平台建立了黄土场地的曲线桥仿真分析模型,对考虑桩-土相互作用的曲线桥进行了多维多工况数值分析,对比研究了曲线主梁跨中弯矩、墩底剪力和弯矩及桥墩顶位移的地震响应。结果表明:考虑桩-土相互作用的曲线桥梁主梁跨中内力与地震波输入方向密切相关,三维地震作用下主梁内力最大;各工况地震荷载作用下桥墩底部径向剪力响应比切向剪力响应大很多,而桥墩径向弯矩比切向弯矩略小;同一工况下不同桥墩顶切向位移响应大小相当,而径向位移差异较大。在进行非规则曲线桥梁抗震设计时,应充分考虑多维和单维地震激励输入工况。  相似文献   

8.
The focus of this study is the impact of the seismic excitation direction on the fragility of horizontally curved bridges. Nonlinear time history analyses are performed on a typical, curved concrete bridge in China using a set of real ground motions with different incident angles. To build reliable probabilistic seismic demand models, ten commonly used intensity measures (IMs) are assessed in terms of various metrics to determine the optimal IMs, which account for the influence of the seismic excitation directions. Subsequently, fragility surfaces with respect to both the optimal IM and incident angles are generated to qualify the fragility sensitivity for various components and the bridge system to the seismic excitation directions. Moreover, the rationality and applicability of the methods recommended by the Caltrans, Eurocode 8 and Chinese codes for determining the seismic excitation direction of curved bridges are evaluated. The results indicate that the excitation direction imposes a minor impact on the optimal IM rankings. Compared to structure-independent IMs, structure-dependent IMs are more appropriate for predicting the demands of horizontally curved concrete bridges. However, the seismic excitation direction significantly affects the component fragilities, and the level of the effect intensifies with increasing limit states. If the incident angle occurrence probability is not provided, the Chinese code method for the seismic excitation direction is more suitable for the horizontally curved concrete bridge fragility assessment, which has the advantages of computational efficiency when compared to the Caltrans code and relatively conservative results when compared to Eurocode 8.  相似文献   

9.
服役曲线梁桥常存在爬移病害。为探讨爬移病害程度对曲线梁桥抗震性能的影响规律,通过总结服役曲线梁桥爬移病害,确定以不同梁端爬移位移量作为描述服役曲线梁桥爬移状态的对比分析工况,并以一座三跨预应力混凝土曲线梁桥为例,采用MIDAS Civil建立有限元模型,考虑桩-土相互作用、双向碰撞效应及材料非线性,分析曲线梁桥支座及桥墩等主要受力构件地震响应规律,探讨爬移状态对服役曲线梁桥抗震性能影响。研究结果表明:主梁的爬移病害对桥梁的抗震性能会产生不利影响,会导致支座位移的增长,增加支座破坏的风险,从而增加桥梁上部结构碰撞效应及落梁风险;随着爬移位移的增加,桥墩的损伤状态可能由爬移前的无损伤转变为考虑爬移后的严重损伤状态。因此,在进行服役曲线梁桥抗震性能评估时应量化其爬移状态,并采用合理的措施对主梁的爬移进行限制。  相似文献   

10.
曲线桥梁在役期间可能面临地震灾害,导致结构损坏甚至坍塌,为了评估在役桥梁的抗震性能,提出基于损伤分析的曲线梁桥抗震性能评估方法。建立旧曲线梁桥有限元模型,基于损伤分析的原理,提出适合曲线梁桥地震响应特性的构件损伤模型,在全桥有限元模型中输入不同类型地震动,计算各构件的损伤指数,并结合旧桥检算系数,由各构件损伤指数综合得到桥梁的整体损伤指数。结果表明:不同地震动下主梁会发生碰撞破坏,桥梁两端的支座容易发生移位,桥墩沿横桥向或顺桥向均会产生位移;不同地震动对主梁、支座、桥墩等构件造成的损害程度有较大差异,各构件的地震响应会影响桥梁整体结构的抗震性能,其中桥墩对桥梁整体抗震性能的影响最大,桥墩位移超过极限值可能导致倒塌;主梁反复碰撞会加剧桥梁的破坏程度,桥梁两端支座在地震作用下更容易发生损坏。  相似文献   

11.
Masonry arch bridges are crucial elements in the railway transportation network throughout Europe. Although significant advances in seismic risk assessment of various bridge types have been made by developing fragility curves of generalized classes of structures, there are no comparable tools for masonry arch structures. In this context, this paper presents the construction of seismic fragility curves of single-span masonry bridges according to the limit analysis method. An iterative procedure is implemented to define the capacity curve of the equivalent single degree of freedom system through non-linear kinematic analysis. The process involves determination of the collapse mechanism, calculation of the limit load multiplier, and definition of the thrust line. The intrinsic variability of the seismic action is incorporated with the use of different sets of elastic spectra compatible with EC 8 Type-1 spectrum for various types of soil, with peak ground acceleration varying over the range 0.05–1.5 g. The fragility curves of the generalized classes of single-span masonry bridges are finally obtained from the effective ranges of the main geometric and material parameters affecting arch bridge capacity.  相似文献   

12.
Infrastructure owners and operators, or governmental agencies, need rapid screening tools to prioritize detailed risk assessment and retrofit resources allocation. This paper provides one such tool, for use by highway administrations, based on Bayesian belief network (BBN) and aimed at replacing so‐called generic or typological seismic fragility functions for reinforced concrete girder bridges. Resources for detailed assessments should be allocated to bridges with highest consequence of damage, for which site hazard, bridge fragility, and traffic data are needed. The proposed BBN based model is used to quantify seismic fragility of bridges based on data that can be obtained by visual inspection and engineering drawings. Results show that the predicted fragilities are of sufficient accuracy for establishing relative ranking and prioritizing. While the actual data and seismic hazard employed to train the network (establishing conditional probability tables) refer to the Italian bridge stock, the network structure and engineering judgment can easily be adopted for bridges in different geographical locations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Seismic fragility curves for fixed-base and base-isolated liquid storage tanks are developed under non-stationary earthquakes, and their seismic performance are compared. The correlation between different earthquake intensity measure (IM) parameters and peak response quantities of the base-isolated liquid storage tanks are investigated. The failure criteria are chosen based on (1) the elastic buckling strength of the tank wall, which is defined in terms of critical base shear and critical overturning moment, and (2) in terms of the critical isolation displacement. The uncertainty involved is considered in the earthquake characteristics. Non-stationary earthquake ground motions are generated using Monte Carlo (MC) simulation. Influence of the isolator characteristic parameters and modeling approaches on the seismic fragility of the base-isolated liquid storage tanks is also investigated. Peak ground acceleration is found to be the well correlated IM parameter with the peak response quantities of the base-isolated liquid storage tanks. Substantial decrease in the seismic fragility of the base-isolated liquid storage tanks is observed as compared to the fixed-base tanks. Significant influence of the isolator characteristic parameters on the seismic fragility of the base-isolated liquid storage tanks are reported in the present study.  相似文献   

14.
Fragility curves are found to be useful tools for predicting the extent of probable damage. They show the probability of highway structure damage as a function of strong motion parameters, and they allow the estimation of a level of damage probability for a known ground motion index. In this study, an analytical approach was adopted to develop the fragility curves for highway bridges based on numerical simulation. Four typical RC bridge piers and two RC bridge structures were considered, of which one was a non‐isolated system and the other was an isolated system, and they were designed according to the seismic design code in Japan. From a total of 250 strong motion records, selected from Japan, the United States, and Taiwan, non‐linear time history analyses were performed, and the damage indices for the bridge structures were obtained. Using the damage indices and ground motion parameters, fragility curves for the four bridge piers and the two bridge structures were constructed assuming a lognormal distribution. It was found that there was a significant effect on the fragility curves due to the variation of structural parameters. The relationship between the fragility curve parameters and the over‐strength ratio of the structures was also obtained by performing a linear regression analysis. It was observed that the fragility curve parameters showed a strong correlation with the over‐strength ratio of the structures. Based on the observed correlation between the fragility curve parameters and the over‐strength ratio of the structures, a simplified method was developed to construct the fragility curves for highway bridges using 30 non‐isolated bridge models. The simplified method may be a very useful tool to construct the fragility curves for non‐isolated highway bridges in Japan, which fall within the same group and have similar characteristics. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
为研究近断层地震动对曲线连续梁桥地震响应及碰撞效应的影响,采用非线性时程分析法,分别研究脉冲效应、上盘效应及方向性效应对某三跨曲线连续梁桥支座位移、桥墩内力及邻梁间碰撞力的影响;通过支座隔震率的对比分析,探究不同类型近断层地震动下地震响应产生差异的原因。研究结果表明:脉冲效应、上盘效应和方向性效应均会增大曲线连续梁桥地震响应,脉冲效应的影响尤为显著;脉冲效应和方向性效应削弱了高阻尼橡胶支座的隔震特性,而上盘效应对桥梁响应的影响仅与上盘地震动自身特性有关;综合来看,脉冲效应对曲线梁碰撞响应影响最明显,上盘效应影响不大。  相似文献   

16.
Fragility curves of concrete bridges retrofitted by column jacketing   总被引:1,自引:0,他引:1  
The Northridge earthquake inflicted various levels of damage upon a large number of Caltrans’ bridges not retrofitted by column jacketing. In this respect, this study represents results of fragility curve development for two (2) sample bridges typical in southern California, strengthened for seismic retrofit by means of steel jacketing of bridge columns. Monte Carlo simulation is performed to study nonlinear dynamic responses of the bridges before and after column retrofit. Fragility curves in this study are represented by lognormal distribution functions with two parameters and developed as a function of PGA. The sixty (60) ground acceleration time histories for the Los Angeles area developed for the Federal Emergency Management Agcncy (FEMA) SAC (SEAOC-ATC-CUREe) steel project are used for the dynamic analysis of the bridges. The improvement in the fragility with steel jacketing is quantified by comparing fragility curves of the bridge before and after column retrofit. In this first attempt to formulate the problem of fragility enhancement, the quantification is made by comparing the median values of the fragility curves before and after the retrofit. Under the hypothesis that this quantification also applies to empirical fragility curves developed on the basis of Northridge earthquake damage, the enhanced version of the empirical curves is developed for the ensuing analysis to determine the enhancement of transportation network performance due to the retrofit. Supported by: MCEER/FHWA under Contract No.DTFH 61-98-C-00094 and Caltrans under Contract No.59A0304  相似文献   

17.
This study focuses on understanding and evaluating the effect of vehicle bridge interaction (VBI) on the response and fragility of bridges subjected to earthquakes. A comprehensive study on the effect of VBI on bridge seismic performance is conducted, providing metamodels for seismic response and fragility estimates for bridges in the presence of various types of vehicles. For this purpose, the performance of multispan simply supported concrete girder bridges with varying design and geometric parameters is assessed with 3 different types of stationary trucks placed atop them. To delineate the effects of VBI and additional truck mass, the trucks are modeled in 2 different ways—with additional masses and suspension springs (ie, with VBI) and using additional masses only (without VBI). The results provide insight on VBI effects, such as the fact that when bridge and vehicle mode shapes are in‐phase, the component responses increase and vice versa; additionally, the presence of a heavy axle near a bent increases component responses. Sensitivity analyses are also performed to determine the bridge parameters that significantly alter the component responses in the presence of vehicles. Furthermore, differences in component responses and fragilities highlight that modeling vehicles with additional masses alone is not sufficient to model the effect of truck presence on the seismic response of bridges. Finally, this study concludes that depending on the characteristics of the bridge and the vehicle, presence of a vehicle atop the bridge during an earthquake may be either beneficial or detrimental to bridge performance.  相似文献   

18.
立交桥曲线箱梁动力分析模型   总被引:1,自引:0,他引:1  
提出了1种双脊骨空间有限元模型,用来模拟和分析立交桥曲线箱梁的固有振动特性和动力反应。将曲线箱梁分别看作是由空间梁或壳组成的空间结构,并分别采用分段空间直梁模型、壳元模型和实体元模型进行模拟,分析相同曲线箱梁的振动特性和地震时程反应,通过与双脊骨模型的计算结果的比较验证双脊骨模型的可靠性。初步研究了在相同曲率半径下不同跨度的曲线箱梁的固有振动特性,分析了双脊骨模型的脊骨间距、横向连接间距等参数对模型计算结果的影响。研究结果可为曲线梁桥抗震性能和地震反应分析提供参考。  相似文献   

19.
为了提高大跨度桥梁的抗震性能水平,基于粘滞阻尼器的结构减震控制技术成为专家学者研究的重点和工程设计人员首先考虑的抗震设防措施。现有成果主要集中在大跨度公路斜拉桥的研究和应用,在山区的非规则高墩钢桁连续梁桥研究的较少。以云南省元江大桥为例,采用Midas/civil建立弹性分析的有限元模型,对元江大桥进行了动力特性分析。采用快速非线性时程分析方法对粘滞阻尼器参数进行了优化分析,并且总结了粘滞阻尼器参数对高墩连续梁桥的减震作用规律。最后,通过有控和无控结构的地震动响应对比分析,评价了安装阻尼器后的结构主控部位的减震效果。结果表明:减震控制提高了结构的安全性。  相似文献   

20.
Bridge fragility curves, which express the probability of a bridge reaching a certain damage state for a given ground motion parameter, play an important role in the overall seismic risk assessment of a transportation network. Current analytical methodologies for generating bridge fragility curves do not adequately account for all major contributing bridge components. Studies have shown that for some bridge types, neglecting to account for all of these components can lead to a misrepresentation of the bridges' overall fragilities. In this study, an expanded methodology for the generation of analytical fragility curves for highway bridges is presented. This methodology considers the contribution of the major components of the bridge, such as the columns, bearings and abutments, to its overall bridge system fragility. In particular, this methodology utilizes probability tools to directly estimate the bridge system fragility from the individual component fragilities. This is illustrated using a bridge whose construction and configuration are typical to the Central and Southeastern United States and the results are presented and discussed herein. This study shows that the bridge as a system is more fragile than any one of the individual components. Assuming that the columns represent the entire bridge system can result in errors as large as 50% at higher damage states. This provides support to the assertion that multiple bridge components should be considered in the development of bridge fragility curves. The findings also show that estimation of the bridge fragilities by their first‐order bounds could result in errors of up to 40%. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号