首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 686 毫秒
1.
This paper reports on an investigation of the seismic response of base-isolated reinforced concrete buildings, which considers various isolation system parameters under bidirectional near-fault and far-fault motions. Three-dimensional models of 4-, 8-, and 12-story base-isolated buildings with nonlinear effects in the isolation system and the superstructure are investigated, and nonlinear response history analysis is carried out. The bounding values of isolation system properties that incorporate the aging effect of isolators are also taken into account, as is the current state of practice in the design and analysis of base-isolated buildings. The response indicators of the buildings are studied for near-fault and far-fault motions weight-scaled to represent the design earthquake (DE) level and the risk-targeted maximum considered earthquake (MCER) level. Results of the nonlinear response history analyses indicate no structural damage under DE-level motions for near-fault and far-fault motions and for MCER-level far-fault motions, whereas minor structural damage is observed under MCER-level near-fault motions. Results of the base-isolated buildings are compared with their fixed-base counterparts. Significant reduction of the superstructure response of the 12-story base-isolated building compared to the fixed-base condition indicates that base isolation can be effectively used in taller buildings to enhance performance. Additionally, the applicability of a rigid superstructure to predict the isolator displacement demand is also investigated. It is found that the isolator displacements can be estimated accurately using a rigid body model for the superstructure for the buildings considered.  相似文献   

2.
A widespread approach for the prediction of the structural response as function of the ground motion intensity is based on the Cloud Analysis: once a set of points representing the engineering demand parameter (EDP) values is obtained as function of the selected seismic intensity measure (IM) for a collection of unscaled earthquake records, a regression analysis is performed by assuming a specific functional form to correlate these variables. Within this framework, many studies have been devoted so far to evaluate the effectiveness of several IMs in estimating the EDPs through intrinsically linear functional forms, but it is still unknown to what extent the use of the linear regression analysis affects the quality of the final results. This paper is intended to provide an answer to such question by means of the calibration of suitable nonlinear combinations of scalar IMs, whose statistical performances are compared with those obtained by using the functional form usually adopted for linear regression-based calibrations. Specifically, the Evolutionary Polynomial Regression technique is adopted to calibrate nonlinear regression models for the prediction of maximum inter-story drift ratio and maximum floor acceleration. The comparative analysis is performed for fixed-base and base-isolated reinforced concrete buildings subjected to ordinary or pulse-like ground motion taking into account accuracy, complexity, efficiency and sufficiency. Final results demonstrate that the linear regression analysis is suitable for fixed-base reinforced concrete buildings, but nonlinear regression models provide better estimates. On the other hand, the linear regression analysis can introduce a significant bias in the seismic response prediction of base-isolated buildings, and nonlinear regression models are deemed more appropriate.  相似文献   

3.
A common effective method to reduce the seismic response of liquid storage tanks is to isolate them at base using base-isolation systems. It has been observed that in many earthquakes, the foregoing systems significantly affect on the whole system response reduction. However, in exceptional cases of excitation by long-period shaking, the base-isolation systems could have adverse effects. Such earthquakes could cause tank damage due to excessive liquid sloshing. Therefore, the numerical seismic response of liquid storage tanks isolated by bilinear hysteretic bearing elements is investigated under long-period ground motions in this research. For this purpose, finite shell elements for the tank structure and boundary elements for the liquid region are employed. Subsequently, fluid–structure equations of motion are coupled with governing equation of base-isolation system, to represent the whole system behavior. The governing equations of motion of the whole system are solved by an iterative and step-by-step algorithm to evaluate the response of the whole system to the horizontal component of three ground motions. The variations of seismic shear forces, liquid sloshing heights, and tank wall radial displacements are plotted under various system parameters such as the tank geometry aspect ratio (height to radius), and the flexibility of the isolation system, to critically examine the effects of various system parameters on the effectiveness of the base-isolation systems against long-period ground motions. From these analyses, it may be concluded that with the installation of this type of base-isolation system in liquid tanks, the dynamic response of tanks during seismic ground motions can be considerably reduced. Moreover, in the special case of long-period ground motions, the seismic response of base-isolated tanks may be controlled by the isolation system only at particular conditions of slender and broad tanks. For the case of medium tanks, remarkable attentions would be required to be devoted to the design of base-isolation systems expected to experience long-period ground motions.  相似文献   

4.
立式储液罐地震破坏快速评估方法   总被引:1,自引:0,他引:1  
本文采用大型有限元程序ANSYS对立式储液罐的地震反应进行了非线性数值分析,考虑了罐体和内部液体的相互作用,得到了3个不同容积的储罐,在不同峰值的地震动时程输入下的反应结果。结合地震灾害中立式储罐的地震破坏现象和特点,以及现有的立式储罐地震破坏预测方法,提出了立式储罐的地震破坏快速评估方法。  相似文献   

5.
Vector-valued fragility functions for seismic risk evaluation   总被引:4,自引:4,他引:0  
This article presents a method for the development of vector-valued fragility functions, which are a function of more than one intensity measure (IM, also known as ground-motion parameters) for use within seismic risk evaluation of buildings. As an example, a simple unreinforced masonry structure is modelled using state-of-the-art software and hundreds of nonlinear time-history analyses are conducted to compute the response of this structure to earthquake loading. Dozens of different IMs (e.g. peak ground acceleration and velocity, response spectral accelerations at various periods, Arias intensity and various duration and number of cycle measures) are considered to characterize the earthquake shaking. It is demonstrated through various statistical techniques (including Receiver Operating Characteristic analysis) that the use of more than one IM leads to a better prediction of the damage state of the building than just a single IM, which is the current practice. In addition, it is shown that the assumption of the lognormal distribution for the derivation of fragility functions leads to more robust functions than logistic, log-logistic or kernel regression. Finally, actual fragility surfaces using two pairs of IMs (one pair are uncorrelated while the other are correlated) are derived and compared to scalar-based fragility curves using only a single IM and a significant reduction in the uncertainty of the predicted damage level is observed. This type of fragility surface would be a key component of future risk evaluations that take account of recent developments in seismic hazard assessment, such as vector-valued probabilistic seismic hazard assessments.  相似文献   

6.
In seismic risk assessment of structures, fragility functions are the probabilistic characterization of vulnerability at the component and/or structural level, expressing the probability of failure as a function of a ground motion intensity measure (IM). Fragility curves, in general, are structure- and site-specific, thus a comparison of fragility curves, then of vulnerability, is not straightforward across multiple structures. Also, it could be the case that hazard at a site of interest is not available for the IM originally considered in the fragility assessment. These situations require to convert fragility curves from an original IM to a target one. The present study addresses a hazard-consistent probabilistic framework for converting spectral acceleration-based IMs from an original IM to a target IM at a given site. In particular, three conversion cases, under different assumptions on the explanatory power of the involved IMs with respect to structural failure, are discussed: (a) a vector-valued IM consisting of the original and target IMs, magnitude, and source-to-site distance; (b) a vector-valued IM consisting of the original and target IMs; and (c) the original (scalar) IM only, assuming that structural response, given the IM, is statistically independent of the other ground motion variables. In this framework, the original fragility functions are characterized using the state-of-the-art methods in performance-based earthquake engineering, then the fragility curves as a function of the target IM are evaluated through applications of the probability calculus rules, ensuring consistency with the seismic hazard at the site of interest. The conversion strategy is illustrated through the applications to three-, six-, and nine-story Italian code-conforming reinforced concrete buildings designed for a high-hazard site in Italy. The study shows that, in most of the cases, the converted fragility curves have agreement with the reference curves directly developed in terms of the target IM. Cases in which least agreement was found are likely due to the models used to obtain the terms required by the conversion equations.  相似文献   

7.
This study examines the roles of soil-structure interaction (SSI), higher modes, and damping in a base-isolated structure built on multiple layers of soil overlying a half space. Closed-form solutions for the entire system, including a superstructure, seismic isolator, and numerous soil layers overlying a half-space, were obtained. The formulations obtained in this study simply in terms of well-known frequencies and mechanical impedance ratios can explicitly interpret the dynamic behavior of a base-isolated structure interacting with multiple soil layers overlying a half-space. The key factors influencing the performance of the isolation system are the damping ratio of the isolator and the ratio of the natural frequency of the fixed-base structure to that of the isolated structure by assuming that the superstructure moves as a rigid body. This study reveals that higher damping in the base isolator is unfavorable to higher mode responses that usually dominate the responses of the superstructure and that the damping mechanism plays an important role in transmitting energy in addition to absorbing energy. It is also concluded that it is possible to design a soft soil layer as an isolation system for isolating vibration energy.  相似文献   

8.
The effects of seismic pounding on the structural performance of a base-isolated reinforced concrete (RC) building are investigated, with a view to evaluate the influence of adjacent structures and separation between structures on the pounding response. In particular, seismic pounding of a typical four-story base-isolated RC building with retaining walls at the base and with a four-story fixed-base RC building is studied. Three-dimensional finite element analyses are carried out considering material and geometric nonlinearities. The structural performance of the base-isolated building is evaluated considering various earthquake excitations. It is found that the performance of the base-isolated building is substantially influenced by the pounding. The investigated base-isolated building shows good resistance against shear failure and the predominant mode of failure due to pounding is flexural. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A performance‐based earthquake engineering approach is developed for the seismic risk assessment of fixed‐roof atmospheric steel liquid storage tanks. The proposed method is based on a surrogate single‐mass model that consists of elastic beam‐column elements and nonlinear springs. Appropriate component and system‐level damage states are defined, following the identification of commonly observed modes of failure that may occur during an earthquake. Incremental dynamic analysis and simplified cloud are offered as potential approaches to derive the distribution of response parameters given the seismic intensity. A parametric investigation that engages the aforementioned analysis methods is conducted on 3 tanks of varying geometry, considering both anchored and unanchored support conditions. Special attention is paid to the elephant's foot buckling formation, by offering extensive information on its capacity and demand representation within the seismic risk assessment process. Seismic fragility curves are initially extracted for the component‐level damage states, to compare the effect of each analysis approach on the estimated performance. The subsequent generation of system‐level fragility curves reveals the issue of nonsequential damage states, whereby significant damage may abruptly appear without precursory lighter damage states.  相似文献   

10.
This paper proposes an aseismic design concept in which the superstructure of a base-isolated building is divided into several segments. Each segment may comprise a few storeys and is interconnected by additional vibrational isolation systems. The dynamic characteristics of the segmental buildings are investigated. The optimum parameters of the vibration isolation systems are determined by minimizing the mean square acceleration response. The seismic response of a typical segmental building subjected to the N—S component of the 1940 El Centro earthquake input is evaluated and compared with the responses of the corresponding fixed-base and conventional base-isolated buildings. The comparisons show that, when the superstructure is segmented, while the acceleration response in the superstructure remains as small as that in the conventional base-isolated building, the displacement across the base isolation system at foundation level is substantially reduced.  相似文献   

11.
近断层脉冲型地震动作用下隔震结构地震反应分析   总被引:17,自引:5,他引:17  
隔震结构在远震场地减震效果良好,但是近断层地震动的明显的长周期速度和位移脉冲运动可能对隔震建筑等长周期结构的抗震性能和设计带来不利影响,需要深入探讨。本文首先讨论近断层地震动的长周期脉冲运动特征,然后以台湾集集地震8条典型近震记录和其它4条常用近震记录以及4条远震记录作为地震动输入,对两幢安装铅芯橡胶隔震支座的钢筋混凝土框架隔震结构进行非线性地震反应时程分析,通过比较探讨了算例计算结果,定量说明隔震结构的近震脉冲效应显著,是隔震设计不容忽视的问题。  相似文献   

12.
The aim of this paper is to evaluate the effectiveness of a concave sliding bearing system for the seismic protection of liquefied gas storage tanks through a seismic fragility analysis. An emblematic case study of elevated steel storage tanks, which collapsed during the 1999 ?zmit earthquake at Habas Pharmaceutics plant in Turkey, is studied. Firstly, a fragility analysis is conducted for the examined tank based on a lumped-mass stick model, where the nonlinear shear behaviour of support columns is taken into account by using a phenomenological model. Fragility curves in terms of an efficient intensity measure for different failure modes of structural components demonstrate the inevitable collapse of the tank mainly due to insufficient shear strength of the support columns. A seismic isolation system based on concave sliding bearings, which has been demonstrated a superior solution to seismically protect elevated tanks, is then designed and introduced into the numerical model, accounting for its non-linear behaviour. Finally, a vulnerability analysis for the isolated tank is performed, which proves a high effectiveness of the isolation system in reducing the probability of failure within an expected range of earthquake intensity levels.  相似文献   

13.
The seismic response analysis of a base-isolated liquid storage tank on a half-space was examined using a coupling method that combines the finite elements and boundary elements. The coupled dynamic system that considers the base isolation system and soil–structure interaction effect is formulated in time domain to evaluate accurately the seismic response of a liquid storage tank. Finite elements for a structure and boundary elements for liquid are coupled using equilibrium and compatibility conditions. The base isolation system is modeled using the biaxial hysteretic element. The homogeneous half-space is idealized using the simple spring-dashpot model with frequency-independent coefficients. Some numerical examples are presented to demonstrate accuracy and applicability of the developed method.Consequently, a general numerical algorithm that can analyze the dynamic response of base-isolated liquid storage tanks on homogeneous half-space is developed in three-dimensional coordinates and dynamic response analysis is performed in time domain.  相似文献   

14.
大型储液罐摩擦摆基底隔震控制分析   总被引:2,自引:1,他引:1  
针对弹性钢制圆柱储液罐,基于Haroun-Housner模型,将连续流体质量等效为3种集中质量,分别为:对流质量、脉冲质量和刚性质量,与这些集中质量连接的相应刚度取值依赖于储罐壁和流体质量.在水平地震激励下,在储罐底部加摩擦单摆支座,给出了简化的液体 - 储罐-隔震支座的力学分析模型,建立了摩擦摆支座基底隔震体系的振动控制方程,并利用Newmark逐步积分法对控制方程进行了数值求解,研究了摩擦摆支座基底隔震的储液罐地震反应,验证了FPB隔震的有效性.  相似文献   

15.
This paper presents a method for seismic vulnerability analysis of bridge structures based on vector-valued intensity measure(v IM), which predicts the limit-state capacities efficiently with multi-intensity measures of seismic event. Accounting for the uncertainties of the bridge model, ten single-bent overpass bridge structures are taken as samples statistically using Latin hypercube sampling approach. 200 earthquake records are chosen randomly for the uncertainties of ground motions according to the site condition of the bridges. The uncertainties of structural capacity and seismic demand are evaluated with the ratios of demand to capacity in different damage state. By comparing the relative importance of different intensity measures, Sa(T1) and Sa(T2) are chosen as v IM. Then, the vector-valued fragility functions of different bridge components are developed. Finally, the system-level vulnerability of the bridge based on v IM is studied with DunnettSobel class correlation matrix which can consider the correlation effects of different bridge components. The study indicates that an increment IMs from a scalar IM to v IM results in a significant reduction in the dispersion of fragility functions and in the uncertainties in evaluating earthquake risk. The feasibility and validity of the proposed vulnerability analysis method is validated and the bridge is more vulnerable than any components.  相似文献   

16.
A method for analyzing the earthquake response of elastic, cylindrical liquid storage tanks under vertical excitations is presented. The method is based on superposition of the free axisymmetrical vibrational modes obtained numerically by the finite element method. The validity of these modes has been checked analytically and the formulation of the load vector has been confirmed by a static analysis. Two forms of ground excitations have been used: step functions and recorded seismic components. The radial and axial displacements are computed and the corresponding stresses are presented. Both fixed and partly fixed tanks are considered to evaluate the effect of base fixation on tank behaviour. Finally, tank response under the simultaneous action of both vertical and lateral excitations is calculated to evaluate the relative importance of the vertical component of ground acceleration on the overall seismic behaviour of liquid storage tanks.  相似文献   

17.
Fragility curves constitute the cornerstone in seismic risk evaluations and performance-based earthquake engineering. They describe the probability of a structure to experience a certain damage level for a given earthquake intensity measure, providing a relationship between seismic hazard and vulnerability. In this paper a numerical approach is applied to derive fragility curves for tunnel shafts built in clays, a component that is found in several critical infrastructure such as urban metro networks, airport facilities or water and waste water projects. The seismic response of a representative tunnel shaft is assessed using tridimensional finite difference non-linear analyses carried out with the program FLAC3D, under increasing levels of seismic intensity. A hysteretic model is used to simulate the soil non-linear behavior during the seismic event. The effect of soil conditions and ground motion characteristics on the soil-structure system response is accounted for in the analyses. The damage is defined based on the exceedance of the concrete wall shaft capacity due to the developed seismic forces. The fragility curves are estimated in terms of peak ground acceleration at a rock or stiff soil outcrop, based on the evolution of damage with increasing earthquake intensity. The proposed fragility models allows the characterization of the seismic risk of a representative tunnel shaft typology and soil conditions considering the associated uncertainties, and partially fill the gap of data required in performing a risk analysis assessment of tunnels shafts.  相似文献   

18.
A study of floor response spectra for a base-isolated multi-storey structure under sinusoidal and seismic ground excitations is carried out. Several base isolation systems including the laminated rubber bearing, the pure-friction, the resilient-friction, the Électricité de France and the sliding resilient-friction systems are considered. A sinusoidal ground acceleration and several earthquake accelerograms (including those of El Centro 1940, Pacoima Dam 1971 and Mexico City 1985) are used to evaluate the floor response spectra. The characteristics of the spectra generated by different base isolation systems are studied, and the results are compared with those for the fixed-base structure. It is shown that the structural contents can be protected against earthquakes by the use of properly designed base isolation systems. In particular, the laminated rubber bearing system appears to be remarkably effective in protecting the secondary systems under a variety of conditions.  相似文献   

19.
近断层地震动脉冲特性在2个水平分量上具有差异,采用平方和开方法分析了近断层脉冲地震动双向地震作用下基础隔震结构和组合隔震结构的隔震层位移,并与近断层脉冲单向地震作用进行了对比分析,结果表明:若仅地震动加速度峰值大的分量或2个方向分量均存在明显速度脉冲,则产生的隔震层位移大于单向地震动;若仅地震动加速度峰值小的分量存在明...  相似文献   

20.
Storage tanks are vulnerable to earthquakes, as numerous major earthquakes have demonstrated. The trend of recent revisions to make seismic design criteria for large‐scale industrial storage tanks increasingly stringent has made development of cost‐effective earthquake‐resistant design and retrofit techniques for industrial tanks imperative. This study assesses the feasibility of seismic base isolation for making liquid‐filled storage tanks earthquake resistant. The sliding‐type friction pendulum seismic (FPS) bearings are considered rather than the elastomeric bearings because the dynamic characteristics of an FPS‐isolated tank remain unchanged regardless of the storage level. This work has devised a hybrid structural‐hydrodynamic model and solution algorithm, which would permit simple, accurate and efficient assessment of the seismic response of rigid cylindrical storage tanks in the context of seismic isolation. Extensive numerical simulations confirm the effectiveness of seismic base isolation of rigid cylindrical tanks using FPS bearings. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号