首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 189 毫秒
1.
The Rajahmundry Trap Basalts(RTB) are erupted through fault-controlled fissures in the Krishna-Godavari Basin(K-G Basin) of Godavari Triple Junction,occurring as a unique outcrop sandwiched between Cretaceous and Tertiary sediments along the east coast of India.Detailed geochemical studies have revealed that RTB are mid-Ti(1.74-1.92) to high-Ti(2.04-2.81) basalts with a distinct quartz tholeiitic parentage.MgO(6.2-13.12 wt.%),Mg#(29-50) and Zr(109-202 ppm) suggest that these basalts evolved by fractional crystallization during the ascent of the parent magma along deep-seated fractures.Moderate to high fractionation of HREE,as indicated by(Gd/Yb)N ratios(1.71-2.31) of RTB,suggest their generation through 3-5%melting of a Fe-rich mantle corresponding to the stability fields of spinel and garnet peridotite at depths of 60-100 km.Low K2O/P2O5(0.26-1.26),high TiO2/P2O5(6.74-16.79),La/Nb(0.89-1.45),Nb/Th > 8(8.35-13),negative anomalies at Rb reflect minimum contamination by granitic continental crust.(Nb/La)PM ratios(0.66-1.1) of RTB are attributed to endogenic contamination resulted through recycling of subducted oceanic slab into the mantle.Pronounced Ba enrichment with relative depletion in Rb indicates assimilation of Infra- and Inter-trappean sediments of estuarine to shallow marine character.Geochemical compositions such as Al2O3/TiO2(3.88-6.83),medium to high TiO2(1.74-2.81 wt.%).positive Nb anomalies and LREE enrichment of these RTB attest to their mantle plume origin and indicate the generation of parent magma from a plume-related enriched mantle source with EM 1signature.Ba/Th(46-247),Ba/La(3.96-28.51) and Th/Nb(0.08-0.13) ratios suggest that the source enrichment process was marked by recycling of subduction-processed oceanic crust and lithospheric components into the mantle.Zr/Hf(37-41) and Zr/Ba(0.51-3.24) indicate involvement of an asthenospheric mantle source.The Rajahmundry basalts show affinity towards FOZO(focal zone mantle) and PSCL(post-Archaean subcontinental lithosphere) which reflect mixing between asthenospheric and lithospheric mantle components in their source.Origin of RTB magma is attributed to plume-lithosphere interaction and the upward movement of melt is facilitated by intrabasinal deep-seated faults in the K-G Basin.  相似文献   

2.
Late Mesozoic Nb-rich basaltic andesites and high-Mg adakitic volcanic rocks from the Hailar-Tamtsag Basin,northeast China,provide important insights into the recycling processes of crustal materials and their role in late Mesozoic lithospheric thinning.The Late Jurassic Nb-rich basaltic andesites(154 ± 4 Ma) are enriched in large-ion lithophile and light rare earth elements,slightly depleted in high-field-strength elements,and have high TiO_2,P_2 O_5,and Nb contents,and(Nb/Th)PM and Nb/U ratios,which together with the relatively depleted Sr-Nd-Hf isotopic compositions indicate a derivation from a mantle wedge metasomatized by hydrous melts from subducted oceanic crust.The Early Cretaceous high-Mg adakitic volcanic rocks(129-117 Ma) are characterized by low Y and heavy rare earth element contents,and high Sr contents and Sr/Y ratios,similar to those of rocks derived from partial melting of an eclogitic source.They also have high Rb/Sr, K_2 O/Na_2 O,and Mg#values,and high MgO, Cr, and Ni contents.These geochemical features sugge st that the adakitic lavas were derived from partial melting of delaminated lower continental crust,followed by interaction of the resulting melts with mantle material during their ascent Our data,along with available geological,paleomagnetic,and geophysical evidence,lead us to propose that recycling of Paleo-Pacific oceanic crustal materials into the upper mantle due to flat-slab subduction and rollback of the Paleo-Pacific Plate during the late Mesozoic likely provided the precondition for lithospheric thinning in northeast China,with consequent lithospheric delamination causing recycling of continental crustal materials and further lithospheric thinning.  相似文献   

3.
Whole rock major and trace element compositions of seven eclogites from the Tso Morari ultra-high pressure(UHP) complex, Ladakh were determined with the aim of constraining the protolith origins of the subducted crust. The eclogites have major element compositions corresponding to sub-alkaline basalts. Trace element characteristics of the samples show enrichment in LILE's over HFSEs(Rb, Th, K except Ba) with LREE enrichments((La/Lu)n = 1.28-5.96). Absence of Eu anomaly on the Primitive Mantle normalized diagram suggests the absence of plagioclase fractionation. Positive correlation between Mg# with Ni and Cr suggests olivine fractionation of mantle melts. Narrow range of(La/Yb)n(2.1-9.4) and Ce/Yb(6.2-16.2) along with Ti/Y(435-735) ratios calculated for the Tso Morari samples is consistent with generation of melts by partial melting of a garnet free mantle source within the spinel peridotite field. Ternary diagrams(viz. Ti-Zr-Y and Nb-Zr-Y) using immobile and incompatible elements show that the samples range from depleted to enriched and span from within plate basalts(WPB)to enriched MORB(E-MORB) indicating that the eclogite protoliths originated from basaltic magmas.Primitive Mantle normalized multi element plots showing significant Th and LREE enrichment marked by negative Nb anomalies are characteristic of continental flood basalts. Positive Pb, negative Nb, high Th/Ta, a narrow range of Nb/La and the observed wide variation for Ti/Y indicate that the Tso Morari samples have undergone some level of crustal contamination. Observed geochemical characteristics of the Tso Morari samples indicate tholeiitic compositions originated from enriched MORB(E-MORB) type magmas which underwent a limited magmatic evolution through the process of fractional crystallization and probably more by crustal contamination. Observed geochemical similarities(viz. Zr, Nb, La/Yb, La/Gd,La/Nb, Th/Ta ratios and REE) between Tso Morari eclogites and the Group I Panjal Traps make the trap basalt the most likely protoliths for the Tso Morari eclogites.  相似文献   

4.
It has been suggested that eclogites in the Dabie orogenic belt are exhumation prod-ucts, which had subducted into the deep-seated mantle and undergone ultra-high pressure meta-morphism during the Triassic. But no direct evidence supports this process except the calculated p-T conditions from mineral thermobarometem. The Late Cretaceous basalts studied in the pres-ent paper, however, have provided some geochemical evidence for crust-mantle interaction in the area. These basalts are distributed in Mesozoic faulted basins in central and southern Dabieorogenic belt. Since little obvious contamination from continental crust and differentiation-crys-tallization were observed, it is suggested, based on a study of trace elements, that the basaltsare alkaline and resultant from batch partial melting of the regional mantle rocks, and share thesame or similar geochemical features with respect to their magma source. In the spider diagram normalized by the primitive mantle, trace element geochemistry data show that their mantle sources are enriched in certain elements concentrated in the continental crust, such as Pb, K,Rb and Ba, and slightly depleted in some HFSE such as Hf, P and Nb. Pb-Sr-Nd isotopic com-positions further suggest the mantle is the mixture of depleted mantle (DM) and enriched one(EMI EMII). This interaction can .explain the trace element characteristics of basaltic mag-mas, i.e.,the enrichment of Pb and the depletion of Hf, P and Nb in basalts can be interpre-ted by the blending of the eclogites in DOB (enriched in Pb and depleted in Hf, P and Nd)with the East China depleted mantle (As compared to the primitive mantle, it is neither en-riched in Pb nor depleted in Hf, P and Nb). It is also indicated that the eclogites in the Dahieorogenic belt were surely derived from the exhumation materials, which had delaminated into thedeep-seated mantle. Moreover, the process subsequently resulted in compositional variation of the mantle (especially in trace elements and isotopes) , as revealed by the late mantle-derivedbasalts in the Dabie orogenic belt.  相似文献   

5.
Cenozoic lavas from Hainan Island,South China,comprise quartz tholeiite,olivine tholeiite,alkali basalt,and basanite and form a continuous,tholeiite-dominated,compositional spectrum.Highly incompatible elements and their relationships with isotopes in these lavas are shown to be useful in evaluating mantle-source composition,whereas modeling suggests that ratios of elements with bulk partition coefficients significantly larger than those of Nb and Ta may be sensitive to partial melting.Th/Ta and La/Nb ratios of alkali basalts are lower than those of tholeiites,and they are all lower than those of the primitive mantle,These ratios correlate positively with ^207Pb/^204Pb and ^87Sr/^86Sr ratios.Such relationships can be explained by mixing of depleted and enriched source components.A depleted component is indicated by alkali basalt compositions and is similar to some depleted OIB (PREMA).The enriched component,similar to sediment compositions,is indicated by tholeiites with high LILE/HFSE,^207Pb/^204Pb,and ^87Sr/^86Sr ratios.In general,basalts from Hainan and the South China Basin(SCB)share common geochemical characters.e.g.high Rb/Sr,Th/Ta,^207Pb/^206Pb,and low Ba/Th ratios.Such a geochemical trend is comparable to that of EMII-type OIB and best explained as the result of subduction.Occurrence of these characteristics in both continental Hainan basalts and SCB seamout basalts indicates the presence of a South China geochemical domain that exists in the mantle region below the lithosphere.  相似文献   

6.
http://www.sciencedirect.com/science/article/pii/S1674987111001125   总被引:1,自引:1,他引:0  
<正>Greenstone belts of the eastern Dharwar Craton,India are reinterpreted as composite tectonostratigraphic terranes of accreted plume-derived and convergent margin-derived magmatic sequences based on new high-precision elemental data.The former are dominated by a komatiile plus Mg-tholeiitic basalt volcanic association,with deep water siliciclastic and banded iron formation(BIF) sedimentary rocks.Plumes melted at90 km under thin rifted continental lithosphere to preserve inlraoceanic and continental margin aspects.Associated alkaline basalts record subduction-recycling of Mesoarchean oceanic crust,incubated in the asthenosphere.and erupted coevally with Mg basalts from a heterogeneous mantle plume.Together.komaliites-Mg basalts-alkaline basalts plot along the Phanerozoic mantle array in Th/Yb versus Nb/Yb coordinate space,representing zoned plumes,establishing that these reservoirs were present in the Neoarchean mantle. Convergent margin magmatic associations are dominated by tholeiitic to calc-alkaline basalts eompositionally similar to recent intraoceanic arcs.As well,boninitic flows sourced in extremely depleted mantle are present,and the association of arc basalts with Mg-andesites-Nb enriched basalts-adakites documented from Cenozoic arcs characterized by subduction of young(20 Ma),hot,oceanic lithosphere. Consequently.Cenozoic style "hot" subduction was operating in the Neoarchean.These diverse volcanic associations were assembled to give composite terranes in a subduction-accretion orogen at~2.1 Ga,coevally with a global accretionary orogen at ~2.7 Ga,and associated orogenic gold mineralization. Archean lithospheric mantle,distinctive in being thick,refractory,and buoyant,formed complementary to the accreted plume and convergent margin terranes.as migrating arcs captured thick plumeplateaus. and the refractory,low density.residue of plume melting coupled with accreted imbricated plume-arc crust.  相似文献   

7.
A mass of granitoid and dioritic intrusions are distributed in the southern Yidun Arc, among which the representative Indosinian intrusions include the Dongco and Maxionggou granitoid intrusions in Daocheng County and hypabyssal intrusions intruding into arc volcanic rocks near the Xiangcheng town. The Dongco and Maxionggou granitoid intrusions consist mainly of porphyraceous monzogranites, megacryst monzogranites and aplite granites. The Xiangcheng hypabyssal intrusions are composed dominantly of dioritic porphyries. SHRIMP zircon ages of 224±3 Ma and 222±3 Ma have been obtained for the Dongco granitoid intrusion and the Xiangcheng dioritic porphyries, respectively. The Xiongcheng dioritic porphyries show a cak-alkaline geochemical feature, and are characterized by higher Sr/Y ratios, depletive Nb, Ta, P and Ti, enriched LILEs, and lower εNd (t) (= -3.27), suggesting that they might be derived from mantle source magmas that were obviously contaminated by continent crustal materials. However, the Dongco and Maxionggou granitoids belong to high-potassium calc alkaline series with a per-metaluminous feature, and are characterized by higher CaO/(∑FeO+MgO) and Al2O3/(∑FeO+ MgO) ratios, lower (La/Yb)n and Sr/Y ratios, depletive Nb, Ta, Sr, P and Ti, enriched LILEs, and very low εNd (t) (= -8.10), indicating that the granitoids might be derived from partial melting of continental crust materials mainly of graywacke. Petrogenesis of Dongco and Maxionggou granitoids implies that there was an oceanic crust between the Zongza continental block (ZCB) and western margin of the Yangtze Craton (WMYZC). And the oceanic crust slab subducted westward during the Indosinian Epoch, producing an Andes-type continent marginal arc and a back arc basin at the WMSCC. Then the oceanic basin closed and a sinistrally lateral collision occurred at ca. 224 Ma-222 Ma between the ZCB and the WMYZC, causing partial melting of sediments in the back-arc basin to generate granitoid magmas of the Dongco and Maxionggou intrusions.  相似文献   

8.
Mafic rocks comprising tholeiitic pillow basalt,dolerite and minor gabbro form the basal stratigraphic unit in the ca.2.8 to 2.6 Ga Geita Greenstone Belt situated in the NW Tanzania Craton.They outcrop mainly along the southern margin of the belt,and are at least 50 million years older than the supracrustal assemblages against which they have been juxtaposed.Geochemical analyses indicate that parts of the assemblage approach high Mg-tholeiite(more than 8 wt.%MgO).This suite of samples has a restricted compositional range suggesting derivation from a chemically homogenous reservoir.Trace element modeling suggests that the mafic rocks were derived by partial melting within the spinel peridotite field from a source rock with a primitive mantle composition.That is,trace elements maintain primitive mantle ratios(Zr/Hf=32-35,Ti/Zr=107-147),producing flat REE and HFSE profiles[(La/Yb)_(pm)=0.9-1.3],with abundances of 3-10 times primitive mantle and with minor negative anomalies of Nb[(Nb/La)_(pm)=0.6-0.8]and Th[(Th/La)_(pm)=0.6-0.9].Initial isotope compositions(ε_(Nd)) range from 1.6 to 2.9 at2.8 Ga and plot below the depleted mantle line suggesting derivation from a more enriched source compared to present day MORB mantle.The trace element composition and Nd isotopic ratios are similar to the mafic rocks outcropping ~50 km south.The mafic rocks outcropping in the Geita area were erupted through oceanic crust over a short time period,between ~2830 and ~2820 Ma;are compositionally homogenous,contain little to no associated terrigenous sediments,and their trace element composition and short emplacement time resemble oceanic plateau basalts.They have been interpreted to be derived from a plume head with a primitive mantle composition.  相似文献   

9.
Geochemical characteristics of the Chagande’ersi molybdenum deposit in Inner Mongolia and its genesis were analyzed in this study using rock mineralography and rock geochemical testing. The mineralized country rocks of the Chagande’ersi molybdenum deposit consist mainly of medium-to fine-grained monzogranite,medium-to fine-grained rich-K granite,with minor fine-grained K-feldspar granite veins and quartz veins.The rocks are characterized by high silica,rich alkali,high potassium,which are favorable factors for molybdenum mineralization.The rocks have the Rittmann index ranging from 1.329 to 1.961,an average Na2O+K2O value of 7.41,and Al2O3/(CaO+Na2O+K2O)>1,suggesting that the rocks belong to the high-K calc-alkaline peraluminous granite.The typical rock samples are enriched in Rb,Th,K and light rare earth elements,depleted in Sr,Ba,Nb,P and Ti, and these features are similar to that of the melt granite resulting from collision of plate margins.TheδEu of the rocks falls the zone between the crust granite and crust-mantle granite,and are close to that of the crust granite;(La/Lu)N indicates the formation environment of granite is a continental margin setting.The Nb/Ta ratios are close to that of the average crust(10);the Zr/Hf ratios of monzogranite are partly below the mean mantle(34-60),while the Zr/Hf ratio of K-feldspar granite are close to the mean value in the crust.Comprehensive analyses show that the granite in this area formed during the transition period between tectonic collision and post-collision.During the plate collision and orogeny,the crust and mantle material were mixed physically,remelting into lava and then crystal fractionation,finally gave rise to the formation of the rock body in this area.This has close spatial and temporal relation with the molybdenum mineralization.  相似文献   

10.
The early Paleozoic tectonic evolution of the Xing'an-Mongolian Orogenic Belt is dominated by two oceanic basins on the northwestern and southeastern sides of the Xing'an Block,i.e.,the Xinlin-Xiguitu Ocean and the Nenjiang Ocean.However,the early development of the Nenjiang Ocean remains unclear.Here,we present zircon U-Pb geochronology and whole-rock elemental and Sr-Nd isotopic data on the gabbros in the Xinglong area together with andesitic tuffs and basalts in the Duobaoshan area.LA-ICP-MS zircon U-Pb dating of gabbros and andesitic tuffs yielded crystallization ages of 443-436 Ma and 452-451 Ma,respectively.The Early Silurian Xinglong gabbros show calc-alkaline and E-MORB affinities but they are enriched in LILEs,and depleted in HFSEs,with relatively low U/Th ratios of 0.18-0.36 andεNd(t)values of-1.6 to+0.5.These geochemical features suggest that the gabbros might originate from a mantle wedge modified by pelagic sediment-derived melts,consistent with a back-arc basin setting.By contrast,the andesitic tuffs are characterized by high MgO(>5 wt.%),Cr(138-200 ppm),and Ni(65-110 ppm)contents,and can be termed as high-Mg andesites.Their low Sr/Y ratios of 15.98-17.15 and U/Th values of 0.24-0.25 and moderate(La/Sm)_n values of 3.07-3.26 are similar to those from the Setouchi Volcanic Belt(SW Japan),and are thought to be derived from partial melting of subducted sediments,and subsequent melt-mantle interaction.The Duobaoshan basalts have high Nb(8.44-10.30 ppm)and TiO2 contents(1.17-1.60 wt.%),typical of Nb-enriched basalts.They are slightly younger than regional adakitic rocks and have positiveεNd(t)values of+5.2 to+5.7 and are interpreted to be generated by partial melting of a depleted mantle source metasomatized by earlier adakitic melts.Synthesized with coeval arc-related igneous rocks from the southeastern Xing'an Block,we propose that the Duobaoshan high-Mg andesitic tuffs and Nbenriched basalts are parts of the Late Ordovician and Silurian Sonid Zuoqi-Duobaoshan arc belt,and they were formed by the northwestern subduction of the Nenjiang Ocean.Such a subduction beneath the integrated Xing'an-Erguna Block also gave rise to the East Ujimqin-Xinglong igneous belt in a continental back-arc basin setting.Our new data support an early Paleozoic arc-back-arc model in the northern Great Xing'an Range.  相似文献   

11.
The Ordovician Laohushan ophiolite, located in the eastern part of the North Qilian Mountains, is mainly composed of meta-peridotites, gabbros and basalts alternating with sediments. The sediments are mainly turbidites, including sandstones, siltstones, cherts etc. Major elements show that the basalts are subalkaline tholeiites and may be analogous to ocean-floor basalts. Except a few N-MORBs, most of the basalts are E-MORBs as indicated by incompatible element ratios such as (La/Ce)N, La/Sm, Ce/Zr, Zr/Y and Zr/Nb. Negative Nb anomaly is common but negative Zr, Hf and Ti anomalies are quite rare. Based on the geochemical characteristics, it is suggested that the Laohushan basalts were formed in a back-arc basin. εNd (t) of the basalts ranges between +3.0 and +8.9 and (87Sr/86Sr), ranges between 0.7030 and 0.7060, indicating a depleted mantle source which was mixed with more or less enriched mantle components. Furthermore, the petrography of the sandstones and geochemistry of the cherts suggest that the  相似文献   

12.
<正>Objective Large igneous provinces(LIPs)are sites of spatially contiguous,rapidly emplaced magmatic rocks,which represent the physical and chemical transfer of material from the mantle to the crust.Exposed within some continental LIPs are felsic and mafic plutonic and volcanic rocks.Although their volumes are minor compared to the flood basalts,the plutonic rocks of continental LIPs are  相似文献   

13.
The Emeishan flood basalts can be divided into high-Ti (HT) basalt (Ti/Y>500) and low-Ti (LT) basalt (Ti/Y<500). Sr, Nd isotopic characteristics of the lavas indicate that the LT- and the HT-type magmas originated from distinct mantle sources and parental magmas. The LT-type magma was derived from a shallower lithospheric mantle, whereas the HT-type magma was derived from a deeper mantle source that may be possibly a mantle plume. However, few studies on the Emeishan flood basalts involved their Pb isotopes, especially the Ertan basalts. In this paper, the authors investigated basalt samples from the Ertan area in terms of Pb isotopes, in order to constrain the source of the Emeishan flood basalts. The ratios of 206Pb/204Pb (18.31–18.41), 207Pb/204Pb (15.55–15.56) and 208Pb/204Pb (38.81–38.94) are significantly higher than those of the depleted mantle, just lying between EM I and EM II. This indicates that the Emeishan HT basalts (in the Ertan area) are the result of mixing of EMI end-member and EMII end-member.  相似文献   

14.
The Weiya gabbro in eastern Tianshan was formed during the early Indosinian. This rock, with low ratios of Ce/Pb (5.74-10.16), is notably characterized by enrichment in large ion lithophile elements (LILE), such as Rb, K, Ba and Pb, and in high field strength elements (HSFE), such as U and Th, but depletion in Nb and Ta. All samples of the Weiya gabbro display similar chondrite-normalized patterns with moderate enrichment in LREE (72.58-135.61ppm), moderate depletion in HREE (15.26-25.31ppm) and mild fractionation between LREE and HREE (L/ H=4.09-5.98). The average initial Sr value of the rock is 0.7069, and δ18O values of the rock range from 5.67‰-8.04‰. In terms of Nd isotope ratios, the Weiya gabbro is characterized by positive eNd(t) values (0.52-0.76). All these characteristics indicate that the source region of the Weiya gabbro was metasomatized by fluids released from subducted young continental crust, with limited crustal contamination during magma ascent and emplacement. Continental (A-type) subduction was induced by northward subduction of the Paleo-Tethyan oceanic plate during the latest Permian to Triassic. From this point of view, it is supposed that tectonic conversion from the Paleo-Asian to the Paleo-Tethys regime occurred during the latest Permian or earliest Triassic.  相似文献   

15.
Alkali-rich intrusive rocks in western Yunnan were derived from an enriched lithospheric mantle ( EM Ⅱ ) source. The data available indicated they are alkali-rich ( K2o + Na2o 〉 8wt% ) and shoshonitic. Although formed in a within-plate environment they exhibit signatures of arc magmatic rocks, such as high amounts of LILE and LREE relative to the HFSE and HREE, and thus high Ba/Nb, Ba/Zr, Sr/Y, La/Yb ratios as well as mimic chondrite-normalized REE and primitive mantle-normalized trace element patterns of subducted sediments, and they fall in the collision- or arc-related tectonic setting field on all discrimination diagrams. This might suggest the enrichment be related to the substantial extent of sediment contamination by the Mesozoic Tethyan subduction processes.  相似文献   

16.
Voluminous granitoids are widely distributed in the Langshan region, northeast of the Alxa block, and record the evolutionary processes of the southern Central Asian Orogenic Belt. The Dabashan pluton was emplaced into the Paleoproterozoic Diebusige complex. Early Carboniferous zircon LA-ICP MS U-Pb ages were from 327 Ma to 346 Ma. The Dabashan pluton can be classified as monzogranite and syenogranite, and exhibits high K2O contents and K2O/Na2O ratios, which reveal a high-K calc-alkaline nature. The samples display strongly fractionated REE patterns, and are enriched in large ion lithophile elements (LILE) relative to high field strength elements (HFSE). The Dabashan plutons display unusually high Ba (823–2817 ppm) and Sr (166–520 ppm) contents and K/Rb ratios (315–627), but low Rb/Ba ratios (0.02–0.14), and exhibit fertile zircon Hf isotopic compositions [εHf(t)=?14 to ?20], which are comparable to those of typical high Ba–Sr granitoids. Based on the geochemical compositions of the samples, we suggest that subducted sediments and ancient crustal materials both played important roles in their generation. Basaltic melts were derived from partial melting of subcontinental lithophile mantle metasomatized by subducted sediment-related melts with residual garnet in the source, which caused partial melting of ancient lower crust. Magmas derived from underplating ascended and emplaced in the middle–upper crust at different depths. The resultant magmas experienced some degree of fractional crystallization during their ascent. Given these geochemical characteristics, together with regional tectonic, magmatic, and structure analysis data, an active continental margin environment is proposed for the generation of these rocks.  相似文献   

17.
The Kuandian Complex is scarcely preserved Early Proterozoic volcanic suite, formed2.3-2.4 Ga ago. It is located in an Early Proterozoic mobile belt bounded by the ArchaeanRangrim and Ryonggang Blocks of the northeastern Sino-Korean Craton. The Complex ismainly made up of amphibolites, gneisses, leucoleptite, leptite and layered granite. Petrologicaland geochemical studies show that the protoliths of the Complex are mainly assoctations ofbimodal volcanics and anorogenic granites. The Kuandian amphibolites are depleted in Nb, Ta,P and Ti, and enriched in LILE, e.g. K, Rb and Cs, with pronounced depletion of Sr relative toNd and Pb; La/Nb ratios are higher than 1(1.75 to 5.18). The trace element patterns of theamphibolites are similar to continental flood basalts formed by the Gondwana break-up, suchas those in South Karoo and Tasmania, which shows continental contamination. ε_(Nd) valuesranging from 0.70 to 1.94 of the Kuandian amphibolites and the relationships between Nb/Yband La/Yb suggest that contamination of basaltic magma happened in the mantle, rather thanalong the conduit. Isotope ratios of ~(208)Pb/~(204)Pb, ~(207)Pb/ ~(204)Pb, ~(206)Pb/~(204)Pb, ~(143)Nd/~(144)Ndand ~(87)Sr/~(86)Sr indicate that the magma was derived from a contaminated mantle source likeDMM or a mixture of DMM and EM2. The Kuandian Complex has Dupal anomaly, as is thecase with some continental basalts in the south hemisphere, e.g. in South Karoo and Tasmania.Petrochemical modelling proposes that the Kuandian gneiss, granite, and amphibolite camefrom the same parental magma, being products of strong fractional crystallization. Protoliths ofthe Kuandian Complex were formed in extensional tectonic setting during the transition fromcontinental crust to oceanic crust. The formation of the Kuandian Complex indicates that 2.3or 2.4 Ga ago tectonic evolution of the Sino-Korean craton was different from that of otherwell-studied Precambrian cratons, e.g. the North American shield, European platform andAustralian continent in that strong volcanic eruption resulted in its accretion. Besides, the con-taminated magma source with a Dupal anomaly for the Complex indicates that crust-mantleconvection whose scale was similar to that of the present plate tectonics had occurred at leastbefore the formation of the Kuandian Complex (2.3-2.4 Ga B.P).  相似文献   

18.
Continent subduction is one of the hot research problems in geoscience. New models presented here have been set up and two-dimensional numerical modeling research on the possibility of continental subduction has been made with the finite element software, ANSYS, based on documentary evidence and reasonable assumptions that the subduction of oceanic crust has occurred, the subduction of continental crust can take place and the process can be simplified to a discontinuous plane strain theory model. The modeling results show that it is completely possible for continental crust to be subducted to a depth of 120 km under certain circumstances and conditions. At the same time, the simulations of continental subduction under a single dynamical factor have also been made, including the pull force of the subducted oceanic lithosphere, the drag force connected with mantle convection and the push force of the mid-ocean ridge. These experiments show that the drag force connected with mantle convection is critical fo  相似文献   

19.
The Neoarchean Bundelkhand greenstone sequences at Mauranipur and Babina areas within the Bundelkhand Gneissic Complex preserve a variety of magmatic rocks such as komatiitic basalts, basalts,felsic volcanic rocks and high-Mg andesites belonging to the Baragaon, Raspahari and Koti Formations.The intrusive and extrusive komatiitic basalts are characterized by low SiO_2(39-53 wt.%), high MgO(18-25 wt.%).moderately high Fe_2O_3(7.1-11.6 wt.%), Al_2O_3(4.5-12.0 wt.%), and TiO_2(0.4-1.23 wt.%)with super to subchondritic(Gd/Yb)N ratios indicating garnet control on the melts. The intrusive komatiitic suite of Ti-enriched and Al-depleted type possesses predominant negative Eu and positive Nb, Ti and Y anomalies. The chemical composition of basalts classifies them into three types with varying SiO_2, TiO_2, MgO, Fe_2O_3, Al_2O_3 and CaO. At similar SiO_2 content of type Ⅰ and Ⅲ basalts, the type II basalts show slightly high Al_2O_3 and Fe_2O_3 contents. Significant negative anomalies of Nb, Zr, Hf and Ti, slightly enriched LREE with relatively flat HREE and low ∑REE contents are observed in type Ⅰ and Ⅱ basalts. TypeⅢ basalts show high Zr/Nb ratios(9.8-10.4), TiO_2(1.97-2.04 wt.%), but possess strikingly flat Zr, Hf, Y and Yb and are uncontaminated. Andesites from Agar and Koti have high SiO_2(55-64 wt.%), moderate TiO_2(0.4-0.7 wt.%), slightly low Al_2O_3(7-11.9 wt.%), medium to high MgO(3-8 wt.%) and CaO contents(10-17 wt.%). Anomalously high Cr, Co and Ni contents are observed in the Koti rhyolites. Tholeiitic to calc alkaline affinity of mafic-felsic volcanic rocks and basalt-andesite dacite-rhyolite differentiation indicate a mature arc and thickened crust during the advanced stage of the evolution of Neoarchean Bundelkhand greenstone belt in a convergent tectonic setting where the melts were derived from partial melting of thick basaltic crust metamorphosed to amphibolite-eclogite facies. The trace element systematics suggest the presence of arc-back arc association with varying magnitudes of crust-mantle interaction. La/Sm, La/Ta,Nb/Th, high MgO contents(20 wt.%), CaO/Al_2O_3 and(Gd/Yb)_N 1 along with the positive Nb anomalies of the komatiite basalts reflect a mantle plume source for their origin contaminated by subductionmetasomatized mantle lithosphere. The overall geochemical signatures of the ultramafic-mafic and felsic volcanic rocks endorse the Neoarchean plume-arc accretion tectonics in the Bundelkhand greenstone belt.  相似文献   

20.
The occurrence,mineralogy and geochemistry of eclogites in the Mt.Dabie area show that they were subjected to a high-pressure metamorphism together with the country rocks,but their petrochemistry and REE geochemistry show some difference from those of the country rocks.The geochemical characteristics of the eclogites are similar to those of bot continental tholeiitic basalt and oceanic tholeiitic basalt.The rocks probably subducted to the upper mantle with the Dabie metamorphic complex.When elevated to the surface,they were subjected to different staes of retrogressive metamorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号