首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The talc (Tlc) + phengite (Phn) + albite (Ab) assemblage is newly confirmed in MnOtotal-rich (1.65 wt% in average) piemontite-quartz schists from the intermediate- and high-grade part of the Sanbagawa belt, central Shikoku, Japan. Talc is in direct contact with Phn, Ab and chlorite (Chl) with sharp boundaries, suggesting that these four phases mutually coexist. Other primary constituents of the Tlc-bearing piemontite-quartz schist are spessartine, braunite, hematite (Ht), crossite/barroisite and dolomite. Phlogopite (Phl) rarely occurs as a later stage mineral developing along the rim of Phn. The studied piemontite-quartz schist has mg# (= Mg/(Mg + Fe2+)) ~ 1.0, because of its high oxidation state. Schreinemakers' analysis in the KNMASH system and the mineral assemblage in the Sanbagawa belt propose a possible petrogenetic grid, in which the Tlc–Phn assemblage is stable in a P-T field surrounded by the following reactions: lower-pressure limit by Chl + Phl + quartz (Qtz) = Phn + Tlc + H2O as proposed by previous workers; higher-pressure limit by glaucophane + Qtz = Tlc + Ab + H2O; and higher-temperature limit by Tlc + Phn + Ab = Phl + paragonite + Qtz + H2O. Thermodynamic calculation based on the database of Holland & Powell (1998) , however, suggests that the Tlc–Phn stability field defined by these reactions is unrealistically limited around 580–600 °C at 11.6–12.0 (± 0.7) kbar. Schreinemakers' analysis in the KNMA-Fe3+-SH system and the observed mineral assemblage predict that Chl + crossite = Tlc + Ab + Ht + H2O is a preferable Tlc-forming reaction in the intermediate-grade part of the Sanbagawa belt and that excess Ab + hematite narrows the stability field of the Tlc–Phn assemblage.  相似文献   

2.
Sébastien  Potel 《Island Arc》2007,16(2):291-305
Abstract   Pre-Late Cretaceous terranes from the central part of New Caledonia have been metamorphosed under very low-grade conditions by two high-pressure/low-temperature events. The present study investigates the metamorphic patterns with phyllosilicate crystallinities, electron microprobe analyses and petrography. The first metamorphic event is of Late Jurassic age and is characterized by very low (anchizone) to low-grade (epizone) conditions with a decrease of the illite Kübler Index (KI) and the chlorite Árkai Index (ÁI) values from northeast to southwest. This trend is also confirmed by chlorite thermometry. In the south of the area, un-metamorphosed sediments (diagenetic KI values) are observed in the Senonian 'formation à charbons', post-dating the metamorphism in this region. The second metamorphism is an Eocene high-pressure event, which overprints the Late Jurassic metamorphism in the northern part of the studied area. In this zone, the pattern of KI and ÁI indicates another gradient with increasing metamorphic conditions from southwest to northeast. Temperatures calculated by chlorite thermometry also indicate an evolution from southwest to northeast with slight increase of temperature from 298 ± 8°C to 327 ± 16°C. In both metamorphic zones, the K-white mica b cell dimension calculated on micas analyzed at electron microprobe are in good agreement with high-pressure/low-temperature metamorphic conditions (b0 > 9.04 Å). A combination of chlorite thermometry and K-white mica b cell dimension allows estimation of a minimum pressure of 1.3 GPa in the Eocene zone (in excellent agreement with the 1.5 GPa registered in the northern part of New Caledonia) and a minimum of 1.1 GPa in the Late Jurassic metamorphic part.  相似文献   

3.
Yui  Kouketsu  Masaki  Enami 《Island Arc》2010,19(1):165-176
Aragonite and omphacite-bearing metapelite occurs in the albite–biotite zone of the Togu (Tohgu) area, Besshi region, Sambagawa metamorphic belt, central Shikoku, Japan. This metapelite consists of alternating graphite-rich and graphite-poor layers that contain garnet, phengite, chlorite, epidote, titanite, calcite, albite, and quartz. A graphite-poor layer contains a 1.5-cm ivory-colored lens that mainly consists of phengite, calcite, albite, and garnet. Aragonite, omphacite, and paragonite occur as inclusions in the garnet of the ivory lens. The aragonite has a composition that is close to the CaCO3 end-member: the FeCO3 and MnCO3 components are both less than 0.3 mol% and the SrCO3 component is about 1 mol%. The aragonite + omphacite + quartz assemblage in garnet indicates equilibrium conditions of P  > 1.1–1.3 GPa and T  = 430–550°C. Quartz grains sealed in garnet of the aragonite and omphacite-bearing sample and other metapelites in the Togu area preserve a high residual pressure that is equivalent to the Sambagawa eclogite samples. These facts suggest that: (i) the Togu area experienced eclogite facies metamorphism; and (ii) thus, eclogite facies metamorphism covered the Sambagawa belt more extensively than previously recognized.  相似文献   

4.
Nguyen D.  Nuong  Tetsumaru  Itaya    Hironobu  Hyodo  Kazumi  Yokoyama 《Island Arc》2009,18(2):282-292
Conglomerates of the Kuma Group, central Shikoku, southwest Japan contain Sanbagawa schist clasts with a variety of metamorphic grades and lithologies. K–Ar and 40Ar/39Ar dating of phengite show all the pelitic schist clasts from low- to high-grade zones have similar phengite ages (82–84 Ma) that are significantly older than those from the in situ Sanbagawa sequence of central Shikoku. This is because the Kuma–Sanbagawa sequence was exhumed earlier than the in situ Asemi sequence with an exhumation process intermediate between those for the Kanto Mountains and the in situ Asemi sequences. 40A/39Ar plateau ages (103 and 117 Ma) of phengite in amphibolites indicate the timing of the early stage of the exhumation of the metamorphic pile, probably close to the peak metamorphic age.  相似文献   

5.
Laura B.  Hebert  Michael  Gurnis 《Island Arc》2010,19(1):134-150
Using two-dimensional dynamic models of the Northern Izu–Bonin (NIB) subduction zone, we show that a particular localized low-viscosity (ηLV =  3.3 × 1019 − 4.0 × 1020 Pa s), low-density (Δρ ∼ −10 kg/m3 relative to ambient mantle) geometry within the wedge is required to match surface observations of topography, gravity, and geoid anomalies. The hydration structure resulting in this low-viscosity, low-density geometry develops due to fluid release into the wedge within a depth interval from 150 to 350 km and is consistent with results from coupled geochemical and geodynamic modeling of the NIB subduction system and from previous uncoupled models of the wedge beneath the Japan arcs. The source of the fluids can be either subducting lithospheric serpentinite or stable hydrous phases in the wedge such as serpentine or chlorite. On the basis of this modeling, predictions can be made as to the specific low-viscosity geometries associated with geophysical surface observables for other subduction zones based on regional subduction parameters such as subducting slab age.  相似文献   

6.
Yasushi  Mori  Tadao  Nishiyama  Takeru  Yanagi 《Island Arc》2007,16(1):28-39
Abstract   Reaction zones of 0.5–10.0 m thick are commonly observed between serpentinite and pelitic schist in the Nishisonogi metamorphic rocks, Kyushu, Japan. Each reaction zone consists of almost monomineralic or bimineralic layers of talc + carbonates, actinolite (or carbonates + quartz), chlorite, muscovite and albite from serpentinite to pelitic schist. Magnesite + quartz veins extend into the serpentinite from the talc + carbonates layer, while dolomite veins extend into the pelitic schist from the muscovite layer. These veins are filled by subhedral minerals with oriented growth features. Primary fluid inclusions yield the same homogenization temperatures (145–150°C) both in the reaction zone and in the veins, suggesting their simultaneous formation. Mass-balance calculations using the isocon method indicate that SiO2, MgO, H2O and K2O are depleted in the reaction zone relative to the protoliths. These components were probably extracted from the reaction zone as fluids during the formation of the reaction zone.  相似文献   

7.
Sorption of dissolved Fe2+ on bentonite was studied using a batch technique. The distribution coefficient, Kd , was evaluated for a bentonite-iron system as a function of contact time, pH, sorbent and sorbate concentrations, and temperature. Sorption results were interpreted in terms of Freundlich's and Langmuir's equations. Thermodynamic parameters for the sorption system were determined at three temperatures: 298°, 308°, and 318°K. The values of ΔH°(-4.0 kjmol−1) and ΔG°(-2.46 Kjmol−1) at 298°K (25°C) suggest that sorption of iron on bentonite is an exothermic and a spontaneous process. The ΔG° value became less negative at higher temperatures and, therefore, less iron was sorbed at higher temperatures. The desorption studies with 0.01 M CaCl2 and deionized water at iron loading on bentonite showed that more than 90 wt% of the iron is irreversibly sorbed, probably due to the fixation of the iron by isomorphous replacement in the crystal lattice of the sorbent.  相似文献   

8.
In 1995–1998, Han 11 km terrestrial surge of Kuannersuit Glacier, an outlet glacier of the largest ice cap on Disko Island, West Greenland, affected the catchment dramatically. In order to estimate solute fluxes and provenances, bulk meltwaters were sampled at the main subglacial outlet during the initial part of the quiescent phase. The hydrochemistry is significantly influenced by a subglacial basaltic weathering regime with absence of carbonate minerals. The results show that marine and aerosol derived solutes have minimal contribution to the total ion content, whereas sequestration of atmospheric CO2 associated with carbonation of Ca-rich feldspar and reactive volcanic glass is more dominant than previously reported from glacierized catchments. Application of a sampling strategy dividing water samples into four groups to determine the content of dissolved HCO3 and CO32− shows that the cationic equivalent weathering rate range is 683–860 Σmeq+ m−2 a−1 and solute flux ranges between 76 and 98 t km−2 a−1. The crustal denudation rate is estimated to 26 t km−2 a−1, and the transient CO2 drawdown amounts to 8500–13700 kg C km−2 a−1.  相似文献   

9.
A small-scale field experiment was carried out to demonstrate the effectiveness of using septic system -type infiltration beds for on-site treatment of landfill leachate. Using an infiltration bed with a 3-m-thick vadose zone of medium sand, and loaded at a rate 01 18 cm/day, a treatment efficiency of >99 percent was obtained for Fe, 94 percent for NH4+, and 54 percent for dissolved organic carbon (DOC). Attenuation occurred during one- to two-day residency in the aerobic vadose zone (pore gas O2 > 12 percent by volume) as a result of oxidation reactions that caused nitrification of NH4+, convened Fe2+ to Fe3+ allowing subsequent precipitation of sparingly soluble Fe oxyhydroxide minerals, and biodegraded DOC. Attenuation of an aerobically degradable trace volatile organic compound (dichlorobenzene) was also noted, although other less degradable compounds (trichloroethylene and tetrachloroethylene) persisted.
Fe mineral precipitation caused a discontinuous hardpan layer to occur in the zone immediately below the infiltration pipes. However, this layer did not become impermeable or continuous enough to significantly impede infiltration during the 82-day experiment.
Advantages of this technology for leachate treatment are that it is low cost, it is simple to construct and operate. and treatment occurs on-site, avoiding the cost of transporting leachate off-site for treatment.  相似文献   

10.
Abstract Deformation in the Sanbagawa Belt is characterized by ductile flow in an east-west direction sub-parallel to its length. The east-west flow (D1) caused large-scale recumbent folding of the metamorphic sequence in central Shikoku, which can explain the inverted thermal structure of this region. Chemical zoning of metamorphic minerals associated with D1 microstructures also suggest that the east-west flow developed under retrograde conditions. D1 is therefore related to exhumation rather than subduction processes. A variety of kinematic indicators show that during the east-west flow, deformation was partitioned into structurally continuous domains with opposed senses of shear. This suggests that bulk deformation was not simple shear but included a component of flattening.  相似文献   

11.
Keiko  Hattori  Simon  Wallis  Masaki  Enami  Tomoyuki  Mizukami 《Island Arc》2010,19(1):192-207
The Higashi-akaishi garnet-bearing ultramafic body in the Sanbagawa metamorphic belt, Southwest Japan, represents a rare example of oceanic-type ultrahigh-pressure metamorphism. The body of 2 km × 5 km is composed mostly of anhydrous dunite with volumetrically minor lenses of clinopyroxene-rich rocks. Dunite samples contain high Ir-type platinum group elements (PGE) and Cr in bulk rocks, high Mg and Ni in olivine, and high Cr in spinel. On the other hand, clinopyroxene-rich rocks contain low concentrations of Ir-type PGE and Cr, high concentrations of fluid-mobile elements in bulk rocks, and low Ni and Mg in olivine. Clinopyroxene is diopsidic with low Al2O3. The compositions of bulk rocks and mineral chemistry of spinel, olivine, and clinopyroxene suggest that the olivine-dominated rocks are residual mantle peridotites after high degrees of influx partial melting, and that the clinopyroxene-rich rocks are cumulates of subduction-related melts. Thus, the Higashi-akaishi ultramafic body originated from the interior of the mantle wedge, most likely the forearc upper mantle. It was then incorporated into the Sanbagawa subduction channel by a mantle flow, and underwent high pressure metamorphism to a depth greater than 100 km. Such a strong active flow in the mantle wedge is likely facilitated by the lack of serpentinites along the interface between the slab and the overlying mantle, as it was too hot for serpentine. These unusually hot conditions and strong active mantle flow may reflect conditions in the earliest stage of development of subduction, and may have been maintained by massive upwelling and subsequent eastward flow of asthenospheric mantle in the northeastern Asian continent in Cretaceous time when the Sanbagawa belt began to form.  相似文献   

12.
Yiqun  Liu Dingwu  Zhou Taohong  Li 《Island Arc》1993,2(4):262-272
Abstract A Triassic formation in the Turpan-Hami and Ordos basin of China gives two typical examples of occurrence of laumontite belonging to diagenetic facies. Sandstones of the Upper Triassic Yanchang Formation in the eastern sector of the Ordos basin are formed at the mature stage of mesodiagenesis at temperatures in the range of 71-120°C, while the temperatures of the oil-bearing beds Chang-6 and Chang-7 where laumontite is present are about 81-88°C. The laumontite-bearing beds of the Middle Triassic in the Hami depression are presently at the supermature stage of organic matter, the corresponding diagenetic temperature being about 140 °C. The term zeolite facies should be rejected, and the features of metamorphic stage should be clearly denned, such as closely packed grains, absence of pores and cements, and characteristic mineral assemblages including sericite, epidote, muscovite, illite (2M1), chlorite (IIb, β= 97°), dickite, pyrophyllite, graphite, chlorozeolite formed at temperatures of 200°C and Ro values of 2.5%; the stage is also characterized by schistosity and illite crystallinity of IC = 0.42°Δ 2θ. The anchimetamorphic zone is characterized by some characteristic minerals such as paragonite, rectorite, albite, laumontite, illite (1M), chlorite (Ib, P = 90°+ IIb, β= 97°) formed at temperatures of 130-200°C and Ro values of 1.3-2.5% as well as other quantitative parameters of organic matter.  相似文献   

13.
Abstract The Maksyutov Complex, situated in the southern Ural Mountains of Russia, is the first location where quartz aggregates within garnets exhibiting radial fractures were identified as coesite pseudomorphs (Chesnokov & Popov 1965). The complex consists of two tectonic units: a structurally lower eclogite-bearing schist unit and an overlying meta-ophiolite unit. Both units show evidence for multiple stages of metamorphism and deformation. The high-pressure metamorphism of the eclogite-bearing schist unit, discussed in this report, is suspected to be related to a collision between the Russian platform and a fragment of the Siberian continent during the early Cambrian. At least three stages of metamorphism (M1-3) and two stages of deformation (S1 and S2) were observed in thin sections: M1) garnet (Alm55-60, Prp22-28, Grs16-20) + omphacite (Jd46-56) + phengite (Si ≅ 3.5) + rutile; M2) garnet + glaucophane ± lawsonite + white mica; and M3) epidote + chlorite ± albite ± actinolite + white mica. Observed mineral parageneses define a retrograde P-T path for the eclogite. Mineral assemblages within the most representative eclogite from the lower unit of the Maksyutov Complex indicate minimum peak pressures of 15 kbar at temperatures of approximately 600°C. If the presence of coesite pseudomorph is confirmed, the peak ultrahigh-pressure metamorphism may be as high as 27 kbar at 615°C.  相似文献   

14.
Abstract   Regional ductile deformation of the Sanbagawa belt is generally thought to be characterized by constrictional strain, based on strain analysis using deformed radiolarians in the low-grade regions. Similar strain analysis could not be carried out in the medium- to high-grade zones, because it is very difficult to identify individual radiolarians after strong recrystallization. However, discovery of the first known meta-conglomerate in the high-grade region of the Sanbagawa Belt allows quantitative 3-D strain to be estimated in this region. Using a development of the Rf-φ method, an evaluation of appropriate errors for this estimate can be determined. The principal strain ratios and estimated errors are X/Y = 5.4–6.6 and Y/Z = 3.8–3.9 implying deformation in the flattening field and refuting the idea of uniform constrictional strain. Semi-quantitative markers of the shape of the strain ellipse throughout the high-grade regions suggest that the deformation of the Sanbagawa Belt is dominantly in the flattening field. The difference with the earlier results may be due to late-stage overprinting by upright folding of the main ductile fabric in the low-grade region of western Shikoku.  相似文献   

15.
Yong-Jiang  Liu  Franz  Neubauer  Johann  Genser  Akira  Takasu  Xiao-Hong  Ge Robert  Handler 《Island Arc》2006,15(1):187-198
Abstract   Pelitic schists from Qingshuigou in the Northern Qilian Mountains of China contain mainly glaucophane, garnet, white mica, clinozoisite, chlorite and piemontite. Isotopic age dating of these schists provides new constraints on the formation of the high-grade blueschists at Qingshuigou. White mica 40Ar/39Ar ages range from 442.1 to 447.5 Ma (total fusion age of single grain) and from 445.7 to 453.9 Ma (integrated age of white mica concentrates). These ages (442.1–453.9 Ma) represent the peak metamorphic ages or cooling ages of the blueschists during exhumation shortly after peak metamorphism. The 40Ar/39Ar dates in the present study are similar to ages previously reported for eclogites and blueschists in the area; this suggests that both the eclogites and pelitic sediments underwent high-grade metamorphism during the same subduction event. From this chronological evidence and the presence of well-developed Silurian remnant-sea flysch and Devonian molasse, it is concluded that the Northern Qilian Ocean had closed by the end of the Ordovician, and rapid orogenic uplift followed in the Devonian.  相似文献   

16.
Yuki  Matsumoto  Masahiro  Ishikawa  Masaru  Terabayashi    Makoto  Arima 《Island Arc》2010,19(1):30-39
The ultrasonic technique for measuring travel times of compressional and shear waves using dual-mode transducers was adapted to a piston cylinder apparatus, allowing simultaneous measurements of travel times of compressional and shear waves of island arc samples under the high pressure and temperature conditions of island arcs. This method enables us to determine elastic properties and their pressure and temperature derivatives simultaneously. Furthermore, Vp/Vs can be directly determined from travel times of compressional and shear waves independently of length change due to compression or thermal expansion of rock samples under deep crustal conditions, providing more accurate Vp/Vs values than those determined from individual measurements of travel times of both elastic wave types using single-mode transducers. Experimental techniques and results are demonstrated using data on silicified pelitic schist from the Ryoke Belt to 0.6 GPa. The simultaneous measurement gives Vp  = 5.60 km/s, ∂ Vp /∂ P  = 0.090 (km/s)/GPa, Vs  = 3.37 km/s, ∂ Vs /∂ P  = 0.05 (km/s)/GPa, σ  = 0.216, and Vp / Vs  = 1.66 at ambient conditions. The temperature derivatives were constrained from fitting using linear functions of temperature, yielding ∂ Vp /∂ T  = −0.518 × 10−3 (km/s)/K and ∂ Vs /∂ T  = −0.182 × 10−3 (km/s)/K. Performing simultaneous measurements of travel times of compressional and shear waves using dual-mode transducers, it is possible to accurately determine Vp / Vs and Poisson's ratio of crustal minerals and rocks at deep crustal conditions to study the composition of the crustal interior, e.g. rock types and fluids below the hypocentral region of earthquakes or around bright spots.  相似文献   

17.
Garnet grains in Sanbagawa quartz eclogites from the Besshi region, central Shikoku commonly show a zoning pattern consisting of core and mantle/rim that formed during two prograde stages of eclogite and subsequent epidote–amphibolite facies metamorphism, respectively. Garnet grains in the quartz eclogites are grouped into four types (I, II, III, and IV) according to the compositional trends of their cores. Type I garnet is most common and sometimes coexists with other types of garnet in a thin section. Type I core formed with epidote and kyanite during the prograde eclogite facies stage. The inner cores of types II and III crystallized within different whole‐rock compositions of epidote‐free and kyanite‐bearing eclogite and epidote‐ and kyanite‐free eclogite at the earlier prograde stage, respectively. The inner core of type IV probably formed during the pre‐eclogite facies stage. The inner cores of types II, III, and IV, which formed under different P–T conditions of prograde metamorphism and/or whole‐rock compositions, were juxtaposed with the core of type I, probably due to tectonic mixing of rocks at various points during the prograde eclogite facies stage. After these processes, they have shared the following same growth history: (i) successive crystal growth during the later stage of prograde eclogite facies metamorphism that formed the margin of the type I core and the outer cores of types II, III, and IV; (ii) partial resorption of the core during exhumation and hydration stage; and (iii) subsequent formation of mantle zones during prograde metamorphism of the epidote–amphibolite facies. The prograde metamorphic reactions may not have progressed under an isochemical condition in some Sanbagawa metamorphic rocks, at least at the hand specimen scale. This interpretation suggests that, in some cases, material interaction promoted by mechanical mixing and fluid‐assisted diffusive mass transfer probably influences mineral reactions and paragenesis of high‐pressure metamorphic rocks.  相似文献   

18.
A nomogram is developed to show that pH, redox potentials (EhNHE) and measures of dissolved sulfides (H2S + HS + S2−)(total free S2−) can be used to classify organic enrichment impacts in marine sediments. The biogeochemical cycle of sulfur in marine sediments is described to show that changes in macrobenthic infauna community structure associated with high levels of organic matter supply result from stress due to oxygen deficiency (hypoxia and anoxia) and toxic effects of S2−. The changes reflect enhancement of microbial sulfate reduction under conditions of high organic matter sedimentation and the progressive formation of hypoxic–anoxic conditions measured by decreased EhNHE and increased concentrations of S2−. The nomogram provides a basis for classification of the oxic status of marine sediments based on changes in inter-related biological and biogeochemical variables along an organic enrichment gradient.  相似文献   

19.
H. Tabata  S. Maruyama  & Z. Shi 《Island Arc》1998,7(1-2):142-158
The ultrahigh- and high-pressure (UHP–HP) metamorphic belt of the Dabie Mountains, central China, formed by the Triassic continental subduction and collision, is divided into four metamorphic zones; from south to north, the greenschist facies zone, epidote amphibolite to amphibolite facies zone, quartz eclogite zone, and coesite eclogite zone, based on metabasite mineral assemblages. Most of the coesite-bearing eclogites consist mainly of garnet and omphacite with homogeneous compositions and have partially undergone hydration reactions to form clinopyroxene + plagioclase + calcic amphibole symplectites during amphibolite facies overprinting. However, the least altered eclogites sometimes contain garnet and omphacite that preserve compositional zoning patterns which may have originated during their growth at peak temperature conditions of ∼ 750 °C, suggesting a short duration of UHP metamorphic conditions and/or consequent rapid cooling during exhumation. Systematic investigation on peak metamorphic temperatures of coesite eclogite have revealed that, contrary to the general trend of metamorphic grade in the southern Dabie unit, the coesite eclogite zone shows rather flat thermal structure (T = 600 ± 50 °C) with the highest temperature reaching up to 850 °C and no northward increase in metamorphic temperature, which is opposed to the previous interpretations. This feature, along with the preservation of compositional zonation, implies complicated differential movement of each eclogite mass during UHP metamorphism and the return from the deeper subduction zone at mantle depths to the surface.  相似文献   

20.
Geographical distribution of helium isotope ratios in northeastern Japan   总被引:1,自引:0,他引:1  
Keika  Horiguchi  Sadato  Ueki  Yuji  Sano  Naoto  Takahata  Akira  Hasegawa  George  Igarashi 《Island Arc》2010,19(1):60-70
In order to study the precise geographical distribution of helium isotope ratios in northeastern Japan and compare it with geophysical data, we collected 43 gas and water samples from hot and mineral springs in the region where the ratio had never been reported, and measured the 3He/4He and 4He/20Ne ratios of these samples. It was found that the 3He/4He ratios show clear contrasts between the forearc and the back-arc regions in the Tohoku district in northeastern Japan. In the forearc region, the ratios are smaller than 1 RA (1 RA = 1.4 × 10−6; RA means the 3He/4He ratio of the atmosphere). On the other hand, those along the volcanic front and in the back-arc region are apparently higher. Moreover, we found a variation in the 3He/4He ratios along the volcanic front. In Miyagi Prefecture (38–39°N), the ratios range from 2 to 5 RA. On the other hand, the ratios are less than 1 RA in and around the southern border between Iwate and Akita Prefectures (39–39.5°N). Comparing the distribution of helium isotope ratios to results of recent geophysical studies, we found that the features in geographical distribution of helium isotope ratios are similar to those of seismic low-velocity zone distributions and high Qp−1 distributions in the uppermost mantle. These observations strongly suggest that the helium isotope ratios reflect the distribution of melts in the uppermost mantle and are a useful tool for investigating the origin, behavior, and distribution of deep fluids and melts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号