首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《国际泥沙研究》2021,36(6):747-755
The magnitude and variation of the sediment loads transported by rivers have important implications for the functioning of river systems and changes in the sediment loads of rivers are driven by numerous factors. In this paper, the key drivers of changes in the sediment loads of the major rivers of China are identified by reviewing recent studies of changes in their sediment loads. Except for the Songhua River, which presents no clear tendency of change in runoff or sediment load, nearly all the major rivers of China are characterized by an apparent decline in annual sediment load. The total annual sediment load of major Chinese rivers transported to the coast decreased from 2.03 billion t/yr during the period 1955–1968 to 0.50 billion t/yr during the period 1997–2010. The primary drivers of changes in the sediment loads of the rivers are dam construction, implementation of soil and water conservation measures, catchment disturbance, agricultural practices, sand mining and climate change. Examples drawn from Chinese rivers are used to demonstrate the importance of these drivers. Construction of a large number of reservoirs in the Yangtze River basin represents the primary driver for the reduced sediment load of the Yangtze River. The implementation of soil and water conservation programmes is one of the key drivers for the sharp decline in the sediment load of the Yellow River. Catchment disturbance explains why the reduction of the sediment load of the Lancang-Mekong River at the Chiang Saen gauging station was much less than that at the Gajiu gauging station upstream. A reduction in sediment load resulting from the expansion of agricultural production may be the main driver for the reduced sediment load of the Huaihe River. The decrease in the sediment load of the Pearl River has been influenced by sand mining activities. Climate change is one of the key drivers responsible for the greatly reduced sediment load of the rivers in the Haihe River Basin.  相似文献   

2.
Channel change to regulated flows along large lowland rivers with cohesive bank materials has been investigated on the lower Welsh Dee, including the tidally influenced reach. Reduction of channel width has involved the formation of a 5–40m wide discontinuous bench, often linking ‘point’ and ‘concave’ locations. Map evidence shows that wide benches occur where historically the channel had migrated laterally; narrow benches were found at stable channel locations. Auger cores of the bench deposits clearly differentiated the two contrasting depositional environments within meandering rivers: ‘point bench’ and ‘concave bench’. Around an individual bend a morphologically continuous bench showed a gradient in sediment characteristics from coarser sediments (point locations) to finer organic deposits (concave locations); it also showed a topographic gradient, gaining 0.5m in elevation around the bend suggesting that bench accretion at concave locations is faster than at point locations in fluvially dominated reaches. Such patterns are suggested to have important implications for riparian ecosystems. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Changes in runoff and sediment loads to the Pacific Ocean from 10 major Chinese rivers are presented in this paper To quantitatively assess trends in runoff and sediment loads, a parameter called the "Trend Ratio T" has been defined in this paper. To summarize total runoff and sediment load from these rivers, data from 17 gauging stations for the duration 1955 to 2010 has been standardized, and the missing data have been interpolated by different approaches according to specific conditions. Over the observed 56-year study period, there is a quite stable change in total runoff. Results show that the mean annual runoff flux entering the Pacific Ocean from these rivers is approximately 1,425 billion cubic meters. It is found that all northern rivers within semi-arid and transitional zones including the Songhua, Liaohe, Haihe, Yellow and Huaihe rivers present declining trends in water discharge. Annual runoff in all southern rivers within humid zones including the Yangtze, Qiantang, Minjiang, Pearl and Lancang rivers does not change much, except for the Qiantang River whose annual runoff slightly increases. The annual sediment loads of all rivers show significant declining trends; the exceptions are the Songhua and Lancang rivers whose annual sediment loads have increasing trends. However, the mean annual sediment flux carried into the Pacific Ocean decreased from 2,026 million tonnes to 499 million tonnes over the 56-year period. During this time there were 4 distinct decreasing phases. The decrease in annual sediment flux is due to the integrated effects of human activity and climate change. The reduction in sediment flux makes it easy for reservoir operation; however, the decrease in sediment flux also creates problems, such as channel erosion, river bank collapse and the retreat of the delta area.  相似文献   

4.
CHARACTERISTICSANDREGULATIONOFWANDERINGRIVERSXIEJianheng(Professr,MemberoftheChineseEngineeringAcademyofSciences,WuhanUnivers...  相似文献   

5.
River deltas and associated turbidity current systems produce some of the largest and most rapid sediment accumulations on our planet. These systems bury globally significant volumes of organic carbon and determine the runout distance of potentially hazardous sediment flows and the shape of their deposits. Here we seek to understand the main factors that determine the morphology of turbidity current systems linked to deltas in fjords, and why some locations have well developed submarine channels while others do not. Deltas and associated turbidity current systems are analysed initially in five fjord systems from British Columbia in Canada, and then more widely. This provides the basis for a general classification of delta and turbidity current system types, where rivers enter relatively deep (>200 m) water. Fjord-delta area is found to be strongly bimodal. Avalanching of coarse-grained bedload delivered by steep mountainous rivers produces small Gilbert-type fan deltas, whose steep gradient (11°–25°) approaches the sediment's angle of repose. Bigger fjord-head deltas are associated with much larger and finer-grained rivers. These deltas have much lower gradients (1.5°–10°) that decrease offshore in a near exponential fashion. The lengths of turbidity current channels are highly variable, even in settings fed by rivers with similar discharges. This may be due to resetting of channel systems by delta-top channel avulsions or major offshore landslides, as well as the amount and rate of sediment supplied to the delta front by rivers. © 2018 John Wiley & Sons, Ltd.  相似文献   

6.
《国际泥沙研究》2020,35(5):484-503
The current study aimed to describe textural characteristics, heavy mineral composition, and grain microtextures of the sediment from three micro-environments (foreshore, berm, and dune). A total of forty-one (41) representative surficial sediment samples have been collected from fifteen (15) locations along the beach area between the Sarada and Gosthani rivers on the east coast of India, where the length of the stretch is more than 100 km. The study reveals that most of the coastal sediment is medium to fine sand with relatively high ratios of coarse sand at Yarada beach, and the nature of the sediment is moderately to well sorted. These characteristics indicate a high energy environment. The heavy mineral analysis of the sediment in the current study was done for coarse (+60#) and fine (+230#) size fractions. Studying the weight percentage (WT%) reveals that a high percentage of heavy minerals is associated with fine fractions. Ilmenite, sillimanite, garnet, zircon, and rutile are the major heavy minerals identified in the current investigation. The concentrations of these heavy minerals show great variations from south to north of the study area. From an economic point of view, a considerable amount of heavy minerals (average 48.41%) are present on both sides (north and south) of the Gosthani River mouth. In the Sarada Estuary, the concentration of the economic heavy minerals was found under the minimum economic range. The grain microtextures of the major heavy minerals from the different locations along the study area demonstrate the variation in grain microtextures, which is controlled by the chemical and mechanical processes. These microtextures reflect moderate to high wave energy on the beach area, in addition to high mechanical impact on the grains from the estuary point.  相似文献   

7.
Anthropogenic climate change is expected to change the discharge and sediment transport regime of river systems. Because rivers adjust their channels to accommodate their typical inputs of water and sediment, changes in these variables can potentially alter river morphology. In this study, a hierarchical modeling approach was developed and applied to examine potential changes in reach‐averaged bedload transport and spatial patterns of erosion and deposition for three snowmelt‐dominated gravel‐bed rivers in the interior Pacific Northwest. The modeling hierarchy was based on discharge and suspended‐sediment load from a basin‐scale hydrologic model driven by a range of downscaled climate‐change scenarios. In the field, channel morphology and sediment grain‐size data for all three rivers were collected. Changes in reach‐averaged bedload transport were estimated using the Bedload Assessment of Gravel‐bedded Streams (BAGS) software, and the Cellular Automaton Evolutionary Slope and River (CAESAR) model was used to simulate the spatial pattern of erosion and deposition within each reach to infer potential changes in channel geometry and planform. The duration of critical discharge was found to control bedload transport. Changes in channel geometry were simulated for the two higher‐energy river reaches, but no significant morphological changes were found for a lower‐energy reach with steep, cohesive banks. Changes in sediment transport and river morphology resulting from climate change could affect the management of river systems for human and ecological uses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Sediment load reduction in Chinese rivers   总被引:18,自引:9,他引:9  
In this paper, the changes in the annual runoff and sediment transport have been assessed by using the long term observation data from 10 gauging stations on 10 large rivers across China from far north to far south. It is found that the annual sediment yield has generally had a decreasing trend in the past half century. According to the changes in annual runoff and the sediment yield per area, rivers in China can be classified into the following three groups: 1) rivers with decreasing annual sediment transport and stable runoff; 2) rivers with both decreasing annual sediment transport and runoff and 3) rivers with greatly reduced annual sediment transport and decreasing annual runoff. The results indicate that, in all southern rivers (to the south of the Huaihe River including the Huaihe River), there has been little change in average annual runoff but a dramatic decrease in annual sediment transport. In the northern rivers, however, both the annual sediment yield and the runoff show significant evidence of reduction. To further investigate the recent changes in annual runoff and sediment transport, the short-term observation data from these 10 gauging stations in the recent 10 years have been assessed. Results show that both the annual sediment transport and the runoff have decreased" significantly in the northern rivers in the past 10 years. Using the Yellow River at the Lijin Station as an example, the average annual runoff for the last 10 years is only 1/3 of the long term average value and the average annual sediment yield of the last 10 years is only 1/4 of the long term average value. More unusually, in the Yongding River the annual sediment yield has approached zero and the runoff has decreased significantly. In addition, the impacts of human activities on the changes in both runoff and sediment transport have been discussed.  相似文献   

9.
Most rivers in Taiwan are intermittent rivers with relatively steep slopes and carry rapid sediment‐laden flows during typhoon or monsoon seasons. A series of field experiments was conducted to collect suspended load data at the Tzu‐Chiang Bridge hydrological station of the lower Cho‐Shui River, which is a major river with the highest sediment yield in Taiwan. The river reach was aggrading with a high aspect ratio during the 1980s. Because of sand mining and extreme floods, it was incised and has had a relatively narrow main channel in recent years. The experimental results indicated that typical sediment transport equations can correctly predict the bed material load for low or medium sediment transport rates (e.g. less than about 1000 tons/day‐m). However, these equations far underestimate the bed material load for high sediment transport rates. The effects of cross‐sectional geometry change (i.e. river incision) and earthquakes on the sediment load were investigated in this study. An empirical sediment transport equation with consideration of the aspect ratio was also derived using the field data collected before and after river incision. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Dam construction greatly alters the channel boundary of rivers, making the dammed river system a human‐controlled system. Based on hydrometric data in the upper Changjiang River basin, the change in behaviour of sediment transport of some dammed rivers was studied. As a result, some phenomena of threshold and complex response were found. When the coefficient (Cr,a) of actual runoff regulation by reservoirs, defined as the ratio of total capacity of reservoirs to annual runoff input, is smaller than 10%, suspended sediment load at Yichang station, the control station of the Changjiang River, shows a mild decreasing trend. When this coefficient becomes larger than 10%, suspended sediment load decreases sharply. The coefficient of 10% can be regarded as a threshold. The Cr,a of 10% is also a threshold, when the variation of suspended sediment concentration (SSC) with Cr,a at Yichang station is considered. The impacts of reservoir construction can be divided into several stages, including road construction, dam building and closure, water storage and sediment trapping. During these stages, some complex response was identified. At the station below the dam, SSC increases and reaches a maximum, and then declines sharply. This phenomenon was found on the main‐stem and several major tributaries of the upper Changjiang River. In the Minjiang River, where a series of dams were built successively, the response of SSC is more complicated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
It is important to identify the non-stationarity in the relation between runoff and sediment load under the backdrop of the changing environment. This relation helps to further understand the mechanisms of runoff and sediment yield. A copula-based method was used to detect possible change points in the relation between runoff and sediment load in the Wei River Basin (WRB), China, where soil erosion is a very severe issue. The modified Mann-Kendall trend test method was applied to obtain the trends of runoff and sediment load spanning 1960–2010 at monthly and annual timescales. Finally, the causes of the identified non-stationarity of the relation between runoff and sediment load were roughly analyzed from the perspective of climate change and human activities. Results indicated that:(1) the runoff and sediment load in the Jinghe and Wei rivers were generally characterized by noticeably decreasing trends at both monthly and annual timescales;(2) both the Jinghe and Wei rivers had a common change point (2002), implying that the stationarity of the relation between runoff and sediment load in the Jinghe and Wei River was invalid; (3) human activities including increasing water consumption and growing application of soil conservation practices are dominant factors resulting in non-stationarity in the rela-tion between runoff and sediment load in the WRB. This study provides a new idea for identifying the non-stationarity of multivariate relation in the hydro-meteorological field under the background of the changing environment.  相似文献   

12.
Climate change characterized by increasing temperature is able to affect precipitation regime and thus surface hydrology.However,the manner in which river sediment loads respond to climate change is not well understood,and related assessment regarding the effect of climate change on sediment loads is lacking.We present a quantitative estimate of changes in sediment loads(from 1.5 Gt yr-1 pre-1990 to 0.6 Gt yr-1 from 1991-2007) in response to climate change in eight large Chinese rivers.Over the past decades,precipitation change coupled with rising temperatures has played a significant role in influencing the sediment delivery dynamics,although human activities, such as reservoir construction,water diversion,sand mining and land cover change,are still the predominant forces. Lower precipitation coupled with rising temperatures has significantly reduced sediment loads delivered into the sea in semi-arid climates(4-61%).In contrast,increasingly warmer and wetter climates in subtropical zones has yielded more sediment(0.4-11%),although the increase was offset by human impact.Our results indicate that,compared with mechanical retention by reservoirs,water reduction caused by climate change or human withdrawals has contributed more sediment reduction for the rivers with abundant sediment supply but limited transport capacity(e.g.,the Huanghe).Furthermore,our results indicate that every 1%change in precipitation has resulted in a 1.3%change in water discharge and a 2%change in sediment loads.In addition,every 1%change in water discharge caused by precipitation has led to a 1.6%change in sediment loads,but the same percentage of water discharge change caused largely by humans would only result in a 0.9%change in sediment loads.These figures can be used as a guideline for evaluating the responses of sediment loads to climate change in similar climate zones because future global warming will cause dramatic changes in water and sediment in river basins worldwide at rates previously unseen.  相似文献   

13.
Haiyan Yang 《水文研究》2020,34(17):3702-3717
Gravel-bed braided rivers are highly energetic fluvial systems characterized by frequent in-channel avulsions, which govern the morphodynamics of such rivers and are essential for them to maintain a braided planform. However, the avulsion mechanisms within natural braided rivers remain unclear due to their complicated hydraulic and morphodynamic processes. Influenced by neighbouring channels, avulsions in braided rivers may differ from those of bifurcations in single-thread rivers, suggesting that avulsions should be studied within the context of the entire braid network. In this study, braiding evolution processes in gravel-bed rivers were simulated using a physics-based numerical model that considers graded bed-load transport by dividing sediment particles into multiple size fractions and vertical sediment sorting by dividing the riverbed into several vertical layers. The numerical model successfully produced braiding processes and avulsion activities similar to those observed in a laboratory river. Results show that bend evolution of the main channel was the fundamental process controlling the occurrence of avulsions in the numerical model, with a cyclic process of channel meandering by lateral migration that transitioned to a straight channel pattern by avulsion. The radius of bend curvature for triggering avulsions in the numerical model was measured and it was found that the highest probability for a channel bend to generate an avulsion occurs when its radius of curvature is approximately 2.0–3.3 times the average anabranch width. Other types of avulsion were also observed that did not occur specifically at meander bends, but upstream meander evolution indirectly influenced such avulsions by altering channel pattern and discharge to those locations. This study explored the processes and mechanisms of several types of avulsion, and proposed factors controlling their occurrence, namely increasing channel curvature, high shear stress, tributary discharge, riverbed gradient and upstream channel pattern, with high shear stress being a direct indicator. Furthermore, avulsions in a typical gravel-bed braided river, the Waimakariri River in New Zealand, were analysed using sequential Google Earth maps, which confirmed the conclusions derived from the numerical simulation.  相似文献   

14.
IINTRODUCTIONLanddevelopmentandlandusepatternsinthewatershedcaninduceincreasedsedimentloadsinriversandstreams.AGREATIllstudy(1982)illustratedthatsedimentyieldsfromagriculturallandcouldbeseveralfoldsmorethanothertypeoflandusesanderosionsources.ThesamestudyalsodemonstratedthatfinesedimentsweretheheaviestportionoftotalsoillossesfromeachtypeoflandusesinthetwelvehydrologicareasitinvestigatedintheUMRS.Thesamecouldbetrueforotheruplandareasalso.Howeverfinesediments,formthewashloadofthestream…  相似文献   

15.
This paper examines a variety of recirculation flow patterns that develop in the groyne fields on rivers. A comprehensive data set was obtained from flume experiments at Delft University of Technology and field measurements performed on the Elbe River in Germany. The analysis focuses on patterns of velocity, scour and deposition, and corresponding change of riverbed morphology. The results show that velocity patterns in the groyne fields depend mainly on the aspect ratio between groyne length and length of groyne field. When the aspect ratio is greater than 0·5, a one‐gyre pattern of recirculation develops, while at groyne fields with aspect ratios less than 0·5 a two‐gyre recirculation pattern emerges. The spatial distribution of fine‐sediment deposition between the groynes coincides with the locations of gyres. Moreover, the thickness of the fine‐sediment layer decreases toward the gyre margins where recirculation velocities are greatest. Although the total concentration of suspended sediment in the river does not change considerably as the flow moves through the groyne field, the biological and gravimetrical composition of the suspended material changes substantially within the groyne field. These changes are due to preferential deposition of coarse mineral particles and the replacement of those minerals with finer organic material. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Glacier retreat leads to changes in channel pattern during deglaciation, in response to changing water, sediment and base level controls. Recent ongoing retreat at Skaftafellsjökull, Iceland (c. 50 m per year since 1998) has resulted in the formation of a sequence of river terraces, and several changes in river channel pattern. This paper compares widely used models of river channel pattern against the changes observed at Skaftafellsjökull. Doing this reveals the role of topographic forcing in determining proglacial channel pattern, whilst examining the predictive power and limitations of the various approaches to classifying river channels. Topography was found to play a large role in determining channel pattern in proglacial environments for two reasons: firstly, glacier retreat forces rivers to flow through confined moraine reaches. In these reaches, channels which theory predicts should be braided are forced to adopt a single channel. Secondly, proximal incision of proglacial rivers, accompanied by downstream aggradation, leads to changes in slope which force the river to cross channel pattern thresholds. The findings of this work indicate that in the short term, the majority of channel pattern change in proglacial rivers is due to topographic forcing, and that changes due to changing hydrology and sediment supply are initially relatively minor, although likely to increase in significance as deglaciation progresses. These findings have implications for palaeohydraulic studies, where changes in proglacial channel pattern are frequently interpreted as being due to changes in water or sediment supply. This paper shows that channel pattern can change at timescales faster than hydrological or sediment budget changes usually occur, in association with relatively minor changes in glacier mass balance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
1 INTRODUCTION The particle size of sediment eroded from basins can provide basic information about erosion processes (Meyer et al., 1980), which can be divided into sheet wash sediment processes on hill slopes and fluvial sediment processes in rivers. In…  相似文献   

18.
The uranium-series isotope signatures of the suspended and dissolved load of rivers have emerged as an important tool for understanding the processes of erosion and chemical weathering at the scale of a watershed. These signatures are a function of both time and weathering-induced fractionation between the different nuclides. Provided appropriate models can be developed, they can be used to constrain the residence time of river sediment. This chronometer is triggered as the bedrock starts weathering and the inferred timescale encompasses the residence time in the weathering profile, storage in temporary sediment deposits (e.g. floodplain) and transport in the river. This approach has been applied to various catchments over the past five years showing that river sediments can reside in a watershed for timescales ranging from a few hundreds of years (Iceland) to several hundreds of thousands of years (lowlands of the Amazon). Various factors control how long sediment resides in the watershed: the longest residence times are observed on stable cratons unaffected by glacial cycles (or more generally, climate variability) and human disturbance. Shorter residence times are observed in active orogens (Andes) or fast-eroding, recently glaciated catchments (Iceland). In several cases, the residence time of suspended sediments also corresponds to the time since the last major climate change. The U-series isotope composition of rivers can also be used to predict the river sediment yield assuming steady-state erosion is reached. By comparing this estimate with the modern sediment yield obtained by multi-year sediment gauging, it is clear that steady-state is seldom reached. This can be explained by climate variability and/or human disturbance. Steady-state is reached in those catchments where sediment transport is rapid (Iceland) or where the region has been unaffected by climate change and/or human disturbance. U-series are thus becoming an important tool to study the dynamics of erosion.  相似文献   

19.
Collection of samples of suspended sediment transported by streams and rivers is difficult and expensive. Emerging technologies, such as acoustic backscatter, have promise to decrease costs and allow more thorough sampling of transported sediment in streams and rivers. Acoustic backscatter information may be used to calculate the concentration of suspended sand-sized sediment given the vertical distribution of sediment size. Therefore, procedures to accurately compute suspended sediment size distributions from easily obtained river data are badly needed. In this study, techniques to predict the size of suspended sand are examined and their application to measuring concentrations using acoustic backscatter data are explored. Three methods to predict the size of sediment in suspension using bed sediment, flow criteria, and a modified form of the Rouse equation yielded mean suspended sediment sizes that differed from means of measured data by 7 to 50 percent. When one sample near the bed was used as a reference, mean error was reduced to about 5 percent. These errors in size determination translate into errors of 7 to 156 percent in the prediction of sediment concentration using backscatter data from 1 MHz single frequency acoustics.  相似文献   

20.
I. INTRODUCTIONWhen a sediment--laden flow reaches the backwater zone of a reservoir, the suddenreduction of flow velocity causes sediment particles to settle toward the river bed. Undercertain circumstsnces, it will plunge and form a layer of sediment--water mixture flowingbeneath the water surface. This flowing layer is called the turbidity current. A turbiditycurrent is relatively stable and has important impacts on reservoir sedimentation.In the case of deep reservoirs, due to temper…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号