首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《水文科学杂志》2013,58(4):777-792
Abstract

Based on data from five hydrometric stations, Pingshan station on the Jinshajiang River, Gaochang station on the Minjiang River, Wulong station on the Wujiang River, Wusheng station on the Jialingjiang River and Yichang station on the Yangtze River, a study has been made of the temporal variation in grain size of suspended sediment load in the upper Yangtze River. The results show that in the past 40 years, the grain size of the suspended sediment load in the main stem and major tributaries of the upper Yangtze River has had a decreasing trend, that can be explained by the effect of reservoir construction and implementation of soil conservation measures. The reservoirs in the upper Yangtze River Basin, all used for water storage for hydro-electric generation and/or irrigation, have trapped coarse sediment from the drainage area above the dam and, thus, the sediment released now is much finer than before the construction of the reservoirs. The downstream channels are all gravel-bedded or even in bedrock, with little fine sediment, and thus, the released flow can hardly get a supply of fine sediment through eroding the bed. Then, after the downstream adjustment, the grain size of suspended sediment is still fine. Large-scale soil conservation measures have significantly reduced sediment yield in some major sediment source areas. The relatively coarse sediment is trapped and, thus, the sediment delivered to the river becomes finer.  相似文献   

2.
Due to the temporal decoupling of water and sediment sources in a large river basin, a flood from a sediment source area with high suspended sediment concentration (SSC) may be diluted by flow from a major runoff source area with low SSC. In this paper, this dilution effect is considered for 145 flood events from the Yellow River, China. Two indices (β1 and β2) describing the dilution effect are proposed, based on water and sediment from the clear water source area and the coarse sediment producing area. Regression equations between channel sedimentation (Sdep) and β1 and β2 are established based on flood events and annual data, respectively. The results show that dilution reduces channel sedimentation in the lower reaches by 34?1% and that this is related to a reduced frequency of hyperconcentrated flows in the lower reaches. The Longyangxia Reservoir for hydro‐electric generation has stored huge quantities of clear runoff from the upper Yellow River during high‐flow season since 1985, greatly reducing the dilution of the hyperconcentrated floods and therefore enhancing sedimentation in the lower reaches. For the purpose of reducing sedimentation, changing the operational mode of the Longyangxia Reservoir to restore the dilution effect is suggested. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
水利工程兴建后洞庭湖径流与泥沙的变化   总被引:12,自引:6,他引:6  
本文根据1951—1988年洞庭湖及其入湖河流的水文泥沙资料,研究大型水利工程兴建后洞庭湖径流与泥沙的变化。研究表明,近40年来洞庭湖的径流量减少了29.2%,输沙量减少了48.7%。引起水沙变化的主要原因是荆江四口分流河床的淤积,使荆江入湖的径流量与输沙量减少。1966—1972年下荆江三个弯道裁弯取直,使荆江河床下切,导致荆江及其分流水位的下降,也促使荆江分流的流量与输沙量的减少。40年来洞庭湖水流变化的趋势对洞庭湖、江汉平原与长江中下游的防洪较为有利。  相似文献   

4.
A rating curve provides a reasonable estimate of the suspended sediment concentration at a given discharge. However, analysis of a detailed 9‐year time‐series of suspended sediment concentration (SSC) and discharge Q of the Meuse River in The Netherlands indicates that SSC is (besides discharge) controlled by exhaustion and replenishment of different sediment sources. Clockwise hysteresis and other effects of sediment exhaustion can be observed during and after flood events, and the effects of stockpiling of sediment in the river bed during low‐discharge periods are obvious in the SSC of the next flood. In a single regression equation we have implemented a parameter that represents the presence or absence of stock for sediment uptake. In comparison with a rating curve of SSC and Q, adding this parameter is shown to be a more reliable and comprehensive method to predict SSCs at all discharge regimes with all preceding discharge conditions, for single‐peaked and multi‐peaked runoff events as well as for low flow conditions. The method is probably applicable to other small‐ to medium‐scaled river basins. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract

River basin lag time (LAG), defined as the elapsed time between the occurrence of the centroids of the effective rainfall intensity pattern and the storm runoff hydrograph, is an important factor in determining the time to peak and the peak value of the instantaneous unit hydrograph, IUH. In the procedure of predicting a sedimentgraph (suspended sediment load as a function of time), the equivalent parameter is the lag time for the sedimentgraph (LAGs ), which is defined as the elapsed time between the occurrence of the centroids of sediment production during a storm event and the observed sedimentgraph at the gauging station. Results of analyses of rainfall, runoff and suspended sediment concentration event data collected from five small Carpathian basins in Poland and from a 2.31-ha agricultural basin, in central Illinois, USA have shown that LAGs was, in the majority of cases, smaller than LAG, and that a significant linear relationship exists between LAGs and LAG.  相似文献   

6.
Based on rainfall erosion of soil and suspended sediment transport in storm events, a method is proposed to predict peak suspended sediment concentration and suspended sediment yield in watersheds based on rainfall characteristics prior to peak rainfall intensity. The rainfall characteristics factors that dominate peak suspended sediment concentration Cp are rainfall erosion factor Ref, first peak rainfall intensity of area-average rainfall ip1 and antecedent precipitation index Iap; the rainfall characteristics factors that dominate suspended sediment yield Yss in storm events are total rainfall P, suspended sediment yield factor Rsf and antecedent precipitation index Iap. This research focuses on watersheds in Liau-Kwei observation station along Lao-Nung River in southern Taiwan as the research object, and adopts the PSED-model to simulate the discharge hydrograph, suspended sediment concentration hydrograph and suspended sediment yield in 11 storm events for analysis. The analytical results show that there is a good correlation between the above-mentioned rainfall characteristics factors and Cp as well as Yss, thus enabling Cp and Yss to be predicted by using Expressions (13) and (14). These two expressions are utilized to predict Cp and Yss of Typhoon Morakot in 2009, and the results are compared with those from simulation by using the PSED-model. The result of comparison shows there is a good capability in predicting. For the watersheds where it is necessary to predict Cp and Yss of a storm event for the benefit of effective operation of water resource facilities, the aforesaid rainfall characteristics factors can be utilized to establish applicable models for prediction.  相似文献   

7.
The peak in sediment transport in alluvial rivers generally lags behind the peak in discharge. It is thus not clear how the hysteresis in the sediment/discharge relationship may be impacted by damming, which can fundamentally alter the water and sediment regimes in the downstream reaches of the river. In this study, a total of 500 flood events in the Yichang–Chenglingji Reach (YCR) of the Middle Yangtze River immediately downstream of the Three Gorges Dam (TGD) are analysed to study the impacts of dam operations on the hysteresis of suspended sediment transport. Sediment rating curves, hysteresis patterns, as well as lag times, are investigated to determine the relationship between suspended sediment concentration (SSC) and flow discharge (Q) at different temporal scales, from inter-annual to individual flood events, for the pre- and post-TGD period from 1992 to 2002 and from 2003 to 2017, respectively. The results showed that the TGD operation decreased the frequency and magnitude of floods. The decrease in peak flow and increase in base flow weakened the flood contribution to the annual discharge by nearly 20%. However, the relative suspended sediment load contribution during flood events was much higher than the discharge contribution, and was little impacted by the dam. At seasonal and monthly scales, more than 80% of the suspended sediment was transported by ~65% of the water discharge in the summer and early autumn. The monthly SSCQ relationship changed from a figure-eight to an anti-clockwise pattern after the construction of the TGD. For single flood events, the TGD operations significantly modified the downstream SSCQ hysteresis patterns, increasing the frequency of anti-clockwise loops and the lag time between peak Q and peak SSC. These adjustments were mainly caused by differences in the propagation velocities of flood and sediment waves and the sediment ‘storage–mobilization–depletion’ process, whereas the influence of lateral diversions was small. © 2020 John Wiley & Sons, Ltd.  相似文献   

8.
The suspended particulate and fine-grained floodplain sediments were collected from the main stream and tributaries of the Changjiang River for Sr-Nd isotopic measurements. The εNd(0) values gradually decrease downstream from -10.8 on average in the upper reaches to -12.3 in the lower reaches, whereas the 87Sr/86Sr ratios increase correspondingly, averaging 0.721899 and 0.725826 respectively in the upper and middle-lower reaches. The compositional variations primarily reflect the complex con- trols of provenance rocks, chemical weathering, and sediment characters between different catchments, among which the abnormal Sr-Nd isotopic compositions of the Yalong, Fujiang, Tuojiang and Yuanjiang rivers indicate the sediment provenance contributions from the Emeishan Basalt in the upper reaches and the old metamorphic and siliceous rocks in the middle-lower reaches. The Sr-Nd isotopic ratios of the Changjiang sediments can better reflect the average composition of weathered continental crust compared to other major rivers in the world because of the unique source rock types in the Changjiang drainage basin. The recognition of the Sr-Nd isotopic systematics of the Changjiang sediments will contribute to our understanding of the Changjiang evolution history and continental weathering processes during the Cenozoic, and also to reconstructing the paleoenvironmental changes in East China and the marginal seas.  相似文献   

9.
Sediment rating curves are commonly used to estimate the suspended sediment load in rivers and streams under the assumption of a constant relation between discharge (Q) and suspended sediment concentrations (SSC) over time. However, temporal variation in the sediment supply of a watershed results in shifts in this relation by increasing variability and by introducing nonlinearities in the form of hysteresis or a path‐dependent relation. In this study, we used a mixed‐effects linear model to estimate an average SSC–Q relation for different periods of time within the hydrologic cycle while accounting for seasonality and hysteresis. We tested the performance of the mixed‐effects model against the standard rating curve, represented by a generalized least squares regression, by comparing observed and predicted sediment loads for a test case on the Chilliwack River, British Columbia, Canada. In our analyses, the mixed‐effects model reflected more accurate patterns of interpolated SSC from Q data than the rating curve, especially for the low‐flow summer months when the SSC–Q relation is less clear. Akaike information criterion scores were lower for the mixed‐effects model than for the standard model, and the mixed‐effects model explained nearly twice as much variance as the standard model (52% vs 27%). The improved performance was achieved by accounting for variability in the SSC–Q relation within each month and across years for the same month using fixed and random effects, respectively, a characteristic disregarded in the sediment rating curve. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
以三峡工程为核心的梯级水库群联合调度运用显著改变水沙条件,坝下游河段出现长时间、长距离的冲淤调整,长江中下游沙量平衡分析是合理评估水库群修建对河道影响的重要依据,是河湖管理与保护的关键支撑.本文基于长时间序列原型观测资料,采用沙量平衡法分析长江中下游不同时空尺度泥沙沿程恢复特征,对比断面地形法计算结果,结合河道空间区域性特征,从临底悬沙测验误差、断面代表性及断面间距、河道采砂等多角度深入揭示两种方法计算冲淤量产生差异的主要原因.结果表明:(1)2003-2018年宜昌至大通河段冲刷泥沙10.76亿t,其中粒径d<0.125 mm的泥沙冲刷量占比达90.9%.以螺山为界,宜昌至螺山段"粗细均冲",螺山至大通河段则"细冲粗淤";(2)宜昌至大通河段2003-2018年沙量平衡法与断面地形法计算冲淤量相对偏差为71%,从沿程差异分布来看,距离三峡大坝坝址较近的宜昌至沙市河段两方法计算绝对差值较小,而沙市至大通河段差值较大,占宜昌至大通全河段绝对偏差的近86%;(3)宜昌至沙市河段河道采砂量占实测河床冲刷量的比例约为20%,临底悬沙对输沙量的改正比例为13.2%~26.7%(平均约为20%),修正后,沙量平衡法、断面地形法计算结果吻合相对较好;沙市至大通河段泥沙测验、固定断面布设、河道采砂等是导致沙量平衡法与断面地形法出现差异的主要原因.  相似文献   

11.
The dynamics of suspended sediment involves inherent non‐linearity and complexity because of existence of both spatial variability of the basin characteristics and temporal climatic patterns. This complexity, therefore, leads to inaccurate prediction by the conventional sediment rating curve (SRC) and other empirical methods. Over past few decades, artificial neural networks (ANNs) have emerged as one of the advanced modelling techniques capable of addressing inherent non‐linearity in the hydrological processes. In the present study, feed‐forward back propagation (FFBP) algorithm of ANNs is used to model stage–discharge–suspended sediment relationship for ablation season (May–September) for melt runoff released from Gangotri glacier, one of the largest glaciers in Himalaya. The simulations have been carried out on primary data of suspended sediment concentration (SSC) discharge and stage for ablation season of 11‐year period (1999–2009). Combinations of different input vectors (viz. stage, discharge and SSC) for present and previous days are considered for development of the ANN models and examining the effects of input vectors. Further, based on model performance indices for training and testing phase, a suitable modelling approach with appropriate model input structure is suggested. The conventional SRC method is also used for modelling discharge–sediment relationship and performance of developed models is evaluated by statistical indices, namely; root mean square error (RMSE), mean absolute error (MAE) and coefficient of determination (R2). Statistically, the performance of ANN‐based models is found to be superior as compared to SRC method in terms of the selected performance indices in simulating the daily SSC. The study reveals suitability of ANN approach for simulation and estimation of daily SSC in glacier melt runoff and, therefore, opens new avenues of research for application of hybrid soft computing models in glacier hydrology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
ABSTRACT

Ensemble machine learning models have been widely used in hydro-systems modeling as robust prediction tools that combine multiple decision trees. In this study, three newly developed ensemble machine learning models, namely gradient boost regression (GBR), AdaBoost regression (ABR) and random forest regression (RFR) are proposed for prediction of suspended sediment load (SSL), and their prediction performance and related uncertainty are assessed. The SSL of the Mississippi River, which is one of the major world rivers and is significantly affected by sedimentation, is predicted based on daily values of river discharge (Q) and suspended sediment concentration (SSC). Based on performance metrics and visualization, the RFR model shows a slight lead in prediction performance. The uncertainty analysis also indicates that the input variable combination has more impact on the obtained predictions than the model structure selection.  相似文献   

13.
Sediment rating curves, which are fitted relationships between river discharge (Q) and suspended‐sediment concentration (C), are commonly used to assess patterns and trends in river water quality. In many of these studies, it is assumed that rating curves have a power‐law form (i.e. C = aQb, where a and b are fitted parameters). Two fundamental questions about the utility of these techniques are assessed in this paper: (i) how well to the parameters, a and b, characterize trends in the data, and (ii) are trends in rating curves diagnostic of changes to river water or sediment discharge? As noted in previous research, the offset parameter, a, is not an independent variable for most rivers but rather strongly dependent on b and Q. Here, it is shown that a is a poor metric for trends in the vertical offset of a rating curve, and a new parameter, â, as determined by the discharge‐normalized power function [C = â (Q/QGM)b], where QGM is the geometric mean of the Q‐values sampled, provides a better characterization of trends. However, these techniques must be applied carefully, because curvature in the relationship between log(Q) and log(C), which exists for many rivers, can produce false trends in â and b. Also, it is shown that trends in â and b are not uniquely diagnostic of river water or sediment supply conditions. For example, an increase in â can be caused by an increase in sediment supply, a decrease in water supply or a combination of these conditions. Large changes in water and sediment supplies can occur without any change in the parameters, â and b. Thus, trend analyses using sediment rating curves must include additional assessments of the time‐dependent rates and trends of river water, sediment concentrations and sediment discharge. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   

14.
Ditch cleaning in drained peatland forests increases sediment loads and degrades water quality in headwater streams and lakes. A better understanding of the processes controlling ditch erosion and sediment transport in such systems is a prerequisite for proper peatland management. In order to relate hydrological observations to key erosion processes in headwater peatlands drained for forestry, a two‐year study was conducted in a nested sub‐catchment system (treated with ditch cleaning) and at two reference sites. The treated catchment was instrumented for continuous discharge and turbidity monitoring, erosion pin measurements of changes in ditch bed and banks and time‐integrated sampling of suspended sediment (SS) composition. The results showed that ditch cleaning clearly increased transient suspended sediment concentrations (SSCs) and suspended sediment yields (SSYs), and resulted in temporary storage of loosely deposited organic sediment in the ditch network. After exhaustion of this sediment storage, subaerial processes and erosion from ditch banks became dominant in producing sediment for transport. Recorded SSCs were higher on the rising limbs of event hydrographs throughout the study period, indicating that SS transport was limited by availability of erosion‐prone sediment. A strong positive correlation (R2 = 0.84, p < 0.001) between rainfall intensity (above a threshold of 1 mm h?1) and average SSC obtained on the rising limb of hydrographs for the sub‐catchment showed that soil detachment from ditch banks by raindrop impact can directly increase SSC in runoff. At the main catchment outlet, variation in SSC was best explained (R2 = 0.67, p < 0.05) by the linear combination of initial discharge (?), peak discharge (+) and the lag time from initial to peak discharge (?). Based on these factors, ditch cleaning slightly increased peak discharges and decreased transit times in the study catchment. The implications of the results for water pollution management in peatland forests are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
One year of instantaneous suspended sediment concentration, C, and instantaneous discharge, Q, data collected at Ngarradj downstream of the Jabiluka mine site indicate that the use of a simple CQ rating curve is not a reliable method for estimating suspended sediment loads from the Ngarradj catchment. The CQ data are not only complicated by hysteresis effects within the rising and falling stages of individual events, but also by variable depletion of available suspended sediment through multipeaked runoff events. Parameter values were fitted to an event‐based suspended sediment load–Q relationship as an alternative to the CQ relationship. Total suspended sediment load and Q data for 10 observed events in the Ngarradj stream catchment were used to fit parameter values to a suspended sediment load–Q relationship, using (a) log–log regression and (b) iterative parameter fitting techniques. A more reliable and statistically significant prediction of suspended sediment load from the Ngarradj catchment is obtained using an event‐based suspended sediment load–Q relationship. Fitting parameters to the event‐based suspended sediment load–Q relationship using iterative techniques better predicts long‐term suspended sediment loads compared with log–log regression techniques. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
Sediment load reduction in Chinese rivers   总被引:18,自引:9,他引:9  
In this paper, the changes in the annual runoff and sediment transport have been assessed by using the long term observation data from 10 gauging stations on 10 large rivers across China from far north to far south. It is found that the annual sediment yield has generally had a decreasing trend in the past half century. According to the changes in annual runoff and the sediment yield per area, rivers in China can be classified into the following three groups: 1) rivers with decreasing annual sediment transport and stable runoff; 2) rivers with both decreasing annual sediment transport and runoff and 3) rivers with greatly reduced annual sediment transport and decreasing annual runoff. The results indicate that, in all southern rivers (to the south of the Huaihe River including the Huaihe River), there has been little change in average annual runoff but a dramatic decrease in annual sediment transport. In the northern rivers, however, both the annual sediment yield and the runoff show significant evidence of reduction. To further investigate the recent changes in annual runoff and sediment transport, the short-term observation data from these 10 gauging stations in the recent 10 years have been assessed. Results show that both the annual sediment transport and the runoff have decreased" significantly in the northern rivers in the past 10 years. Using the Yellow River at the Lijin Station as an example, the average annual runoff for the last 10 years is only 1/3 of the long term average value and the average annual sediment yield of the last 10 years is only 1/4 of the long term average value. More unusually, in the Yongding River the annual sediment yield has approached zero and the runoff has decreased significantly. In addition, the impacts of human activities on the changes in both runoff and sediment transport have been discussed.  相似文献   

17.
Due to a lack of data on settling velocities (ws) and grain size distributions (GSDs) in ?oodplain environments, sedimentation models often use calibrated rather than measured parameters. Since the characteristics of suspended matter differ from those of deposited sediment, it is impossible to derive the ws and GSD from the latter. Therefore, one needs to measure in situ suspended sediment concentrations (SSCs), settling velocities, effective grain sizes and sedimentation ?uxes. For this purpose we used the LISST‐ST, a laser particle sizer combined with a settling tube. In 2002 (twice) and 2004, we located the LISST‐ST with an optical backscatter sensor and sediment traps in two ?oodplains in The Netherlands: one along the unembanked IJssel River, another along the embanked Waal River. Measurements revealed that the SSC in the ?oodplains varied in relation to the SSC in the river channel. Smaller ?ocs dominated the SSC, while larger ?ocs dominated the potential sedimentation ?uxes. The in situ GSD in the IJssel ?oodplain was signi?cantly coarser than in the Waal ?oodplain, while the dispersed median grain sizes were equal for both ?oodplains. Therefore, the dispersed median grain size was two to ?ve times smaller than the effective one. The in situ grain size exhibited a signi?cant positive relationship with ws, although the ws for the largest ?ocs showed high variability. Consequently, the variability in sedimentation ?uxes was also large. In the actual sedimentation ?uxes, and hence in sedimentation models, in situ grain sizes up to about 20 µm can be neglected. In ?oodplain sedimentation models the relation between settling velocity and in situ grain size can be used instead of Stokes's law, which is only valid for dispersed grain sizes. These models should also use adequate data on ?ow conditions as input, since these strongly in?uence the suspended sediment characteristics. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
《国际泥沙研究》2021,36(6):747-755
The magnitude and variation of the sediment loads transported by rivers have important implications for the functioning of river systems and changes in the sediment loads of rivers are driven by numerous factors. In this paper, the key drivers of changes in the sediment loads of the major rivers of China are identified by reviewing recent studies of changes in their sediment loads. Except for the Songhua River, which presents no clear tendency of change in runoff or sediment load, nearly all the major rivers of China are characterized by an apparent decline in annual sediment load. The total annual sediment load of major Chinese rivers transported to the coast decreased from 2.03 billion t/yr during the period 1955–1968 to 0.50 billion t/yr during the period 1997–2010. The primary drivers of changes in the sediment loads of the rivers are dam construction, implementation of soil and water conservation measures, catchment disturbance, agricultural practices, sand mining and climate change. Examples drawn from Chinese rivers are used to demonstrate the importance of these drivers. Construction of a large number of reservoirs in the Yangtze River basin represents the primary driver for the reduced sediment load of the Yangtze River. The implementation of soil and water conservation programmes is one of the key drivers for the sharp decline in the sediment load of the Yellow River. Catchment disturbance explains why the reduction of the sediment load of the Lancang-Mekong River at the Chiang Saen gauging station was much less than that at the Gajiu gauging station upstream. A reduction in sediment load resulting from the expansion of agricultural production may be the main driver for the reduced sediment load of the Huaihe River. The decrease in the sediment load of the Pearl River has been influenced by sand mining activities. Climate change is one of the key drivers responsible for the greatly reduced sediment load of the rivers in the Haihe River Basin.  相似文献   

19.
The collapse of soil pipes due to internal erosion can result in fully mature gullies. Few studies have measured the rates of sediment detachment and transport through soil pipes in situ. The objectives of this work were to determine suspended sediment concentration (SSC) in soil pipes as a function of pipeflow rate to develop sediment rating curves (SRC) and measure the bedload transport as a function of cumulative flow per storm event. H-flumes were installed in seven discontinuous gullies formed by pipe collapse and instrumented for pipe discharge measurements and suspended sediment sampling. The typical response to pipeflow was an initial flush of high concentration of suspended sediment followed by a decrease as pipeflow increased (rising limb of hydrograph). Pipeflows were often so dynamic that it was difficult to consistently capture the initial flush of sediment, resulting in weak to non-existent SRCs. The falling limb of the hydrograph tended to have a relatively low SSC. Thus, soil pipe SRCs tended to be better represented by hysteretic SRCs, although relationships between SSC and flow rate were poorly represented by SRCs. A power law equation given by SSC = aQb was adopted to represent the SRC relationships. Fitting this equation to data showed a correlation between the offset, a, and the slope, b, with the slope decreasing as the offset increases. Both SRC parameters (a and b) were correlated to the contributing area of the individual pipe. Bedload appeared to be an important contributor to sediment transport, with bedload – expressed as an average event sediment concentration (mg l−1) – decreasing as the volume of the event discharge (m3) increased. A significant portion (11–31%) of the bedload material was gravel and aggregates (>2 mm diameter material). While this work was the first to determine SRCs for soil pipes, refined sampling and measurement techniques are needed. © 2020 John Wiley & Sons, Ltd.  相似文献   

20.
Cementitious porous pavement (CPP) is a structural low‐impact development material for rainfall–runoff management. Both infiltration and filtration are critical functions for CPP stormwater quality and quantity control. In this study, three groups of CPP specimens exposed to rainfall–runoff for 4 years and experienced with different maintenance intervals (6, 12 and 48 months, respectively) were used to examine CPP infiltration and filtration performance. Particle mass strained on CPP surface, saturated infiltration rate If, temporal infiltration rate I(t), suspended sediment concentration (SSC) and turbidity (τ) were measured to evaluate the process of filtration/infiltration. I(t), SSC and τ were examined less than 50 mg/l of the suspended particle loading. It was found that the CPP surface cleaning methods used in the past 4 years, namely, high pressure wash followed by vacuuming with one atmosphere (100 kPa), were effective, and a 12‐month maintenance interval was verified suitable to maintain the pore structure an acceptable infiltration rate for stormwater management. It was also found that CPP infiltration and filtration process affect each other, and the two properties are coupled in urban stormwater quality and quantity control. On the basis of the experimental measurements, the temporal infiltration rate of the cleaned CPP under a certain particle loading could be simulated by a first‐order nonlinear rational model, and effluent turbidity–SSC relationship was found following a power law. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号