首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
矿物材料对废水厌氧处理及厌氧污泥改性具有十分重要的作用,而微生物代谢产物是生物处理系统的重要组分,在提高污染物去除率和甲烷产量等方面也起到非常重要的作用。本研究对矿物材料石墨和厌氧微生物共存体系内溶解性微生物产物(soluble microbial product,SMP)和胞外聚合物(extracellular polymeric substances,EPS)进行了分析表征。结果表明,石墨对EPS和SMP的组成和含量影响显著,主要是由于石墨的吸附作用及其对石墨颗粒的环境毒性所致。红外光谱分析表明,添加石墨体系内SMP与EPS的基团种类并未发生明显改变,但含量有所改变。三维荧光分析结果显示,SMP的主要荧光类物质为色氨酸类似物和腐殖质(辅酶NADH),而EPS的主要荧光类物质为色氨酸类似物和腐殖酸,石墨能明显降低色氨酸类似物及腐殖酸类物质的产生。石墨会减弱微生物的相对疏水性,提高表面自由能,有利于微生物团聚体的形成。  相似文献   

2.
Biofouling, associated with membranes, is considered as a major operational challenge in membrane bioreactor (MBR) technology. Interrupting the process for the formation of biofilm by the action of interspecies quorum quenching (QQ) has received a significant attention since recent years. An antifouling bacterial consortium was identified to improve biofouling inhibition performance during MBR operation. For this purpose, various QQ bacteria were isolated from laboratory-scale MBR using enrichment culture method and identified via 16S rRNA. Potential quenching strains including Enterobacter cloaca, Delftia sp., and Pseudomonas sp. were utilized to control biofouling in the MBR operated in the continuous mode for 38 days. Three laboratory-scale MBRs, including two MBRs with different anti fouling consortium and a control, were operated in parallel under similar operating conditions. Biofouling control by QQ bacteria was compared based on the membrane permeability and EPS secretion from biofilm on the membrane. Both MBRs with antifouling consortium (AC-MBRs) experienced around three times less biofouling as compared to conventional MBR leading to significant decrease in acyl homoserine lactones (AHLs) concentration in the biocake. More than 90, 45, and 49% of COD, NH4–N, and PO4 3?–P removal efficiencies elucidate that QQ bacterial consortium could effectively reduce membrane biofouling without compromising the MBR efficiency. Comparatively lower concentration of bound EPS in AC-MBRs restricted the bacterial adhesion to membrane resulting in enhanced membrane permeability depicting that a broader range of signal molecules could be hydrolyzed using antifouling consortium than single or no QQ strain in the submerged MBR.  相似文献   

3.
为优化高负荷生物絮凝-膜反应器(HLB-MR)的工艺参数,提高其资源化城市污水的效能,采用平行对比实验,考察了不同固体停留时间(tSR)条件下反应器的有机物去除效率、生物絮凝效果、有机物回收效果和膜污染情况。结果表明:在tSR分别为0.2、0.6、1.0 d时,HLB-MR反应器有机物去除效率均在85%以上,其出水化学需氧量(COD)质量浓度均保持在30 mg/L左右;反应器内的生物絮凝效果随着tSR的延长而增强,其胶体COD絮凝效率从tSR为0.2 d时的66%增加到tSR为1.0 d时的95%,与此同时,有机物的矿化损失率也逐渐增加,从tSR为0.2 d时的6.9%增加到tSR为1.0 d时的10.5%,总COD的回收率逐渐降低;反应器内浓缩液的膜污染潜势随着tSR的延长逐渐缓解,这与较长tSR条件下反应器内胞外聚合物(EPS)产量较高、生物絮凝效果较好、微细颗粒(0~1 μm)的颗粒浓度较低有关。经过综合对比分析,0.6 d为反应器较优的tSR参数,在该条件下,胶体COD的絮凝效率高达90%,膜污染程度较轻;总COD的矿化损失率低至7.4%,总COD的回收率(忽略膜清洗时有机物损失)可高达80%以上。  相似文献   

4.
In the present study, the effectiveness of physicochemical treatment processes (coagulation and Fenton’s oxidation) was investigated for simulated dairy wastewater (pH = 7.3, chemical oxygen demand (COD) = 3600 mg/l, 5-day biochemical oxygen demand (BOD5) = 1950 mg/l, total Kjeldahl nitrogen (TKN) = 87 mg/l, and total phosphorous (TP) = 14 mg/l). Plain and ballasted coagulation runs were carried out in a jar apparatus, while Fenton’s oxidation was performed in a three-neck glass reactor. Ballasted coagulation caused an enhancement in the settling rate of sludge though no significant enhancement in the removal of organics was observed. Individually, coagulation and Fenton’s oxidation processes resulted in ~67 and 80 % COD removals, respectively, from the wastewater. The sequential treatment exploring coagulation followed by Fenton’s oxidation showed overall COD, BOD5, TKN, and TP reductions of ~93, 97, 84, and 70 %, respectively, from the wastewater. However, a biological post-treatment would be required to achieve the effluent discharge standards. The removal of proteins, fats, and amino acids from wastewater was confirmed from Fourier transform infrared analysis of the settled sludge (obtained after coagulation process). Preliminary cost analysis suggested coagulation and the sequential treatment (i.e. coagulation followed by Fenton’s oxidation) as the preferred options.  相似文献   

5.
In this study, sodium oxalate was employed to extract extracellular polymeric substances (EPS) from activated sludge samples. The optimum dose of sodium oxalate was 1.34 g/g VSS (volatile suspended solids), and the extraction time was 60 min at pH 7. The total EPS contents obtained under the optimized conditions were approximately 191 mg/g VSS, and they predominantly consisted of proteins, polysaccharides and humic substances. The extraction efficiencies of the chosen method for the major biopolymers were 39, 43 and 410 % higher compared with the ethylenediaminetetraacetic acid (EDTA), cation exchange resin and control methods. Cell lysis measured in terms of deoxyribonucleic acid, and unidentified EPS were approximately 50 % lower in the sodium oxalate method than in the NaOH and EDTA methods. The EPS composition and the ratio of proteins/polysaccharides (1.38–2.21) were extremely dependent on the operating conditions maintained during the extraction. The inductively coupled plasma spectroscopic results demonstrated that the release of divalent metals, such as Ca2+ and Mg2+, from the sludge matrix was directly correlated with higher EPS extraction efficiencies in the sodium oxalate protocol. Moreover, the precipitation of Ca2+ and Mg2+ as metallic oxalates disrupted the floc structure and subsequently enhanced the EPS recovery. Fourier transform infrared studies revealed the presence of functional groups due to EPS molecules in all extracted samples.  相似文献   

6.
投加粉末活性炭对MBR运行性能的影响   总被引:4,自引:0,他引:4  
试验研究比较了在相同的进水和运行条件下,反应器1(投加粉末活性炭,投加量为12.3 g,使其质量浓度达到1 100 mg/L)和反应器2(未投加粉末活性炭)的膜透水性及对污染物的去除效果,并分析了粉末活性炭可以提高膜过滤性能的相关机理。试验结果表明:反应器1的膜通量衰减速率明显小于反应器2;投加粉末活性炭改变了混合液的性质,也大大降低了混合液中胞外聚合物和微细胶体的含量,从而减缓了膜通量的下降速度,可以使系统长时间地以相对高的膜通量运行。  相似文献   

7.
吗啉废水的生化处理工艺   总被引:2,自引:0,他引:2  
以含有吗啉、甲基吗啉的高浓度有机废水为研究对象,提出了曝气吹脱-吸附-生物处理的联合工艺,并在室内进行了小试实验。结果表明:原废水经过2次曝气吹脱后,ρ(NH3-N)从62 500 mg/L降为431 mg/L,ρ(COD)从50 840 mg/L降为26 051 mg/L。通过吸附实验,ρ(COD)从26 051 mg/L降为2 769 mg/L,ρ(NH3-N)从412 mg/L降为134 mg/L。在生物处理室内小试实验中,采用了活性污泥反应器与曝气生物滤池相结合的处理工艺。在活性污泥反应系统中,当废水pH为7.5、ρ(DO)为4.3 mg/L、水力停留时间为30 h时,COD的去除率最高,可以达到83.1%。在曝气生物滤池中,当ρ(DO)为3.3 mg/L时,COD去除率最高,达到55.8%。在生物处理的最佳参数条件下进行连续监测,当进水ρ(COD)为2 769 mg/L、出水ρ(COD)平均值为387 mg/L时,COD去除率可达到85.9%。吗啉废水经过此联合工艺的处理,ρ(COD)从50 840 mg/L降为387 mg/L。  相似文献   

8.
在上流式好氧颗粒污泥床反应器中, 以厌氧颗粒污泥和好氧絮状活性污泥为接种泥, 采用人工配制的模拟废水, 成功培养出性能优异的好氧颗粒污泥.反应器内污泥浓度稳定在5g/L左右, 颗粒污泥粒径为0.5~2.0mm, 当进水COD为2000mg/L, 容积负荷为4.8kg/(m3·d)时, 系统对COD的去除率稳定在96%以上.通过扫描电镜观察, 好氧颗粒污泥是层状结构, 表面有大量丝状菌缠绕, 内部有短杆菌和空穴存在.逐步提高制药废水在进水中的比例, 经过47d的培养, 生物制药废水完全取代模拟废水, 系统对COD、NH3-N、TP的去除率分别稳定在90%、90%和70%以上.   相似文献   

9.
通过向一体式膜生物反应器中分别投加聚合铝和粉煤灰改变料液性质,来预防膜污染和提高膜生物反应器对总磷的去除效率,并通过X射线衍射和红外光谱实验分析活性污泥性质的变化,利用扫描电镜分析中空纤维膜表观结构的变化情况,探讨防治膜污染的机理.实验结果表明:聚合铝的投加改变了活性污泥的性质和生物膜的表观结构,可有效地减缓膜污染,且除磷效率达85%以上;而投加粉煤灰并没有明显效果.  相似文献   

10.
Fenton氧化膜-生物反应器出水中丙烯腈的实验研究   总被引:4,自引:0,他引:4  
采用膜-生物反应器和Fenton氧化组合工艺对丙烯腈废水进行处理。从GC/MS测量结果来看,膜-生物反应器出水中主要物质为2,6双(二甲基-乙基)-4-酚、苯二甲酸和硝基苯二甲酸,均为生物难降解有机物,使出水不能达标。后续Fenton氧化工艺处理膜生物反应器出水,可以使COD含量等指标达到所要求的排放标准。经过膜-生物处理与Fenton法结合的优化工艺,COD去除率达到80%~88%,去除率达到98%,出水水质可达排放标准。Fenton氧化工艺的最佳工艺条件为:pH值为3.4,硫酸亚铁的投加量为700mg/L,双氧水的投加量为600mg/L。  相似文献   

11.
Nitrogen removal from hypersaline wastewater was successfully started up by inoculating estuarine sediments for 140 days. Efficient ammonia and total nitrogen removal was sustained under specific ammonia loading of 0.016–0.139 kg N/[kg VSS day] in a sequencing batch reactor. Stable nitrite accumulation was observed during nitrification. The specific ammonia consumption rate was higher than the value of freshwater activated sludge and salt-acclimated freshwater activated sludge. With methanol as carbon source, specific nitrite reduction rate of halophilic denitrifiers was much less than the freshwater counterpart. Halophilic activated sludge was characterized as good settling and flocculation prosperity with small floc size and net-like sludge structure. The abundance of ammonia-oxidizing bacteria outnumbered ammonia-oxidizing archaeas in both estuarine sediments and the activated sludge. Nitrifier population was dominated by the halophilic members of genus Nitrosomonas. This study demonstrated the application of mixed halophilic consortia for efficient nitrogen removal, overcoming the limits and difficulties of applying freshwater bacteria for saline wastewater treatment.  相似文献   

12.
A combined ABR–MBR process consisting of an anaerobic baffled reactor (ABR) combined with an aerobic membrane bioreactor (MBR) treating municipal wastewater was investigated at controlled pH range 6.5–8.5 and at constant temperature 25 ± 1 °C. Total nitrogen (TN), ammonia (NH4 +–N), total phosphorus (TP), and chemical oxygen demand (COD) removal performances were evaluated by analyzing the mechanism for efficient nutrient removal. The results showed that the average removal rates of COD, NH4 +–N, TN, and TP reached 93, 99, 79, and 92 %, respectively, corresponding with the COD, NH4 +–N, TN, and TP effluent of 24 (18–31), 0.4 (0–0.8), 10.6 (8.8–12.9), and 0.31 (0.1–0.5) mg/L under the operational condition of hydraulic retention time (HRT) 7.5 h, recycle ratio 200 %, and dissolved oxygen 3 mg/L. The MBR enhanced NH4 +–N, TN, and TP removal rates of 13, 10, and 18 %, respectively, and the membrane retention reduced TP 0.17 mg/L. The process was able to maintain a stable performance with high-quality effluent. Analysis of the results by fluorescence in situ hybridization showed that the abundance of ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and phosphorus accumulating organisms as percentages of all bacteria in each compartment was stable. The enriched microorganisms in the system appear to be the main drivers of the process efficient for nutrient removal.  相似文献   

13.
通过对曝气系统的调节,微压流化式复合生物反应器(MP-FHBR)内可以实现好氧区和缺氧区共存,利用这一特点和MP-FHBR中同时存在的活性污泥﹑悬浮生物膜复合生物体系,进行了同步脱氮的试验研究。结果表明,MP-FHBR在好氧-缺氧条件下,实现了同步脱氮过程,TN和COD的平均去除率分别达到77.5%和98.3%。降低DO质量浓度使反应器内形成完全缺氧环境,对MP-FHBR同步脱氮效果没有显著影响,但会降低系统去除COD的效果;而提高DO质量浓度使反应器内形成完全好氧环境,MP-FHBR同步脱氮效果显著下降。在一定范围内提高进水COD/TN有利于提高MP-FHBR同步脱氮效果,COD/TN 由2升高到10,TN平均去除率由58.4%提高到78.8%,而继续提高COD/TN对系统同步脱氮效果的影响并不明显。在反应器允许的条件下,提高污泥质量浓度(MLSS)有利于提高系统反硝化脱氮效果,TN去除率随MLSS的增加而提高。  相似文献   

14.
Wastewater treatment using moving bed membrane bioreactor technology was tested with real urban wastewater at a pilot plant, combining moving bed treatment as a biological process with hybrid biomass (suspended and fixed) and the advantages of a membrane separation system. The evolution of the kinetic constants of the hybrid biomass and organic matter removal were studied in a pilot plant under different operational conditions, by varying hydraulic retention time (HRT), mixed liquor suspended solids (MLSS) and temperature, and considering the attached biomass of the carrier and the dispersed biomass of the flocs to reproduce real treatment conditions. The rates of organic matter removal were 97.73 ± 0.81 % of biochemical oxygen demand (BOD5), 93.44 ± 2.13 % of chemical oxygen demand (COD), 94.41 ± 2.26 % of BOD5 and 87.62 ± 2.47 % of COD using 24.00 ± 0.39 and 10.00 ± 0.07 h of HRT, respectively. The influence of the environmental variables and operational conditions on kinetic constants was studied; it was determined that the most influential variable for the decay coefficient for heterotrophic biomass was HRT (0.34 ± 0.14 and 0.31 ± 0.10 days?1 with 10.00 ± 0.07 and 24.00 ± 0.39 h of HRT, respectively), while for heterotrophic biomass yield, this was temperature (0.61 ± 0.04 and 0.52 ± 0.06 with 10.00 ± 0.07 and 24.00 ± 0.39 h of HRT, respectively). The results show that introducing carriers in an MBR system provides similar results for organic matter removal, but with a lower concentration of MLSS.  相似文献   

15.
连续流气提式流化床启动过程中好氧颗粒污泥的形成机制   总被引:4,自引:0,他引:4  
探讨连续流气提式好氧颗粒污泥流化床(CAFB)反应器的运行特征,对该工艺颗粒污泥形成过程、形成机理和颗粒性质进行分析。以市政污泥为接种污泥,以醋酸钠为碳源,在连续运行方式下培养好氧颗粒污泥。研究结果表明:CAFB反应器启动的第4-5天即有大量颗粒污泥形成,颗粒直径800~1 000 μm,比重1.006,生物相丰富,能够分泌大量胞外聚合物。当COD有机负荷高达8 和13 kg/(m3·d)时,对COD处理效率均维持在93%~97%,COD出水质量浓度仅为30~80 mg/L,引起启动后期丝状菌的大量繁殖,污泥流失。进一步提高污泥负荷有望控制污泥膨胀。  相似文献   

16.
三维电极法预处理山梨酸废水   总被引:3,自引:0,他引:3  
用三维电极法对山梨酸废水进行了降解实验,并考察电极材料、反应器电压、电解时间、进水pH值等因素对处理效果的影响。实验结果表明,以不锈钢作阳极,石墨作阴极,柱状活性炭作填料,在槽电压为20 V、主电极极间距为11 cm的条件下,pH值为 4.0±0.2的山梨酸废水在电解20~30 min后,COD去除率达48%以上,而且废水的BOD/COD提高到0.40。  相似文献   

17.
In this study, the characteristics of sewage of small community were determined for 6 months to ascertain the type of treatment required in subtropical conditions. The results demarcated sewage of this community as a medium-strength wastewater (chemical oxygen demand: 475 mg/L, biochemical oxygen demand: 240 mg/L and total suspended solids: 434 mg/L). Chemical oxygen demand to sulphate ratio of the sewage (11.6) established that it was amenable to anaerobic digestion. The temperature, strength, biodegradability and components of sewage were suitable for anaerobic digestion, and thus, upflow anaerobic sludge blanket reactor (UASB) was selected for its treatment. These reactors are often shutdown in small communities due to environmental and/or socio-economic factors. The ability of two UASB reactors, seeded with cow dung (UASBCD) and activated sludge of a dairy treatment plant (UASBASDIT) to restart after a long idle period of 12 months, was investigated along with sludge analysis by scanning electron microscope. Biomass in both reactors reactivated rapidly after shutdown period and within 30 days after substrate feeding achieved uniform removal efficiencies for chemical oxygen demand, total suspended solids, total dissolved solids, chloride and oil and grease. Chemical oxygen demand removal efficiency of both reactors became uniform and remained close to 80% after 30 days through reactivation of microbes in sludge bed due to adequate food and temperature conditions. During restart-up, at an average organic loading rate of 0.902 kg COD/m3 per day, methane yields of 0.091 and 0.084 m3/kg COD removed were achieved for UASBCD and UASBASDIT reactors, respectively.  相似文献   

18.
在多级折流板反应器生物处理装置中,采用活性炭为载体人工固定化生物处理合成染料废水,出水水质稳定, 出水中的烷烃肽链变短;其对CODCr和BOD5的去除率可达96.46%、99.77% ;对SO2-4和钙镁总量的去除效率超过80.37%、78.66%;折流板反应器的容积负荷率Nv可达2.8 kg COD/(d•m3)。活性炭经生物固定化后,不仅不会影响它的处理效果,还会延长活性炭的使用寿命;当冲击性有机负荷发生时,固定化生物活性炭能够承受并能很快恢复。  相似文献   

19.
Bisphenol A (BPA) is an endocrine disruptor that is difficult to completely remove from wastewater by conventional biological methods. Increased post-treatment BPA removal with ceramic membranes is worth investigating because of these membranes’ mechanical and chemical stability and lifespan. To determine the effectiveness of ceramic membranes for post-treatment of biologically treated BPA-contaminated wastewater, microfiltration (MF) and nanofiltration (NF) were conducted. Both processes removed BPA completely at an initial BPA concentration of 0.3 ± 0.14 mg/L. Increased concentration of 0.7 ± 0.29 mg/L decreased BPA removal. MF removed at least 24 % of BPA, presumably because BPA was adsorbed on particulate matter, which was retained by the membrane, or adsorbed on its surface. NF removed up to thrice more BPA. MF and NF completely removed suspended solids and 40–60 % COD. Filtration capacity decreased with time due to fouling but did not depend on initial BPA concentration. BPA concentrations in municipal wastewater are typically lower than the lowest concentration tested, where MF completely removed BPA. Hence, MF ceramic membranes appear a promising solution for post-treatment of BPA-containing wastewater. MF can be used at a much lower transmembrane pressure than NF, requiring less energy to pump wastewater through the membrane, thus reducing costs.  相似文献   

20.
In the present study, the performance of three moving bed biofilm reactors (MBBRs) has been evaluated in series with anaerobic/anoxic/oxic (A2O) units for simultaneous removal of organic matter and nutrients (nitrogen and phosphorous) from a synthetic wastewater with characteristics similar to those of a typical municipal wastewater. Response surface methodology based on central composite design was used to investigate the effects of nitrate recycle ratio, hydraulic retention time (HRT), and influent chemical oxygen demand (COD) on the organic and nutrient removal and optimization process. The optimized values of influent COD, HRT, and R were 462 mg/L, 10 h, and 3.52, respectively. The predicted and observed values at optimized conditions were 92.8% and 93 ± 1.3%, 84.3% and 84 ± 1.3%, 71.7% and 68 ± 1.6% for COD, TN, and TP removals and 100 and 97 ± 1.2 mL/g for sludge volume index, respectively. After that, the influent COD, TN, and TP were increased to 550, 48, and 12 mg/L, respectively, to partly simulate the organics and nutrient variations of real wastewater treatment plants. The COD, TN, and TP removals were 91 ± 1.3, 82 ± 1.1, and 71 ± 0.8%, respectively. The influent COD, TN, and TP were increased again to 650, 56, and 14 mg/L, respectively. After this phase, the COD, TN, and TP removals were 90 ± 0.8, 80 ± 1.2, and 70 ± 1.0%, respectively. Obtained results indicated the good stability of the optimized system and the ability of MBBRs to remain stable at influent organics and nutrient variations. The ratio of attached volatile solids to mixed liquor volatile suspended solids was 1.90 ± 0.10, 2.07 ± 0.09, and 2.25 ± 0.14 in phases 1, 2, and 3, respectively. These high ratios indicate that the microorganisms had favored the attached growth to the suspended growth within the whole operation time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号