首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, the performance of three moving bed biofilm reactors (MBBRs) has been evaluated in series with anaerobic/anoxic/oxic (A2O) units for simultaneous removal of organic matter and nutrients (nitrogen and phosphorous) from a synthetic wastewater with characteristics similar to those of a typical municipal wastewater. Response surface methodology based on central composite design was used to investigate the effects of nitrate recycle ratio, hydraulic retention time (HRT), and influent chemical oxygen demand (COD) on the organic and nutrient removal and optimization process. The optimized values of influent COD, HRT, and R were 462 mg/L, 10 h, and 3.52, respectively. The predicted and observed values at optimized conditions were 92.8% and 93 ± 1.3%, 84.3% and 84 ± 1.3%, 71.7% and 68 ± 1.6% for COD, TN, and TP removals and 100 and 97 ± 1.2 mL/g for sludge volume index, respectively. After that, the influent COD, TN, and TP were increased to 550, 48, and 12 mg/L, respectively, to partly simulate the organics and nutrient variations of real wastewater treatment plants. The COD, TN, and TP removals were 91 ± 1.3, 82 ± 1.1, and 71 ± 0.8%, respectively. The influent COD, TN, and TP were increased again to 650, 56, and 14 mg/L, respectively. After this phase, the COD, TN, and TP removals were 90 ± 0.8, 80 ± 1.2, and 70 ± 1.0%, respectively. Obtained results indicated the good stability of the optimized system and the ability of MBBRs to remain stable at influent organics and nutrient variations. The ratio of attached volatile solids to mixed liquor volatile suspended solids was 1.90 ± 0.10, 2.07 ± 0.09, and 2.25 ± 0.14 in phases 1, 2, and 3, respectively. These high ratios indicate that the microorganisms had favored the attached growth to the suspended growth within the whole operation time.  相似文献   

2.
3.
Undiluted reject water from the dewatering of anaerobic sludge with an average total nitrogen content of 718 ± 117 mg L?1 (n = 63) was used to start-up autotrophic nitrogen removal in three different pilot-scale (3 m3) deammonification configurations: (1) biofilm; (2) activated sludge sequence batch; and (3) two-staged (nitritation–anammox). Time- and concentration-based aeration control with alternating aerobic/anaerobic phases was applied for all reactor configurations. All reactors were initiated without anammox-specific inoculum, and biofilm was grown onto blank carriers. During the initial start-up period, biological nitrogen removal was found to be inhibited by an excessive free ammonia content (>10 mg-N L?1), resulting from the use of high-strength reject water as the process feed. After implementation of free ammonia control by pH adjustment to 6.5–7.5, propagation of the deammonification process was observed with increased nitrogen removal with slight accumulation of NO3 ?–N. The highest total nitrogen removal rates were achieved with the single-reactor biofilm- and sludge-based deammonification processes (1.04 and 0.30 kg-N m?3 day?1, respectively). The critical factors for successful start-up and stable operation of deammonification reactors turned out to be control of pH below 7.5, dissolved oxygen at 0.3–0.8 mg-O2 L?1 and influent solids values below 1000 nephelometric turbidity units. Microbial analysis demonstrated that highest anammox enrichment was achieved in the biofilm reactor (9.40 × 108 copies g?1 total suspended solids). These data demonstrate the potential of an in-situ grown sludge- or biofilm-based concept for the development and propagation of deammonification process.  相似文献   

4.
In this study, the performance of moving-bed biofilm sequencing batch reactor in operating the anaerobic/anoxic/oxic (A2O) process for treatment of wastewaters containing nitrogen and phosphorous was evaluated. For this purpose, a pilot system with two bench-scale sequencing batch reactors with a total volume of 30 L and functional volume of 10 L was used. The installation was elaborated using plexiglass, in which 60% of the functional volume consisted of PVC suspended carriers (Kaldnes K3) with a specific surface area of 560 m2/m3. The independent variables used in this study were hydraulic retention time (HRT) (1.5, 2, 2.5, 3, and 3.5 h) and the initial organic load (300, 500, 800, 1000 mg O2/L). The results showed impressive performance in the case of an initial organic load of 300 mg O2/L and HRT of 3 h with maximum removal of COD and TN, respectively, by 95.1 and 89.8%. In the case of an initial organic load of 1000 mg O2/L and HRT of 3.5 h, the maximum total phosphorus removal was 72.3%. Therefore, according to the analysis of data obtained by different HRTs, it was revealed that the system of A2O has greater efficiency in removing organic matter from wastewater in the shortest possible time.  相似文献   

5.
The wastewater discharged by poultry slaughterhouse industries are characterized mainly by high biochemical oxygen demand, high suspended solids and complex mixture of fats, proteins and fibers requiring systematic treatment prior to disposal. In this study, the performance of an upflow anaerobic filter reactor for treating Indian poultry slaughterhouse wastewater under low upflow velocity of 1.38 m/day at mesophilic temperature (29-35 °C) was investigated. The reactor was inoculated with anaerobic non-granular sludge from an anaerobic reactor treating the poultry slaughterhouse wastewater. The reactor took 147 days for complete start-up with removal efficiencies of total chemical oxygen demand and soluble chemical oxygen demand of 70 and 79 % respectively. The maximum total chemical oxygen demand removal efficiency of 78 % was achieved at an organic loading rate of 10.05 kg/m3/day and at an hydraulic retention time of 12 h. The average methane content varied between 46 and 56 % and methane yield at maximum removal efficiency was 0.24 m3 CH4/kg CODremoved·day. Sludge granules of 1–2 mm were observed in between the packing media. Scanning electron microscope analysis revealed that sludge granules are composed of clumps of Methanosarcina clustered with less intertwined Methanosaeta fibre of granules. The lower velocity used in this study has achieved better performance of the reactor by creating active microbial formation with stable pH upto an organic loading rate of 14.3 kg/m3/day. This has proved that the poultry slaughterhouse wastewater can be treated using anaerobic filter reactor under low upflow velocity.  相似文献   

6.
The generation of huge amount of liquid waste known as palm oil mill effluent is a major problem in oil palm industry. Meanwhile, anaerobic biodegradation of such organic effluent at thermophilic condition is a promising treatment technology due to its high efficiency. However, storage and transportation of thermophilic mixed culture sludge are challenging due to constant biogas generation and heating requirement. Hence, drying of thermophilic sludge was conducted to obtain dormant thermophiles and thus enables easier handling. In this study, thermophilic sludge was dried using heat pump at 22 and 32 °C as well as hot air oven at 40, 50, 60, and 70 °C. Subsequently, quality of dried sludge was examined based on most probable number enumeration, chemical oxygen demand, and methane yield. Average drying rate was found to increase from 3.21 to 17.84 g H2O/m2 min as drying temperatures increases while average moisture diffusivity values ranges from 5.07 × 10?9 to 4.34 × 10?8 m2/s. Oven drying of thermophilic mixed culture resulted in highest chemical oxygen demand removal and lowest log reduction of anaerobes at 53.41% and 2.16, respectively, while heat pump drying resulted in the highest methane yield and lowest log reduction of methanogens at 53.4 ml CH4/g COD and 2.09, respectively. To conclude, heat pump at 22 °C was most suitable drying technique for thermophilic mixed culture as the original methane-producing capability was largely retained after drying, at a slightly lower yet still comparable chemical oxygen demand removal when palm oil mill effluent was treated with the rehydrated culture.  相似文献   

7.
In this study, the treatability of marble processing wastewater by electrocoagulation using aluminum and iron electrodes was investigated. The sample used was from the marble-processing plant in Sivas and its turbidity, suspended solids, chemical oxygen demand and total solids concentrations were about 1,914?NTU, 2,904, 150 and 4,750?mg/L, respectively. The effects of various operating parameters such as initial pH, current density and electrolysis time on turbidity, suspended solids, chemical oxygen demand and total solids removal efficiencies were investigated. The settling characteristics of waste sludge produced and energy and electrode consumption were also determined. The optimum values of initial pH, current density and electrolysis time in electrocoagulation studies carried out using aluminum electrode were found to be 7.8, 30?A/m2 and 5?min, respectively. Under these conditions, the removal efficiencies obtained for turbidity, suspended solids, chemical oxygen demand and total solids were 98.5, 99.2, 55.2 and 92.4?%, respectively. Corresponding energy and electrode consumptions were 0.143?kWh/kg SS and 0.010?kg Al/kg SS. For iron electrode, the optimum parameter values were found to be 7.8 pH, 20?A/m2 and 5?min, respectively. Under these conditions, removal efficiencies for turbidity, suspended solids, chemical oxygen demand and total solids were determined as 94.3, 99.1, 54.2, and 96.1?%, respectively. Energy and electrode consumptions were 0.0571?kWh/kg SS and 0.0206?kg Fe/kg SS, respectively. Settling characteristics of sludge produced during experiments carried out using both aluminum and iron electrodes were fairly good. The results showed that electrocoagulation method can be used efficiently for the treatment of marble processing wastewater under proper operating conditions.  相似文献   

8.
The upflow anaerobic sludge blanket process followed by the biological aerated filter process was employed to improve the removal of color and recalcitrant compounds from real dyeing wastewater. The highest removal efficiency for color was observed in the anaerobic process, at 8-h hydraulic retention time, seeded with the sludge granule. In the subsequent aerobic process packed with the microbe-immobilized polyethylene glycol media, the removal efficiency for chemical oxygen demand increased significantly to 75 %, regardless of the empty bed contact time. The average influent non-biodegradable soluble chemical oxygen demand was 517 mg/L, and the average concentration in effluent from the anaerobic reactor was 363 mg/L, suggesting the removal of some recalcitrant matters together with the degradable ones. The average non-biodegradable soluble chemical oxygen demand in effluent from the aerobic reactor was 87, 93, and 118 mg/L, with the removal efficiency of 76, 74, and 67 %, at 24-, 12-, and 8-h empty bed contact time, respectively. The combined anaerobic sludge blanket and aerobic cell-entrapped process was effective to remove the refractory compounds from real dyeing wastewater as well as in reducing organic loading to meet the effluent discharge limits. This integrated process is considered an effective and economical treatment technology for dyeing wastewater.  相似文献   

9.
The disposal of wastewater sludge generated during the treatment of the various municipal and industrial wastewaters is a major environmental problem. In this study the thermophilic bacterium Bacillus licheniformis, which enhances the efficiency of sludge reduction, was isolated from waste activated sludge acclimated to 55 °C. The resulting suspended solids’ degradation was 12 % and chemical oxygen demand solubilization was 18 %. To further enhance the sludge reduction potential, extra polymeric substances, which play a major role in the formation of flocs, were removed. A chemical extractant, ethylenediaminetetraacetate that is also a cation binding agent, was used to remove the extra polymeric substances. After the removal of extra polymeric substances, the suspended solids’ degradation increased from 12 to 23 % and the chemical oxygen demand solubilization increased from 18 to 25 %. These observations confirm that Bacillus licheniformis enhanced sludge reduction in non-flocculated sludge (with the removal of extra polymeric substances) as compared to flocculated sludge (without the removal of extra polymeric substances).  相似文献   

10.
In the present study, the effectiveness of physicochemical treatment processes (coagulation and Fenton’s oxidation) was investigated for simulated dairy wastewater (pH = 7.3, chemical oxygen demand (COD) = 3600 mg/l, 5-day biochemical oxygen demand (BOD5) = 1950 mg/l, total Kjeldahl nitrogen (TKN) = 87 mg/l, and total phosphorous (TP) = 14 mg/l). Plain and ballasted coagulation runs were carried out in a jar apparatus, while Fenton’s oxidation was performed in a three-neck glass reactor. Ballasted coagulation caused an enhancement in the settling rate of sludge though no significant enhancement in the removal of organics was observed. Individually, coagulation and Fenton’s oxidation processes resulted in ~67 and 80 % COD removals, respectively, from the wastewater. The sequential treatment exploring coagulation followed by Fenton’s oxidation showed overall COD, BOD5, TKN, and TP reductions of ~93, 97, 84, and 70 %, respectively, from the wastewater. However, a biological post-treatment would be required to achieve the effluent discharge standards. The removal of proteins, fats, and amino acids from wastewater was confirmed from Fourier transform infrared analysis of the settled sludge (obtained after coagulation process). Preliminary cost analysis suggested coagulation and the sequential treatment (i.e. coagulation followed by Fenton’s oxidation) as the preferred options.  相似文献   

11.
This literature review surveys the previous and current researches on the co-digestion of anaerobic processes and examines the synergies effect of co-digestion with cattle manure. Furthermore, this review also pays attention to different operational conditions like operating temperature, organic loading rate (OLR), hydraulic retention time (HRT), chemical oxygen demand (COD) and volatile solid (VS) removal efficiency and biogas or methane production. This review shows that anaerobic mono-digestion of cattle manure usually causing poor performance and stability. Anaerobic studies were generally performed under mesophilic conditions maintained between 35 and 37 °C. Organic waste loading rate generally ranges from 1 to 6 g VS–COD L?1 day?1 stable condition in anaerobic digester. Generally, studies show that HRT for co-digestion of fruit–vegetables waste and industrial organic waste appears to exceed 20 days. However, the anaerobic co-digestion process is generally operated at HRT of between 10 and 20 days. VS and COD removal efficiency usually reaches up to 90 % due to co-digestion with different type organic waste. Methane–biogas production is generally obtained between 0.1 and 0.65 L CH4–biogas g?1 VS.  相似文献   

12.
In Thailand, sewage sludge production from the Bangkok metropolitan area can reach up to 63,000 ton/y by 2010. The Beer-Thai Company, Thailand, produces beer and generates lots of sludge as waste. Sewage sludge and brewery sludge can be used to generate energy which could be saved on the fossil fuels conventionally used as a source of energy. The possibility was explored to mix brewery sludge with sewage sludge at different mixing ratios for anaerobic digestion so that the energy can be generated as biogas and at the same time, digested sewage sludge can be used as fertilizer for agricultural applications. A batch anaerobic reactor under mesophilic condition for a digestion period of 40 days was used in the laboratory. The acrylic reactor was cylindrical with a working weight of 12 kg. The diameter was 23.7 cm and the height was 34.5 cm. Sludge mixtures at different ratios were fed into the reactors and the optimum mixing ratio was determined. Experimental results showed that the sludge mixture at ratio of 25:75 % by weight (sewage:brewery) yielded higher biogas production. A reduction in heavy metals and pathogens was observed at this ratio after the digestion indicating its safe use as fertilizer. Nitrogen content was about 4.95 % which is well above the commercial fertilizers. At optimum mixing ratio of 25:75, the amount of the generated biogas is 1.15×106 m3/y. This large amount of biogas is equivalent to 1.44 million kWh/y of electricity, 561,000 L/y of diesel oil and 936,000 L/y of vehicle gasoline.  相似文献   

13.
Landfill leachate treatment was investigated using two anaerobic/aerobic sequencing batch reactors inoculated with suspended growth-activated sludge (ASBR) and aerobic granular sludge (GSBR). The total ammonium nitrogen (TAN) concentration in the GSBR influent was as high as 1200 mg/L with an average TAN removal efficiency of 99.7%. However, the ASBR treatment did not show a consistent performance in TAN removal. The TAN removal efficiency decreased with increasing ammonium concentration in the influent. Aerobic granular sludge was found to be more resistant to free ammonia (FA). In the GSBR, nitrification was partially inhibited at FA concentration from 48 to 57 mg/L, which was two times more than the FA concentration that inhibited nitrification in the ASBR. Low chemical oxygen demand removal efficiencies were obtained in both reactors, which was associated with the refractory organic content of the leachate used in this study. This resulted in poor phosphorous removal in both treatments. The results prove that aerobic granular sludge is a robust method as compared to suspended-activated sludge to treat leachate containing high levels of TAN and FA.  相似文献   

14.
At the Kristineberg mine, northern Sweden, sulphidic mine tailings were remediated in an 8-year pilot-scale experiment using sewage sludge to evaluate its applicability as a sealing layer in a composite dry cover. Sediment, leachate water, and pore gas geochemistry were collected in the aim of determining if the sludge was an effective barrier material to mitigate acid rock drainage (ARD) formation. The sludge was an effective barrier to oxygen influx as it formed both a physical obstruction and functioned as an organic reactive barrier to prevent oxygen to the underlying tailings. Sulphide oxidation and consequential ARD formation did not occur. Sludge-borne trace elements accumulated in a reductive, alkaline environment in the underlying tailings, resulting in an effluent drainage geochemistry of Cd, Cu, Pb and Zn below 10 μg/L, high alkalinity (810 mg/L) and low sulphate (38 mg/L). In contrast, the uncovered reference tailings received a 0.35-m deep oxidation front and typical ARD, with dissolved concentrations of Cd, Zn and sulphate, 20.8 μg/L, 16,100 μg/L and 1,390 mg/L, respectively. Organic matter degradation in the sludge may be a limiting factor to the function of the sealing layer over time as 85 % loss of the organic fraction occurred over the 8-year experimental period due to aerobic and anaerobic degradation. Though the cover may function in the short to medium term (100 years), it is unlikely to meet the demands of a long-term remedial solution.  相似文献   

15.
Wastewater treatment using moving bed membrane bioreactor technology was tested with real urban wastewater at a pilot plant, combining moving bed treatment as a biological process with hybrid biomass (suspended and fixed) and the advantages of a membrane separation system. The evolution of the kinetic constants of the hybrid biomass and organic matter removal were studied in a pilot plant under different operational conditions, by varying hydraulic retention time (HRT), mixed liquor suspended solids (MLSS) and temperature, and considering the attached biomass of the carrier and the dispersed biomass of the flocs to reproduce real treatment conditions. The rates of organic matter removal were 97.73 ± 0.81 % of biochemical oxygen demand (BOD5), 93.44 ± 2.13 % of chemical oxygen demand (COD), 94.41 ± 2.26 % of BOD5 and 87.62 ± 2.47 % of COD using 24.00 ± 0.39 and 10.00 ± 0.07 h of HRT, respectively. The influence of the environmental variables and operational conditions on kinetic constants was studied; it was determined that the most influential variable for the decay coefficient for heterotrophic biomass was HRT (0.34 ± 0.14 and 0.31 ± 0.10 days?1 with 10.00 ± 0.07 and 24.00 ± 0.39 h of HRT, respectively), while for heterotrophic biomass yield, this was temperature (0.61 ± 0.04 and 0.52 ± 0.06 with 10.00 ± 0.07 and 24.00 ± 0.39 h of HRT, respectively). The results show that introducing carriers in an MBR system provides similar results for organic matter removal, but with a lower concentration of MLSS.  相似文献   

16.
In the present study, two bench-scale anaerobic/ anoxic/ oxic submerged membrane bioreactors were used to study the effect of thermochemical sludge disintegration system on the excess sludge production. Among the two membrane bioreactors, one was named experimental membrane bioreactor and another one was named as control membrane bioreactor, where a part of the mixed liquor was treated with thermo chemical and was returned back to membrane bioreactor. Thermo chemical digestion of sludge was carried out at fixed pH (11) and temperature (75 °C) for 24 % chemical oxygen demand solution. The other one was named control membrane bioreactor and was used as control. The reactors were operated at three different mixed liquor suspended solids range starting from 7500 mg/L to 15000 mg/L. Both of membrane bioreactors were operated at a flux of 17 LMH over a period of 240 days. The designed flux was increased stepwise over a period of one week. During the 240 days of reactor operation, both of membrane bioreactors maintained relatively constant transmembrane pressure. The sludge digestion had no impact on chemical oxygen demand removal efficiency of the reactor. The results based on the study indicated that the proposed process configuration has potential to reduce the excess sludge production as well as it didn’t deteriorate the treated water quality.  相似文献   

17.
Continuous upflow anaerobic sludge blanket reactor performs more favorably at the higher organic loading rate than other anaerobic treatment. The treatment of municipal landfill leachate of Shiraz??s city investigated using continuous flow anaerobic reactor and subsequently aerated lagoon. Landfill leachate has chemical oxygen demand of 45,000?C90,000?mg/L and ammonia nitrogen at 1,000?C2,500 and heavy metals that can impact biological treatments. Capacity of anaerobic and aerobic reactors is 10 and 20?L that operated at detention time of 2 and 4?days, respectively. Organic loading rate of upflow anaerobic sludge blanket is between 0.5?C20?g chemical oxygen demand/L/day. Chemical oxygen demand removal efficiencies are between 57?C87, 35?C70 and 66?C94% in the anaerobic, aerobic and whole system, respectively. As the entry, leachate organic loading rate increased from 1 to 20?g/L/day, the chemical oxygen demand removal efficiency reached a maximum of 71% and 84% in the anaerobic reactor and whole system, respectively, at high organic loading rate. Ammonium removal efficiency was about 54% after the aerobic stage.  相似文献   

18.
A pilot scale study was set up to investigate the principle design parameters of up flow anaerobic sludge blanket (UASB) reactors for treating wastewater of small communities in the tropical regions of Iran. A steel pipe with a diameter of 600 mm and a height of 3.6 m was used as the reactor in which a digestion and a 3-phase separator element had a volume of 0.848 and 0.17 m3 respectively. During this study, which lasted for 203 days, two distinct phases were carried out according to the ambient temperature. The temperature of the wastewater entering the reactor was naturally ranged from 22 to 26 °C and no heat exchanger was used. The hydraulic retention times including 2, 4, 6, 8, and 10 hours with various loading rates of 0.95 to 5.70 kg COD/m3/day for colder period and from 1.35 to 6.40 kg COD/m3/day for warmer period were examined. On the basis of the results the optimal hydraulic retention time for warmer period with a 2.20 kg COD/m3/day organic loading rate was 6 hours which BOD5, COD and TSS removal efficiency were 71, 63 and 65 percent respectively. During the colder period the removal ratio of BOD5, COD and TSS with an optimal hydraulic retention time of 8 hours and organic loading rate of 1.22 kg COD/m3/day were 54, 46 and 53 percent respectively.  相似文献   

19.
This study was conducted to evaluate the chemical parameters and the cytotoxic and genotoxic potential of raw domestic sewage and effluents from treatment with activated sludge and a floating emergent-macrophyte filter from a domestic wastewater treatment plant in the city of Novo Hamburgo, Rio Grande do Sul, Brazil. The physicochemical analysis revealed that both treatment systems achieved the legal emission pattern for biochemical oxygen demand, chemical oxygen demand, and suspended solids, but ammoniacal nitrogen and E. coli values were above the limits in the macrophyte treatment effluent. Phosphorous values were above the maximum permitted for both treatments. The results obtained from the Allium cepa test and the micronuclei test in fish did not demonstrate any significant differences in both cytotoxicity (mitotic index) and genotoxicity (chromosome aberration and micronucleus) endpoints between the negative control group and the exposed groups. However, the comet assay in fish revealed a DNA damage increase in animals exposed to the 30 % concentration of the macrophyte effluent and two concentrations of the activated sludge treatment effluent (10 and 75 %), which suggests that these two treatment systems may increase wastewater genotoxicity.  相似文献   

20.
Excess sludge disposal is one of the serious challenges in biological wastewater treatment. Reduction of sludge production would be an ideal way to solve sludge-associated problems rather than the post-treatment of the sludge produced. In this study, a new wastewater treatment process combining anaerobic/anoxic/oxic system with thermochemical sludge pretreatment was tested in a laboratory scale experiment. In this study, the effects of the sludge pretreatment on the excess sludge production in anaerobic/anoxic/oxic were investigated. The system was operated in two Runs (1 and 2). In Run 1, the system was operated as a reference and in Run 2, a part of the mixed liquid was pretreated thermochemically and was returned to the bioreactor. The average solubilization efficiency of pretreated sludge was found to be about 35 % during the study period of 220 days. Sludge production rate in Run 2 was less than that in Run 1 by about 52 %. Total phosphorous was removed by enhanced biological phosphorous removal with the removal efficiency of 83–87 % and 81–83 % for Run 1 and Run 2, respectively. Total nitrogen removal in Run 2 (79–82 %) was slightly higher than that in Run 1 (68–75 %). The mixed liquor suspended solids/mixed liquor volatile suspended solids ratio was identical after both runs in the range 78–83 %. The effluent water qualities were not significantly affected when operated with thermochemical pretreatment at pH 11 and 60 °C for 3 h during 7 months. From the present study it is concluded that thermochemical sludge pretreatment of anaerobic/anoxic/oxic process plays an important role in reduction of sludge production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号