首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
赣江入湖三角洲上的网状河流体系研究   总被引:6,自引:0,他引:6  
王随继 《地理科学》2002,22(2):202-207
中国南方的冲积河流有许多属于分汊河流,这已被许多研究者进行过比较深入的分析研究,但赣江在其入湖三角洲上的多河道体系与分汊河道有着明显的不同,它的形成是河流自发调整的结果,而不象分汊河流那样由节点控制。它具有网状河流所具有的地貌和沉积物特征,属于典型的网状河流体系。虽然是低含沙河流,但由于其水动力较弱及汛期基准面的上升,洪泛频繁,可输入河间地以大量的泥沙并在低能环境中发生沉积,使河道及河间地能够协调加积升高,并维持多河道体系的稳定性。  相似文献   

2.
A large number of rivers in Tuscany have channel planforms, which are neither straight nor what is usually understood as meandering. In the typical case, they consist of an almost straight, slightly incised main channel fringed with large lateral bars and lunate-shaped embayments eroded into the former flood plain. In the past, these rivers have not been recognised as an individual category and have often been considered to be either braided or meandering. It is suggested here that this type of river planform be termed pseudomeandering.A typical pseudomeandering river (the Cecina River) is described and analysed to investigate the main factors responsible for producing this channel pattern. A study reach (100×300 m) was surveyed in detail and related to data on discharge, channel changes after floods and grain-size distribution of bed sediments. During 18 months of topographic monitoring, the inner lateral bar in the study reach expanded and migrated towards the concave outer bank which, concurrently, retreated by as much as 25 m. A sediment balance was constructed to analyse bar growth and bank retreat in relation to sediment supply and channel morphology. The conditions necessary to maintain the pseudomeandering morphology of these rivers by preventing them from developing a meandering planform, are discussed and interpreted as a combination of a few main factors such as the flashy character of floods, sediment supply (influenced by both natural processes and human impact), the morphological effects of discharges with contrasting return intervals and the short duration of flood events. Finally, the channel response to floods with variable sediment transport capacity (represented by bed shear stress) is analysed using a simple model. It is demonstrated that bend migration is associated with moderate floods while major floods are responsible for the development of chute channels, which act to suppress bend growth and maintain the low sinuosity configuration of the river.  相似文献   

3.
北洛河下游河槽形成与输沙特性   总被引:8,自引:0,他引:8  
齐璞  孙赞盈 《地理学报》1995,50(2):168-177
北洛河发湖泊于黄河粗沙来源区,年均含沙量达128kg/m^3年均流量仅25m^3.s,是典型的多沙河流,但由于泥沙主要由高含沙洪水输送,平水流量小,含沙量低,经常保持窄深稳定河槽,使高含沙洪水挟带的泥沙能顺利输送而不淤,并形成弯曲性河流。  相似文献   

4.
长江中下游河道冲淤与河床自动调整作用分析   总被引:10,自引:0,他引:10  
根据实测河道测图资料及水沙资料,首次利用断面地形法和输沙平衡法较全面地系统地计算分析了长江中下游河道泥沙的冲淤变化及其分布规律,计算结果表明宜昌-大通段呈冲槽、淤滩、淤汊特征;同时剖析和验证了长江中下游河床具有较强的自动调整作用。  相似文献   

5.
雅鲁藏布江中游江心洲、河漫滩面积及其指示的沙源特征   总被引:1,自引:0,他引:1  
雅鲁藏布江流域中游(贡嘎县至乃东区)江心洲和河漫滩等河流地貌发育,同时也发育了不同类型的风沙地貌,是雅鲁藏布江流域风沙灾害最为严重的地区。冬春季大范围裸露的江心洲和河漫滩,为沙尘暴的发生提供沙源,也可能是北岸沙丘的物源。目前对江心洲和河漫滩面积动态变化过程及其与沙源之间的关系几乎没有研究。为此,本文通过对2019年11月至2020年8月遥感影像解译和风动力条件综合分析,探讨河床动态变化过程与沙源之间的关系。结果表明:江心洲和河漫滩面积具有明显的时空变化特征,主要受径流量的影响。江心洲面积3月最大(222.95 km2),8月最小(80.61 km2)。沙源比(河道内江心洲面积与水域面积的比值)具有明显时空变化规律,3月最大(2.00),8月最小(0.28)。河漫滩面积也具有相似的变化规律,3月78.99 km2,8月仅45.45 km2。起沙风频率冬春季大,意味着3月风沙活动强度最大,8月最小。由此可知,江心洲和河漫滩能够为研究区的风沙灾害提供物源,而强风提供动力条件。  相似文献   

6.
陈志清 《地理学报》1997,52(4):308-315
本文分析了河漫滩组成物质的粒度组成特征,并与河床南粒径级配与悬移质粒和戏级配进行了比较,研究了河漫滩度及物质组成的河槽几何形成的影响。  相似文献   

7.
黄河游荡河段河床形态调整对洪水过程的响应   总被引:1,自引:1,他引:1  
以黄河流域1950~1985年200余场洪水资料为基础,并增加了最近的实验资料,分析了黄河下游游荡河段不同含沙量沙水过程中河床形态的调整过程,结果表明,由洪水过程所导致的河床形态变化是相当剧烈的。且与含沙量密切相关,表现出非线性的变化规律,当含沙量较小时,随含沙量的增大,洪水后河床宽深比增大,当含沙量增大到一定程度后再增大时,宽深比随含沙量的增大而减小,这一结果为修正Schumm关于河床形态变化的定性预测关系提供了新的依据。  相似文献   

8.
Dams are a major source of fragmentation and degradation of rivers. Although substantial research has been conducted on the environmental impacts of large structures in the United States, smaller dams have received less attention. This study evaluated the impact of two dams of moderate size, the Elwha Dams, on the downstream channel system using field data collection at river cross‐sections. The relationship of average boundary shear stress (τo) to critical shear stress (τcr) served as the basis for determining channel bed material mobility under the two‐year and ten‐year flood events. The channel had the greatest channel bed mobility at the natural cross‐section upstream from the dams, low bed mobility between the structures, and an increase in channel bed mobility in the low gradient river segment near the mouth of the river. Low bed mobility tended to be associated with a lack of channel system complexity, including reduction or loss of bars and low alluvial terraces and their associated young riparian communities. Although these run‐of‐the‐river dams do not modify streamflow greatly, the loss of sediment from the channel system has had a substantial impact on bed mobility and geomorphic and biotic complexity of the Elwha River.  相似文献   

9.
黄河中下游水沙变化趋势   总被引:2,自引:0,他引:2  
齐璞 《地理研究》1989,8(2):74-81
本文论述由于黄河上游清水区水资源的优先开发,中上游地区工农业用水的增长,而黄河中游地区的水土保持和支流治理的减沙作用不甚明显,龙羊峡水库投入运用后,汛期进入河口镇的水量大幅度减少,使汛期进入黄河下游的基流减小含沙量增加,高含沙洪水出现的机会增多.面临水少沙多的不利情况,应加强宽浅河道的改造及利用窄深河道输送高含沙水流的研究.  相似文献   

10.
Fluvial process and morphology of the Brahmaputra River in Assam, India   总被引:1,自引:0,他引:1  
The Brahmaputra River finds its origin in the Chema Yundung glacier of Tibet and flows through India and Bangladesh. The slope of the river decreases suddenly in front of the Himalayas and results in the deposition of sediment and a braided channel pattern. It flows through Assam, India, along a valley comprising its own Recent alluvium. In Assam the basin receives 300 cm mean annual rainfall, 66–85% of which occurs in the monsoon period from June through September. Mean annual discharge at Pandu for 1955–1990 is 16,682.24 m3 s 1. Average monthly discharge is highest in July (19%) and lowest in February (2%). Most hydrographs exhibit multiple flood peaks occurring at different times from June to September. The mean annual suspended sediment load is 402 million tons and average monthly sediment discharge is highest in June (19.05%) and lowest in January (1.02%). The bed load at Pandu was found to be 5–15% of the total load of the river. Three kinds of major geomorphic units are found in the basin. The river bed of the Brahmaputra shows four topographic levels, with increasing height and vegetation. The single first order primary channels of this braided river split into two or more smaller second order channels separated by bars and islands. The second order channels are of three kinds. The maximum length and width of the bars in the area under study are 18.43 km and 6.17 km, respectively. The Brahmaputra channel is characterised by mid-channel bars, side bars, tributary mouth bars and unit bars. The geometry of meandering tributary rivers shows that the relationship between meander wavelength and bend radius is most linear. The Brahmaputra had been undergoing overall aggradation by about 16 cm during 1971 to 1979. The channel of the Brahmaputra River has been migrating because of channel widening and avulsion. The meandering tributaries change because of neck cut-off and progressive shifting at the meander bends. The braiding index of the Brahmaputra has been increasing from 6.11 in 1912–1928 to 8.33 in 1996. During the twentieth century, the total amount of bank area lost from erosion was 868 km2. Maximum rate of shift of the north bank to south resulting in erosion was 227.5 m/year and maximum rate of shift of the south bank to north resulting in accretion was 331.56 m/year. Shear failure of upper bank and liquefaction of clayey-silt materials are two main causes of bank erosion.  相似文献   

11.
《自然地理学》2013,34(3):208-224
River regulation has systematically increased along much of the Mississippi River throughout the 20th century. There is only a cursory understanding of changing hydrological processes along the entire length of the Mississippi River over this same time period. This study compared four measures of river hydrology, at the beginning (1910-1930) and at the end of the 20th century (1980-2000). River-stage data were statistically analyzed from 15 equidistant gauges along the main stem of the Mississippi River. The findings revealed (1) significant changes in components of river hydrology between both time periods and (2) varying patterns of change between the different river segments. The Upper Mississippi River (UMR) experienced significant increases in peak, mean, and minimum monthly stages between the periods, while variance of these same stage conditions declined. The Middle Mississippi River (MMR) exhibited significant increases in the magnitude and variance of river stages. The frequency and duration of flood stages increased between the two periods on the MMR. The Lower Mississippi River (LMR) demonstrated a mixed response during this time period. Gauges at the upper and lower end of the LMR changed similarly to the gauges on the UMR. However, gauges on the central part of the LMR showed decreases in peak, mean, and minimum river stages.  相似文献   

12.
Gregory R. Brooks   《Geomorphology》2003,54(3-4):197-215
The Holocene evolution of the shallow alluvial valley occupied by the Red River was investigated at two successive river meanders near St. Jean Baptiste, Manitoba. A transect of five boreholes was sited across the flood plain at each meander to follow the path of lateral channel migration. From the cores, 24 wood and charcoal samples were AMS radiocarbon dated. The dates from the lower half of the alluvium in each core are interpreted to represent the age of the lateral accretion deposits within the flood plain at the borehole sites. The ages of these deposits increase progressively from 900 to 7900 and 1000 to 8100 cal years B.P. along each transect, respectively, from the proximal to distal portions of the flood plain. At the upstream meander, the average rate of channel migration was initially 0.35 m/year between 7900 and 7400 cal years B.P., then decreased to 0.18 m/year between 7400 and 6200 cal years B.P., and subsequently varied between 0.04 and 0.08 m/year. Net channel incision of the river since 8100 cal years B.P. is estimated to have ranged between 0.4 and 0.8 m/ky. The pre-6000-years-B.P. interval of greater channel migration is hypothesized to reflect a higher phase of sediment supply that was associated with the establishment of the river system on the former bed of glacial Lake Agassiz. Since 1000 years B.P., the outward migration of the meanders has caused a gradual enlarging of 0.7–2% in the cross-sectional area of the shallow valley at the two meanders. When considered proportionally over timescales of up to several centuries, the widening of the valley cross-section is very low to negligible and is deemed an insignificant factor affecting the modern flood hazard on the clay plain.  相似文献   

13.
The River Ganga in the central Gangetic plain shows the incision of 20 m of Late Quaternary sediments that form a vast upland terrace (T2). The incised Ganga River Valley shows two terraces, namely the river valley (terrace-T1) and the present-day flood plain (terrace-T0). Terrace-T1 shows the presence of meander scars, oxbow lakes, scroll plains, which suggests that a meandering river system prevailed in the past. The present-day river channel flows on terrace-T0 and is braided, sensu stricto. It is thus inferred that the River Ganga experienced at least two phases of tectonic adjustments: (1) incision and (2) channel metamorphosis from meandering to braided.Optical dating of samples from three different terraces has bracketed the phase of incision to be <6 and 4 ka. Different ages of the top of terrace-T2 show that this surface experienced differential erosion due to tectonic upwarping in the region, which also caused the river incision. River metamorphosis occurred some time during 4 and 0.5 ka.  相似文献   

14.
l llltroductionIn North Che ~ of lack of water resources, moSt reservoir detain high poisons of both sediment andWater, so the oncoming Water in the POSt~ channel is severely reduced. Chalmel adjUStlnellt takes Placeunder the conditions of attenuated flow and sediment load. and the capedty Of the find conveyance Of thectal is ctrisot accodegh. hi the ~ or the ~o her, the ea~ty orfind convm ho bornerelatively lower air many you of chalmel adjUStment. Hence, the small fled, Which had been …  相似文献   

15.
师长兴 《地理科学》2000,20(5):416-421
研究黄河和滹沱河对季节河化的适应性调整,发现季节化程度较高的滹沱河下游河床断面和平面形态调整幅度不大,而河床的糙率成倍增加造成下游的小水大灾现象;黄河下游近年流量减小,不断断流,主槽淤积,虽然河槽断面形态在游荡段变得更窄深,但主槽明显变小、变窄、变高,构成下游近年出现的小水大灾现象的主要原因。  相似文献   

16.
Fluvial response to tectonic deformation is dependent on the amount and style of surface deformation and the relative size of the stream. Active folding in the New Madrid seismic zone (NMSZ) forms the Tiptonville dome, a 15-km long and 5-km wide surface fold with up to 11 m of late Holocene structural relief. The fold is crossed by streams of varying size, from the Mississippi River to small flood-plain streams. Fluvial response of these streams to repeated coseismic folding has only been preserved for the past 2.3 ka, since the Tiptonville meander of the Mississippi River migrated across the area forming the present flood plain. This surface comprises a sandy point-bar deposit locally overlain by clayey overbank and silty sand crevasse-splay deposits, an abandoned chute channel infilled with laminated sandy silt and silty clay, and an abandoned neck cutoff filled with a sandy cutoff bar and silty clay oxbow lake deposits.Dating various stream responses to coseismic folding has more tightly constrained the timing of earthquake events in the central NMSZ and provides a means of partitioning the deformation amount into individual seismic events. Three earthquakes have been dated in the Reelfoot Lake area, ca. A.D. 900, 1470, and 1812. The latter two earthquakes had large local coseismic deformation. Both of these events were responsible for numerous stream responses such as shifting depocenters, modification of Mississippi River channel geometry, and derangement of small streams. Overbank sedimentation ceased on the dome as it was uplifted above the normal flood stage, and sedimentation of crevasse-splay deposits from the Mississippi River, colluvium from the scarp, and lacustrine sediment accumulated in the adjacent Reelfoot basin. The much larger Mississippi River channel responded to uplift by increasing its sinuosity across the uplift relative to both upstream and downstream, increasing its width/depth ratio across and downstream of the uplift, and decreasing the width/depth ratio upstream of the uplift. Despite the size of the Mississippi River, it has not yet attained equilibrium since the latest uplift 190 years ago. Small channels that could not downcut through the uplift were filled, locally reversed flow direction, or formed a lake where they were dammed.Uplift and stream response to folding along the Tiptonville dome is less dramatic between 2.3 and 0.53 ka. During this interval, abandoned channel fill and overbank deposition across the dome suggests that it was not a high-relief feature. One earthquake event occurred during this interval (ca. A.D. 900), but coseismic stream response was probably limited to a slight aggradation of a small flood-plain stream.  相似文献   

17.
While studies on gravel mantled and mixed alluvial bedrock rivers have increased in recent decades, few field studies have focused on spatial distributions of bedrock and alluvial reaches and differences between reach types. The objective of this work is to identify the spatial distribution of alluvial and bedrock reaches in the Upper Guadalupe River. We compare reach length, channel and floodplain width, sinuosity, bar length and spacing, bar surface grain size, and slope in alluvial and bedrock reaches to identify whether major differences exist between channel reach types. We find that local disturbances, interaction of the channel and valley sides, variation in lithology, and regional structural control contribute to the distribution of bedrock reaches in the largely alluvial channel. Alluvial and bedrock channel reaches in the Upper Guadalupe River are similar, particularly with respect to the distribution of gravel bars, surface grain size distributions of bars, and channel slope and width. Our observations suggest that the fluvial system has adjusted to changes in base level associated with the Balcones Escarpment Fault Zone by phased incision into alluvial sediment and the underlying bedrock, essentially shifting from a fully alluvial river to a mixed alluvial bedrock river.  相似文献   

18.
The Milk River, the northernmost tributary to the Missouri–Mississippi River system, exhibits an anomalous sand-bed braiding reach in an otherwise meandering system. Shortly after leaving Alberta and entering Montana the river suddenly changes to braiding and maintains this pattern for 47 km before entering Fresno Reservoir. Measured stream gradient and bankfull discharge in the braiding reach severely fail the Leopold and Wolman [U.S. Geol. Surv. Prof. Pap. 282B (1957) 39] slope–discharge test for differentiating channel patterns. While channel slope has long been regarded as one of the primary variables associated with braiding, our data from the sand-bed Milk River do not support this relationship. Instead, the data show that the braiding reach has a lower channel slope (0.00047) than the meandering reach (0.00055). Coupled with a constant discharge the unit length stream power is comparable between the two reaches. At the morphologic transition between meandering and braiding, a dramatic reduction in channel bank strength occurs where the sampled silt–clay content declines from 65% in the meandering reach to 18% in the braiding. This enables channel widening which is reflected in a 60% reduction in unit area stream power in the braiding reach. Thus, sediment transport capacity declines and channel bars are deposited. During waning flows, these bars are dissected, producing a braiding morphology. We suggest that for sand-bed braiding rivers the silt–clay percentage in the channel banks may be more important than slope. A review of the original Leopold and Wolman [U.S. Geol. Surv. Prof. Pap. 282B (1957) 39] dataset, and many subsequent analyses, reveals that most braided rivers studied were gravel-bed. As a result, causal variables associated with braiding in sand-bed environments may need a thorough evaluation.  相似文献   

19.
Recent morphological evolution of the Lower Mississippi River   总被引:1,自引:0,他引:1  
This study documents slope and stream power changes in the Lower Mississippi River during the pre-cutoff (1880s–1930s), and post-cutoff (1943–1992) periods. The study reach extends from New Madrid, MO, to Natchez, MS, a distance of about 900 km. Analyses for six major reaches and 13 sub-reaches for the pre- and post-cutoff periods indicate that the river presently has a much larger slope and stream power than prior to the cutoffs. The largest increases have occurred between Fulton, TN, and Lake Providence, LA, where slope and stream power increases range from about 27% to 36% and 20% to 38%, respectively. Increases in slope and stream power in reaches upstream and downstream have also occurred, but to a lesser degree. Previous investigations have shown that no coarsening of the bed material has occurred since 1932, and that the bed material may actually be somewhat finer overall. As the Lower Mississippi River is not a sediment-starved system, an increase in stream power with no change in D50 would be expected to be offset by an increase in the bed material load as the river adjusts towards equilibrium. Previous investigators have inferred a reduction in the sediment loads on the Mississippi River this century based on analyses of total measured suspended loads. However, these results should be viewed as primarily representing the changes in wash load and should not be taken to imply that bed material loads have also decreased. Therefore, the bed material loads in the study reach should be greater than in the pre-cutoff period. Excess stream power in the sub-reaches directly affected by cutoffs resulted in scour that increased downstream bed material load. These elevated sediment loads play a key role in driving morphological adjustments towards equilibrium in the post-cutoff channel. The stability status of the channel in the study reach currently ranges from dynamic equilibrium in the farthest upstream reaches through severe degradation to dynamic equilibrium in the middle reaches, and aggradation in the lowest reaches. These evolutionary trends cannot be explained by consideration of changes in slope and stream power alone. Changes in the incoming bed material load to each reach generated by upstream channel evolution must also be considered.  相似文献   

20.
风沙对黄河宁蒙河段的影响研究进展   总被引:1,自引:1,他引:0  
黄河宁蒙河段穿越腾格里沙漠、河东沙地、乌兰布和沙漠和库布齐沙漠,形成了沙漠包围河流的独特地貌景观。近50年来,由于气候变化和人类活动的影响,该河段水沙关系加剧恶化,河槽萎缩、加速形成“悬河”,已引起国家高度重视和科技界的广泛关注。本文主要从风沙对河道的淤积、河道演变和高含沙洪水的影响3个方面阐述了风沙对黄河宁蒙河段的影响,以期为该河段的“悬河”防治和区域生态保护提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号