首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
黄山北麓青弋江发育研究   总被引:5,自引:0,他引:5  
青弋江位于黄山北麓,为长江下游最长的支流。野外考察发现青弋江泾县盆地段存在溪口剖面和城北剖面等2个天然剖面,共发育了1级洪积扇台地(P)和3级河流阶地(T3、T2和T1),并相应堆积了4级砾石层。通过对砾石层进行砾组分析,并借助电子自旋共振(ESR)测年和古地磁测年等方法,初步探讨了青弋江发育的年代、过程和成因。研究结论为:① 砾组分析表明青弋江T3阶地是青弋江的最老阶地,并且其砾石层是青弋江的最老砾石层;② 测年结果表明青弋江发育的年代区间为1300~900 ka,其中~1300 ka为青弋江发育的最早年代,而~900 ka则为青弋江发育的最晚年代;③ 青弋江发育于~1377 ka前的洪积扇辫状河,并先后经历了洪积扇及辫状河发育、辫状河下切、青弋江形成等阶段,即所谓的源于洪积扇辫状河的青弋江发育过程;④ 青弋江发育可能是降水增加和构造抬升共同作用的结果。该研究有助于为中国东部地区中小河流发育研究提供参考。  相似文献   

2.
对贵州清水江上游马寨、翁东、三江、施洞沿江4个剖面的阶地特征、年代学结果进行了综合分析。发现以凯里断层为界,上游地区的马寨和翁东2个剖面的T2阶地形成时代约为51~57 ka B.P.,T1阶地的形成时代约为25 ka B.P.,下游地区的三江和施洞2个剖面的T2阶地形成时代约为122~102 ka B.P.,T1阶地的形成时代约为78 ka B.P.。选取各剖面的T2阶地的基座高度来计算了河流下切速率,发现上游地区2个剖面(马寨、翁东)的河流下切速率较接近,约为0.41~0.34 m/ka,明显高于下游地区的2个剖面(三江、施洞)的0.16~0.20 m/ka,表现为上游下切速率高,越往下游方向下切速率逐渐降低。这表明自晚更新世以来,清水江上游区域受到构造作用的影响而发生差异抬升,具体表现为西部构造抬升幅度大,阶地下切速率快;东部构造抬升幅度小,阶地下切速率慢。  相似文献   

3.
位于柴达木盆地南缘的格尔木河发源于东昆仑山脉,末端注入盆地中东部的察尔汗盐湖,是该盐湖最主要的补给河流,极大地影响着该盐湖的成盐演化过程。格尔木河的主要支流—昆仑河和雪水河都是由冰川融水形成,因此该流域内的冰川进退对河流径流量变化和谷地填充地层的物源有着重要影响。该流域内主要的填充地层为昆仑河砾岩(河流相)、纳赤台沟组(冲洪积相)和三岔河组(河湖相)。在三岔河组之上,发育了4~5级阶地,除最高的T5之外,其它均为以三岔河组为基座的内叠阶地(少部分河段以昆仑河砾岩为基座)。根据前人的研究,昆仑河砾岩沉积的年代为1 269~1 042 ka(ESR年龄);纳赤台沟组堆积于482~642 ka之间(ESR和TL年龄);三岔河组形成于355~95 ka(ESR和U系年龄)、90~16 ka(OSL年龄),T5~T1阶地基本形成于16~4.6 ka之间。由于采用的测年方法不同,不同学者对三岔河组的形成时代存在争议,对阶地的划分也有所不同(4级或5级阶地)。但是,对T5~T1阶地形成时代有较一致的观点,即末次冰消期和全新世早中期。对于格尔木河河流地貌过程的驱动因素,目前尚存在争论,大部分学者认为是气候变化驱动了该区域河流地貌的形成,但也有学者认为构造活动是主导因素。  相似文献   

4.
River adjustment and incision in the Sabarmati basin, Gujarat, India have been examined at a site near Mahudi. Towards this, the morphostratigraphy and depositional chronometry of the middle alluvial plains were investigated. The upper fluvial sequence, along with the overlying aeolian sand and riverbed scroll plains, provide clues to the evolution of the present Sabarmati River. Sedimentological analyses of the upper fluvial sequence indicate its deposition by a meandering river system during what is believed to be a persistent wetter phase. Luminescence chronology bracketed this sequence to between 54 and 30 ka, which corresponds to Oxygen Isotope Stage-3, during which the SW monsoon was enhanced. The overlying aeolian sand has been dated to 12 ka, indicating that dune accretion occurred simultaneously with the strengthening of the SW monsoon during the Early Holocene. Adjustment of the Sabarmati along a N–S transect is placed around 12 ka and the incision is bracketed between 12 and 4.5 ka. River adjustment could have been tectonic; however, the incision was facilitated by the availability of continuous flow in the river caused by the SW monsoon. The basin experienced two tectonic events at about 3 and 0.3 ka, as demonstrated by the morphology of the scroll plains.  相似文献   

5.
位于柴达木盆地南缘的格尔木河发源于东昆仑山脉,末端注入盆地中东部的察尔汗盐湖,是该盐湖最主要的补给河流,极大地影响着该盐湖的成盐演化过程。格尔木河的主要支流——昆仑河和雪水河都是由冰川融水形成,因此,该流域内的冰川进退对河流径流量变化和谷地填充地层物源有着重要影响。该河流域内主要的填充地层为昆仑河砾岩(河流相)、纳赤台沟组(冲洪积相)和三岔河组(河湖相)。在三岔河组之上,发育了四/五级阶地,除最高的T5之外,其他均为以三岔河组为基底的内叠基座阶地。根据前人的研究,昆仑河砾岩沉积的年代为1269至1042 ka(ESR年龄);纳赤台沟组堆积于482至642 ka之间(ESR和TL年龄);三岔河组形成于355-95 ka(ESR和U系年龄)、90-16 ka(OSL年龄),T5-T1阶地基本形成于16- 4.6 ka之间。由于采用的测年方法不同,不同学者对三岔河组的形成时代存在争议,对阶地的划分也有所不同(四级或五级阶地)。但是对T5-T1阶地形成时代有较一致的观点,即末次冰消期和全新世早中期。对于格尔木河河流地貌过程的驱动因素,目前尚存在争论,大部分学者认为是气候变化驱动了该区域河流地貌的形成,但也有学者认为构造活动是主导因素。  相似文献   

6.
金沙江巧家—蒙姑段的阶地发育与河谷地貌演化   总被引:2,自引:0,他引:2  
金沙江水系演化与河谷发育问题长期以来是地质地貌学界关注的重大问题,目前仍存在较大争议。河流阶地及其相关沉积是河谷发育过程的产物,可以提供河谷发育的时代与形式等诸多信息。金沙江在巧家—蒙姑段河谷中,葫芦口附近发育和保存了8级基座阶地,结合光释光和电子自旋共振测年方法,依据古气候资料,推断T6~T1的下切时间分别对应于深海氧同位素(MIS)的36/35、34/33、24/23、20/19、14/13和4/3阶段,即气候由冷至暖的转型期。青岗坝附近则发育了5级由堰塞湖相沉积组成的堆积型阶地,指示了中更新世以来该段河谷在下切过程中经历了频繁的滑坡堵江堰塞,发育形式以“下切—滑坡—堰塞—堆积—下切”过程为主。此外,河流的平均下切速率自0.82 Ma以来由此前的0.56 mm/a下降至0.19 mm/a,表明中更新世以来频繁发生的堵江堰塞事件严重抑制了该段河谷的下切作用。综合流域内河流阶地序列及相关沉积的研究,金沙江下游段现代河谷的形成时代不晚于早更新世。  相似文献   

7.
川西高原杂谷脑河阶地的形成   总被引:8,自引:0,他引:8  
根据野外实地地貌调查,确定了川西高原杂谷脑河理县段发育了8级阶地,并对阶地沉积物进行了ESR年代测试,初步确定杂谷脑河第II,III,IV,VI级阶地约形成于距今54,125,248,481ka。阶地成因分析表明这些主要阶地序列主要是构造隆升的结果,因此,杂谷脑河各级主要阶地分别代表了川西高原中更新世以来的几次隆升事件。根据阶地高程和阶地形成年代确定的杂谷脑河下蚀速率为0.39m/ka,与大地测量获得的龙门山隆升速率 (0.3~0.4m/ka) 相一致。  相似文献   

8.
Lisa M. Fotherby   《Geomorphology》2009,103(4):562-576
The Platte River in Nebraska has evolved in the twentieth century from a predominantly braided river pattern to a mélange of meandering, wandering, anastomosed, island braided, and fully braided reaches. Identifying the factors that determine the occurrence of a fully braided main channel was the objective of this study. Aerial photography, gage flow data, ground-surveyed cross sections, bed material samples, and the results of sediment transport modeling were used to examine factors that control spatial change in main river pattern of the central Platte River. Valley confinement is identified as the determining factor of braided river in nine of eleven divisions of the central Platte River. Flow reduction and the interruption of sediment supply are identified as determining factors preventing fully braided river in the remaining two of eleven reaches.Valley confinement, the topography which limits the width of the floodplain, was initially measured as width between historical banks (predevelopment river banks). This metric was later refined to width between confining features (historical banks, remnant bars, bridge abutments, protected banks and levees). Under existing conditions, the main channel of the central Platte River is fully braided when valley confinement (width between confining features) is 600 m or less and begins to divide into the multiple channels of an anastomosed pattern when valley confinement (width between confining features) exceeds 600 m When Platte River flow is divided between two to four major anabranches, a fully braided pattern in the main channel of the main anabranch requires a more confined valley of 400 m or less.Valley confinement is demonstrated to be the dominant factor in determining river pattern in the central Platte River, although this factor is not normally considered in the continuum of channel pattern model. Conclusions from this study can be used to increase the occurrence of fully braided main channel in the central Platte River, to aid habitat recovery for endangered or threatened bird species that favor this river pattern. Consideration of valley confinement with river continuum factors can aid river managers by improving predictions of river pattern in response to management actions.  相似文献   

9.
The Spiti River that drains through the arid Trans-Himalayan region is studied here. The relict deposits exposed along the river provide an opportunity to understand the interaction between the phases of intense monsoon and surface processes occurring in the cold and semi arid to-arid Trans-Himalayan region. Based on geomorphological observation the valley is broadly divided into the upper and lower Spiti Valley. The braided channel and the relict fluvio-lacustrine deposits rising from the present riverbed characterize the upper valley. The deposits in the lower valley occur on the uplifted bedrock strath and where the channel characteristics are mainly of meandering nature. Conspicuous is the occurrence of significantly thick lacustrine units within the relict sedimentary sequences of Spiti throughout the valley. The broad sedimentary architecture suggests the formation of these palaeolakes due landslide-driven river damming. The Optically Stimulated Luminescence (OSL) dating of quartz derived from the bounding units of the lacustrine deposits suggests that the upper valley preserves the phase of deposition around 14–6 ka and in the lower valley around 50–30 ka. The review of published palaeoclimatic palaeolake chronology of Spiti Valley indicates that the lakes were probably formed during the wetter conditions related to Marine Isotope Stage III and II. The increased precipitation during these phases induced excessive landsliding and formation of dammed lakes along the Spiti River. The older lacustrine phase being preserved on the uplifted bedrock strath in the lower valley indicates late Pleistocene tectonic activity along the Kaurick Chango normal fault.  相似文献   

10.
宛川河阶地的年代与下切机制   总被引:4,自引:3,他引:1  
宛川河是黄河一条小规模支流,在榆中盆地中发育了至少四级堆积阶地。以"古土壤断代法"为基础,结合OSL测年和14C测年,较准确的确定了宛川河四级阶地形成的年代为330、130、50和10 ka。区域构造表明榆中盆地相对下陷,地面抬升不是引起河流下切的主要原因,同时阶地位相说明作为宛川河侵蚀基准面的黄河对宛川河下切影响只限于距河口不远的一小段距离。每级阶地面上都堆积一层古土壤指示宛川河下切于古土壤开始发育时期,对应于气候由冷干向暖湿转换的时期,河流下切的主要原因是气候变化。  相似文献   

11.
The 270 km long section of the Upper Yellow River at the First Great Bend is comprised of single channel and multiple channel systems that alternate among anastomosing, anabranching, meandering and braided reaches. The sequence of downstream pattern changes is characterized as: anastomosing-anabranching, anabranching-meandering, meandering-braided and braided-meandering. Remote sensing images, DEM data and field investigations are used to assess ahd interpret controls on these reach transitions. Channel slope and bed sediment size are key determinants of transitions in channel planform. Anas- tomosing reaches have a relatively high bed slope (0.86‰) and coarser sediment bed material (d50 = 3.5 mm). In contrast, meandering reaches have a low slope (0.30‰) and fine sediment bed material (d50 = 0.036 mm). The transition from a meandering to braided pattern is characterized by an increase in channel width-depth ratio, indicating the important role of bank strength (i.e. cohesive versus non-cohesive versus channel boundaries). Interestingly, the braided-meandering and meandering-braided transitions are coincident with variable flow inputs from tributary rivers (Baihe and Heihe rivers respectively). Theoretical analysis of the meandering-braided transition highlights the key control of channel width-depth ratio as a determinant of channel planform.  相似文献   

12.
陈艺鑫  张梅  李川川  李英奎  刘耕年 《地理学报》2011,66(11):1540-1550
格尔木河河谷中发育有四级河流阶地,均形成于末次冰盛期之后。阶地的形成由构造抬升驱动,四级阶地代表的河流下切过程反映了四次阶段性构造抬升。以三岔河和纳赤台为代表的中游河段,四次河流阶段性下切速率分别为16~13 ka BP (T4-T3),3.33~9.33 mm/a;13~11 ka BP (T3-T2),5.5~12 mm/a;11~5 ka BP (T2-T1),0.33~1 mm/a;5 ka BP (T1 至今),0.6~0.8 mm/a,下切速率自T4 至T1 先增快后减慢。上游小南川河段5 ka BP以来的平均下切速率为4 mm/a,显著大于三岔河和纳赤台河段,同期河流溯源侵蚀速率也较快,表明小南川局部地区全新世中期抬升强烈,应为西大滩断裂强烈活动所致。受区域性构造活动差异影响,格尔木河河流阶地在局部地区出现变形,其中在三岔河和最老冲积扇扇顶存在两个下切幅度和速度高峰值,而纳赤台河段下切和缓。表明控制昆仑河和野牛沟发育的昆仑河-野牛沟断裂、山前的红石沟断裂自末次冰盛期以来持续活动。其中,昆仑河-野牛沟断裂16~13 ka BP活动速率较快,到13~11 ka BP达到最快,11 ka BP后减慢,与河流中下游整体构造活动趋势一致。  相似文献   

13.
A large number of rivers in Tuscany have channel planforms, which are neither straight nor what is usually understood as meandering. In the typical case, they consist of an almost straight, slightly incised main channel fringed with large lateral bars and lunate-shaped embayments eroded into the former flood plain. In the past, these rivers have not been recognised as an individual category and have often been considered to be either braided or meandering. It is suggested here that this type of river planform be termed pseudomeandering.A typical pseudomeandering river (the Cecina River) is described and analysed to investigate the main factors responsible for producing this channel pattern. A study reach (100×300 m) was surveyed in detail and related to data on discharge, channel changes after floods and grain-size distribution of bed sediments. During 18 months of topographic monitoring, the inner lateral bar in the study reach expanded and migrated towards the concave outer bank which, concurrently, retreated by as much as 25 m. A sediment balance was constructed to analyse bar growth and bank retreat in relation to sediment supply and channel morphology. The conditions necessary to maintain the pseudomeandering morphology of these rivers by preventing them from developing a meandering planform, are discussed and interpreted as a combination of a few main factors such as the flashy character of floods, sediment supply (influenced by both natural processes and human impact), the morphological effects of discharges with contrasting return intervals and the short duration of flood events. Finally, the channel response to floods with variable sediment transport capacity (represented by bed shear stress) is analysed using a simple model. It is demonstrated that bend migration is associated with moderate floods while major floods are responsible for the development of chute channels, which act to suppress bend growth and maintain the low sinuosity configuration of the river.  相似文献   

14.
J. Vandenberghe   《Geomorphology》2008,98(3-4):275
A previously established non-linear theory of river cyclicity as a response to climate change states that short phases of fluvial instability occur both at the transition from relatively warm (temperate) to cold (periglacial) and from relatively cold to warm periods. Such instability typically starts with vertical erosion, successively followed by sedimentary fill of the erosive scar. In spite of frequent confirmation of this theory by geomorphological reconstructions, a few problems arise. First, there are fewer incision phases than climatic transitions. Secondly, remnants of erosion at ‘cold–warm’ transitions are scarce, in contrast to obvious erosion relics at ‘warm–cold’ transitions. Furthermore, it appears that the incision style is strikingly different at both kinds of climatic transitions. Similarly, the long stable phases are also expressed in terms of different floodplain development in cold and warm periods. These arguments require a modification of the general non-linear theory.At the transition from relatively temperate to colder conditions, rivers transformed gradually from a regular, low-energy, single-channel course to a periodically high-energy, multi-channel type. The latter (braided) type is characterized by intense lateral movement, rather than by deep vertical erosion. This results in a well-expressed morphology of wide, extensive floodplains and terraces. In contrast, the linear and constrained, meandering channels incise with small width–depth ratio and build floodplains of limited lateral extent. Consequences are twofold: 1) the spatial limitation of the deeply incised, meandering valleys at the beginning of warm periods counts against their recognition; 2) relatively strong, lateral migration of the braided rivers removes most traces of previous (meandering) systems, which contrasts with the limited lateral activity of confined meandering channels. It means that in a ‘warm–cold–warm’ alternation generally only one phase of vertical erosion is preserved, the one that is caused by the high-energy, braided river at the start of the cold period.  相似文献   

15.
金沙江三堆子乌东德河段阶地研究   总被引:9,自引:4,他引:5  
中更新世晚期,古金沙江曾在金坪子河段发生堵江,使得金坪子河段成为金沙江发育的局部侵蚀基准点,并影响着三堆子-乌东德河段的河流下切速率。金坪子、凹嘎、龙街和鱼鲊的平均下切速率分别为196~217、145~172、257~305、82~97 cm/ka。凹嘎河段和鱼鲊河段在河谷地貌形态和阶地堆积物形成年代上都有很大差异,其原因为金沙江河谷中存在着多级构造裂点或岩性裂点,两河段性质存在差异,所以该河段不宜做传统的阶地位相分析。金沙江三堆子-乌东德河段的阶地沉积物的重矿物种类较多,以磁铁矿、赤褐铁矿、绿帘石、石榴石为主,并含有稳定矿物锆石、金红石和白钛石,以及十字石、兰晶石等典型的变质矿物。  相似文献   

16.
黄河下游河道断面形态参数变化及其水沙过程响应   总被引:1,自引:0,他引:1  
刘慰  王随继  王彦君 《地理科学》2020,40(9):1563-1572
基于1965—2015年黄河下游花园口、高村、泺口站的逐年水文和汛前河道断面的实测资料,分析了河道断面形态参数(河道断面面积,河道宽深比等)的变化,以及对河道断面形态与来水来沙间的关系做出定量化分析。结果表明:主槽断面形态参数与水沙搭配以及前期断面形态密切相关,沿程3个断面形态参数调整方式存在显著差异。河宽调整幅度沿程减小,辫状河段变幅最大,尤其在1986—1999年,辫状河段萎缩程度最为严重,其次为弯曲河段,顺直河段横向调整幅度最小。受到前期断面形态的影响,辫状河段河道断面调整方式既有横向展宽(萎缩)又有垂直加深(淤积);弯曲河段河道宽深比与流量呈较弱的正相关关系,具有横向和垂向的调整方式;而顺直河段的宽深比与流量呈负相关关系,与来沙系数呈正相关关系,河道以垂直加深(淤积)为主。  相似文献   

17.
基于对Leopold-Wolman关系修正的河床河型判别   总被引:1,自引:0,他引:1  
许炯心 《地理学报》2004,59(3):462-467
在广泛收集中国和世界上冲积河流资料的基础上,以近200条河流的大样本对著名的、国际上沿用40余年的 Leopold-Wolman关系,即用于河型判别的比降-流量关系进行了检验。结果发现,该关系不能用于包括砾石与砂质河床在内的河型判别。这是由于比降-流量关系主要反映砾石河床与砂质河床之间差异,其次才反映分汊与弯曲河型之间的差异。为此,对于Leopold-Wolman关系进行了改进,提出了以比降和河宽来判别河型的新关系。这一关系综合反映了河流在纵向上的能耗、阻力与输沙特性与在横向上的流场与环流分布特性的组合关系,因而具有更好的河型判别效果,可以用于包括砾石与砂质河床在内的河型判别。  相似文献   

18.
Fluvial process and morphology of the Brahmaputra River in Assam, India   总被引:1,自引:0,他引:1  
The Brahmaputra River finds its origin in the Chema Yundung glacier of Tibet and flows through India and Bangladesh. The slope of the river decreases suddenly in front of the Himalayas and results in the deposition of sediment and a braided channel pattern. It flows through Assam, India, along a valley comprising its own Recent alluvium. In Assam the basin receives 300 cm mean annual rainfall, 66–85% of which occurs in the monsoon period from June through September. Mean annual discharge at Pandu for 1955–1990 is 16,682.24 m3 s 1. Average monthly discharge is highest in July (19%) and lowest in February (2%). Most hydrographs exhibit multiple flood peaks occurring at different times from June to September. The mean annual suspended sediment load is 402 million tons and average monthly sediment discharge is highest in June (19.05%) and lowest in January (1.02%). The bed load at Pandu was found to be 5–15% of the total load of the river. Three kinds of major geomorphic units are found in the basin. The river bed of the Brahmaputra shows four topographic levels, with increasing height and vegetation. The single first order primary channels of this braided river split into two or more smaller second order channels separated by bars and islands. The second order channels are of three kinds. The maximum length and width of the bars in the area under study are 18.43 km and 6.17 km, respectively. The Brahmaputra channel is characterised by mid-channel bars, side bars, tributary mouth bars and unit bars. The geometry of meandering tributary rivers shows that the relationship between meander wavelength and bend radius is most linear. The Brahmaputra had been undergoing overall aggradation by about 16 cm during 1971 to 1979. The channel of the Brahmaputra River has been migrating because of channel widening and avulsion. The meandering tributaries change because of neck cut-off and progressive shifting at the meander bends. The braiding index of the Brahmaputra has been increasing from 6.11 in 1912–1928 to 8.33 in 1996. During the twentieth century, the total amount of bank area lost from erosion was 868 km2. Maximum rate of shift of the north bank to south resulting in erosion was 227.5 m/year and maximum rate of shift of the south bank to north resulting in accretion was 331.56 m/year. Shear failure of upper bank and liquefaction of clayey-silt materials are two main causes of bank erosion.  相似文献   

19.
最近150 ka河西地区河流阶地的成因分析   总被引:8,自引:6,他引:2  
文章通过对河西地区最近150 ka河流阶地年龄数据的处理,发现存在7个明显的河流阶地发育时期,即150、100、70、40、30、12和6 ka B.P.。经过相关构造和气候资料的论证,文章认为,在150和70 ka B.P.附近形成的两级河流阶地代表了河西地区两期主要的构造抬升,而在100、40、30、12和6 ka B.P.附近形成的5级河流阶地则对应于河西地区5期气候变化事件。  相似文献   

20.
GPR and aerial surveys were conducted to study changes of channel pattern in the lower course of the Obra River (western Poland). The river is an example of an intensive anthropogenic transformation, however, the origin of the river pattern changes in its lower course is not obvious. The GPR measurements were done using a georadar MALÅ ProEx equipped with a shielded 250 MHz antenna. A 3D analysis of the GPR data supported with lithologic information indicated traces of a multi‐channel pattern. A variable orientation of sediment layering within channel bars and differences in channels depth and width pointed to changes of direction of the river bed migration. Analysis of aerial photographs and a satellite image indicated that only a few of the channels inferred from GPR could be discerned. The reason could be the more than 1 m thick fine sands layer covering all the alluvial structures. Analysis of historical maps from the eighteenth and the nineteenth centuries showed that 250 years ago the Obra was a meandering river. The maps illustrate also several meander cutoffs and decreased wetlands surface. The following transformations of the river bed pattern were discerned: 1. From braided to meandering channel pattern which could be a natural process caused by climatic and sediment transport rate changes that was also observed in case of other lowland rivers. 2. From meandering to sinuous pattern with channel islands and then to sinuous with oxbow lakes. However, further research is needed to study reasons and timing of the observed changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号