首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
This paper deals with the geology and geochemistry of the Gacun and Laochang large-sized marine volcanic rock-type Ag deposits in the Sanjiang (Tri-River) area of southwestern China and of the continental volcanic-subvolcanic rock-type Ag deposits in the Tianshan area of Xinjiang, and in the East area, China. It is considered that the marine volcanic rock-type Ag deposits occur mainly in the second-ordered volcano-sedimentary basins developed in island-arc and rift tectonic environments. The Ag deposits show an obvious zonation, with vein-network mineralization in the lower parts and hot water sedimentary rock-hosted stratified mineralization in the upper parts. From the Earth’s surface downwards the ore-forming elements follows the order of As(Au)) →Ag, Pb, Zn→Cu. The whole rock Rb-Sr isotopic isochron age of layered orebodies in the Gacun deposit is 204±14 Ma, indicating that the main stage of mineralization is Late Triassic in age. The continental volcanic-subvolcanic (porphyry) rock-type Ag deposits were formed later than the country rocks. The ores exhibit disseminated, veinlet disseminated, network and lumped structures. In addition, this study also deals with the geochemical characteristics of the continental volcanic-subvolcanic rock-type Ag deposits and the relations between Ag deposits or silver itself and fluorite, halogen-family elements and manganese.  相似文献   

2.
Samples were systematically collected from metamorphic basic volcanic rocks in the Jiehekou and Xiyupi areas on both sides of the Lüliang Mountains, Shanxi Province and analyzed for their major elements, trace elements and rare earth elements (REE). The geochemical characteristics of their major, trace and rare-earth elements indicated that the metamorphic basic volcanic rocks in this area were emplaced in the tectonic environment like a modern continental rift. Sm-Nd and Rb-Sr isotope chronological studies demonstrated that the Jiehekou Group metamorphic basic volcanic rocks were formed during the 2600-Ma crust/mantle differentiation event, and were transformed by granulite facies metamorphism during the late Neo-Archaean period (2500 Ma ±), making the Sm-Nd systematics of the rocks reset. During the late Paleoproterozoic period (1800 Ma ±) the Rb-Sr systematics of the rocks were disturbed again in response to the Lüliang movement. Since the extent of disturbance was so weak that the Sm-Nd systematics was not affected, the age of 1600 Ma ± obtained from this area seems to be related to local magmatic activities within the craton. Research results lend no support to the idea that the Lüliang Group was formed during the Archaean. Instead, it should be formed during the Proterozoic.  相似文献   

3.
作者通过对浙江庆元苍岱矿区成矿地质背景和矿床地质特征的分析,参照区域典型矿床的勘查研究成果,建立了适合本区的受中生代火山机构控制的火山-次火山热液型银铅锌多金属矿成矿模式,对指导矿区下一步找矿具有重要意义。通过深入研究,指出放弃浅部金银,主攻深部铅锌多金属的找矿思路。提出在物探、化探和地质高精度综合剖面测量基础上,采用钻探进行深部验证的工作方法,对于指导矿区及区域内火山岩覆盖区的矿产勘查具用重要意义。  相似文献   

4.
东溪-南关岭金矿为北淮阳东段发现的第一个原生金矿,产于磨子潭-晓天中生代火山盆地边缘,容矿围岩为安山质-英安质火山岩,矿化和蚀变受桐柏-桐城深大断裂带的次级构造带控制。该金矿发育陡倾斜的脉状矿体和缓倾斜的似层状矿体,成因类型为冰长石-绢云母型浅成低温热液金矿。火山岩盆地之下的变质基底可能起到了初始矿源层作用,桐柏-桐城断裂带及其次级构造破碎带为重要的导岩导矿构造,早白垩世强烈的岩浆活动提供了热源、动力源和部分矿源。参照国内外类似金矿的特征,认为本区成矿地质条件良好,有可能隐伏着与石英正长岩体有关的细脉浸染型矿化,晓天火山盆地具有良好的找矿前景。  相似文献   

5.
Longgang volcano cluster is 150km away from the Tianchi volcano, located in Jingyu and Huinan Counties, Jilin Province, China. It had a long active history and produced hundreds of volcanoes. The latest and largest eruption occurred between 1 500 and 1 600 years ago by Jinlongdingzi(JLDZ)volcano which had several eruptions in the history. This paper discusses the volcanic hazard types, and using the numerical simulations of lava flow obtained with the Volcflow model, proposes the hazard zonation of JLDZ volcano area. JLDZ volcano eruption type is sub-plinian, which produced a great mass of tephra fallout, covering an area of 260km2. The major types of volcanic hazards in JLDZ area are lava flow, tephra fallout and spatter deposits. Volcflow is developed by Kelfoun for the simulation of volcanic flows. The result of Volcflow shows that the flows are on the both sides of the previous lava flows which are low-lying areas now. According to the physical parameters of historical eruption and Volcflow, we propose the preliminary volcanic hazard zonation in JLDZ area. The air fall deposits are the most dangerous product in JLDZ. The highly dangerous region of spatter deposits is limited to a radius of about 2km around the volcano. The high risk area of tephra fallout is between 2km to 9km around the volcano, and between 9km to 14km is the moderate risk area. Out of 14km, it is the low risk area. Lava flow is controlled by topography. From Jinchuan Town to Houhe Village near the volcano is the low-lying area. If the volcano erupts, these areas will be in danger.  相似文献   

6.
Quaternary strata in China mainly comprise continental deposits in a variety of depositional settings. The continental Quaternary in temperate northern China consists mainly of eolian and fluvio-lacustrine deposits; that in subtropical southern China, mainly of vermiculated red soils, cave/fissure deposits, and fluvio-lacustrine deposits; and that in the alpine Tibetan Plateau, mainly of fluvio-lacustrine and piedmont deposits. The marine Quaternary in China consists of detrital deposits and biogenic reef deposits. The integration of biostratigraphy, magnetostratigraphy, climatostratigraphy and an astronomically calibrated chronology has led to the establishment of high-precision climatochronostratigraphic timescales for the detrital marine Quaternary in the South China Sea and the loess-paleosol sequence in the Chinese Loess Plateau. Extremely high-precision230 Th dating has provided a high-precision absolute age model for cave stalagmites over the past 640000 years as well as highresolution oxygen isotope records representing orbital-to suborbital-scale climate changes. By combining magnetic stratigraphy and biostratigraphy, robust chronostratigraphic frameworks for non-eolian continental Quaternary deposits on the scale of Quaternary geomagnetic polarities have been established. The continental Pleistocene Series consists, from oldest to youngest,of the Nihewanian Stage of the Lower Pleistocene, the Zhoukoudianian Stage of the Middle Pleistocene, and the Salawusuan Stage of the Upper Pleistocene. Stages of the continental Holocene Series have not yet been established. This review summarizes recent developments in the Quaternary chronostratigraphy of representative Quaternary strata and associated faunas, and then proposes an integrative chronostratigraphic framework and a stratigraphic correlation scheme for Quaternary continental strata in China. In the near-future, it is hoped to establish not only a Chinese continental Quaternary climatochronostratigraphic chart on the scale of glacial-interglacial cycles but also a Quaternary integrative chronostratigraphic chart including both continental and marine strata in China.  相似文献   

7.
Kohei  Sato Katsuo  Kase 《Island Arc》1996,5(3):216-228
Abstract The metallogeny of Japan can be grouped into four environments: (1) Paleozoic-Mesozoic stratiform Cu and Mn deposits within accretionary complexes, (2) Cretaceous-Paleogene post-accretionary deposits related to felsic magmatism in a continental-margin are environment, (3) Miocene epigenetic and syngenetic deposits related to felsic magmatism during back-arc opening, and (4) late Miocene-Quaternary volcanogenic deposits in an island-are environment. Group (1) deposits were a major source of Cu and Mn for the Japanese mining industry, and this style of mineralization is reviewed here. The stratiform Cu and Mn deposits were formed on the sea floor during the late Paleozoic to Mesozoic, and were subsequently accreted to active continental margins mainly in Jurassic to Cretaceous age. The Cu sulfide deposits, termed Besshi type, are classified into two subtypes: the Besshi-subtype deposit is related to basaltic volcanism, probably at a mid-oceanic ridge or rise; the Hitachi subtype is related to bimodal volcanism, probably in a back-arc or continental rift. Most of the Besshisubtype deposits occur in the Sanbagawa metamorphic belt, with some occurrences in weakly metamorphosed Jurassic and Cretaceous accretionary terrains. This subtype is divided into two groups: the sediment-barren group is hosted by basalt-chert sequences; whereas the sedimentcovered group is hosted by basalt-shale sequences. Both subtypes are characterized by S isotope trends similar to those of sea-floor sulfide deposits now forming at mid-oceanic ridges. The Hitachi-subtype deposits occur in late Paleozoic volcanic-sedimentary sequences and lack pelagic sediments. These deposits are characterized by association of sphalerite- and barite-rich ores. The Mn deposits occur mainly in Middle Jurassic to Early Cretaceous accretionary complexes containing abundant chert beds of Triassic to Jurassic age. Their locations are well separated from those of the Cu sulfide deposits. The Mn deposits are divided into two types: the Mn type, hosted by chert, and the Fe-Mn type, sandwiched between chert and basaltic volcanic rocks. The Mn-type ores appear to have deposited on the deep-sea floor further from the site of hydrothermal activity than the Fe-Mn type. Primary Mn precipitates may have been transformed to rhodochrosite and other Mn-minerals during diagenesis. Many of the Mn deposits were significantly metamorphosed during intrusion of Cretaceous granitoids, resulting in a very complex mineralogy.  相似文献   

8.
新疆南天山查岗诺尔大型磁铁矿矿床地质特征及矿床成因   总被引:1,自引:0,他引:1  
查岗诺尔铁矿床为新疆南天山近年来发现的大型磁铁矿床。该矿床产于南天山造山带下石炭统大哈拉军山组火山-碎屑-碳酸岩建造中,储量达到1.3亿吨。矿床由多个平行于地层层理的矿体组成,其主矿体位于隐爆角砾岩内。主要的矿物组合包括磁铁矿、磁赤铁矿、穆磁铁矿、赤铁矿、假象赤铁矿及极少量的镜铁矿等。通过对矿石的结构、构造以及矿石矿物化学成分的综合分析,表明该矿床的形成与火山通道附近的潜火山构造隐爆作用密切相关。该矿床的发现为区域上寻找同类矿床提供了广阔的找矿前景。  相似文献   

9.
Field investigation and lab analysis on samples were carried out for Quaternary volcanoes, including Xiaoshan volcano, Dashan volcano and Bianzhuang hidden volcano, in Haixing area, east of North China. Results show that Xiaoshan volcano with the eruptive material of volcanic scoria, crystal fragments and volcanic ash is a maar volcano, the eruptive pattern is pheatomagmatic eruption, and the influence scope is near the crater. Dashan volcano exploded in the early stage, and then the magma intruded, forming the volcanic neck. The eruption strength and scale are limited, and the eruptive materials are scoria, volcanic agglomerate and dense lava neck. The volcanic rocks in Bianzhuang are porosity and dense volcanic rocks and volcanic breccia, reflecting the pattern of weak explosive eruption and lava flow, and the K-Ar age dating on volcanic rocks indicates that the eruption happened in early Pleistocene. Xiaoshan volcanic scoria and Bianzhuang hidden volcanic rocks are mainly basaltic, Dashan volcanic rocks with lower SiO2 content are nephelinite in composition. Their oxide contents have no linear relationship, indicating that there is no magma evolution relationship between these magmas from the three places. Three volcanic rocks all have enrichment of light rare earth. The Bianzhuang volcanic rocks are rich in large ion lithophile elements, and have no high field strength elements Zr and Hf, Ti losses. The volcanic materials from Xiaoshan and Dashan are intensively rich in Th, U, Nb and Ta, and significantly poor in K and Ti. Although the magmas from these three places in Haixing area may all come from asthenosphere, the volcanic materials have different petrological and geochemical features, and relatively independent volcanic structures, therefore, they experienced different magma processes.  相似文献   

10.
Studies of late Tertiary silicic volcanic centres in the Western and Eastern Cordilleras of the Central Andes show that three volcanic environments are appropriate sites for mineralization: (1) ring-fracture extrusions post-dating large calderas; (2) similar extrusions within ignimbrite shields; and (3) isolated, small silicic volcanoes. Subvolcanic tin mineralization in the Eastern Cordillera is located in silicic stocks and associated breccias of Miocene age. The Cerro Rico stock, Potosi, Bolivia, contains tin and silver mineralization and has an intrusion age apparently millions of years younger than that of the associated Kari Kari caldera. Similar age relationships between mineralization and caldera formation have been described from the San Juan province, Colorado. The vein deposits of Chocaya, southern Bolivia, were emplaced in the lower part of an ignimbrite shield, a type of volcanic edifice as yet unrecognized in comparable areas of silicic volcanism. The El Salvador porphyry copper deposit, Chile, is related to silicic stocks which may have been intruded along a caldera ring fracture. Cerro Bonete, Chile, provides a modern example of the volcanic superstructure which may have overlain isolated mineralized stocks and breccia pipes such as that of Salvadora at Llallagua, Bolivia.Existing models for the genesis of porphyry copper deposits suggest that they formed in granodioritic stocks located in the infrastructure of andesitic stratovolcanoes. Sites of porphyry-type subvolcanic tin mineralization in the Eastern Cordillera of Bolivia are distinguished by the absence of such andesitic structures. The surface expression of a typical subvolcanic porphyry tin deposit was probably an extrusive dome of quartz latite porphyry, sometimes related to a larger caldera structure. Evidence from the El Salvador porphyry copper deposit in the Eocene magmatic belt in Chile suggests that it too may be more closely related to a silicic volcanic structure than to an andesitic stratovolcano.The dome of La Soufriere, Guadeloupe is proposed as a modern analog for the surface expression of subvolcanic mineralization processes, the phreatic eruptions there suggesting the formation of hydrothermal breccia bodies in depth. Occurrence of mineralized porphyries, millions of years after caldera formation, does not necessarily indicate that intrusions and mineralization are not genetically related to the sub-caldera pluton, but may be a consequence of the long thermal histories (1–10 million years) of the lowermost parts of large plutons. Caldera formation can only inhibit mineralization by dispersal of ore metals when these are of magmatic origin, and ignimbrites should not be taken as being unlikely to be associated with porphyry mineralization. Whether ore metals are of wall rock or magmatic origin, the key to understanding the relationships between silicic volcanism and mineralization lies in the fractionation of trace elements within large zoned magma chambers during their igneous history, and their subsequent hydrothermal migration. Small, highly mineralized intrusions formed late in a caldera cycle (such as the Cerro Rico) may be due to the introduction of fresh supplies of mafic magma into the lower parts of the main pluton.  相似文献   

11.
Detailed geologic mapping, petrography, and major and trace-element analyses of Proterozoic rocks from the Greenwood Lake Quadrangle, New York are compared with chemical analyses and stratigraphic information compiled for the entire Reading Prong. A persistent regional stratigraphy is evident in the mapped area whose geochemistry indicates protoliths consistent with a back-arc marginal basin sequence. The proposed marginal basin may have been floored by an older sialic basement and overlain by a basin-fill sequence consisting of a basal tholeiitic basalt, basic to intermediate volcanic or volcaniclastic rocks and carbonate sediments, a bimodal calc-alkaline volcanic sequence, and finally volcaniclastic, marine, and continental sediments. The presence of high-chlorine biotite and scapolite may indicate circulation of brine fluids or the presence of evaporite layers in the sequence. Abundant, stratabound magnetite deposits with a geologic setting very unlike that of cratonic, Proterozoic banded-iron formations are found throughout the proposed basin sequence. Associated with many of the magnetite deposits is unusual uranium and rare-earth element mineralization. It is proposed here that these deposits formed in an exhalative, volcanogenic, depositional environment within an extensional back-arc marginal basin. Such a tectonic setting is consistent with interpretations of protoliths in other portions of the Reading Prong, the Central Metasedimentary Belt of the Canadian Grenville Province, and recent interpretation of the origin of the Franklin lead-zinc deposits, suggesting a more cohesive evolving arc/back-arc tectonic model for the entire Proterozoic margin of the north-eastern portion of the North American craton.  相似文献   

12.
江西武夷成矿带铜多金属矿产资源远景评价与展望   总被引:1,自引:0,他引:1  
华南武夷山地区处于扬子、华夏两大构造单元交接叠加地段,构造变形复杂,中生代岩浆活动强烈,具有十分优越的成矿条件,矿产资源潜力巨大。本文以正在武夷山成矿带开展的矿产远景调查工作和资源评价工作所取得的阶段性成果为基础,分析了武夷山成矿带的成矿地质背景、主要矿床类型及近几年的找矿勘查成果,并对武夷成矿带江西省境内铜多金属矿产资源潜力进行了初步评价,划分了十七个找矿远景区。  相似文献   

13.
South China is the most important uranium producer in the country. Much of the Mesozoic-Cenozoic geology of this area was dominated by NNE-trending intracontinental strike-slip faulting that resulted from oblique subduction of the paleo-Pacific plate underneath the eastern China continent. This strike-slip fault system was characterized by transpression in the early-mid Jurassic and by transtension from the latest Jurassic through Cretaceous to early Tertiary. Most uranium ore deposits in South China are strictly fault-hosted and associated with mid-late Mesozoic granitic intrusions and volcanic rocks, which formed under transpression and transtension regimes, respectively. Various data demonstrate that the NNE-trending strike-slip faults have played critical roles in the formation and distribution of hydrothermal uranium deposits. Extensive geochronological studies show that a majority of uranium deposits in South China formed during the time period of 140–40 Ma with peak ages between 87–48 Ma, coinciding well with the time interval of transtension. However, hydrothermal uranium deposits are not uniformly distributed along individual strike-slip fault. The most important ore-hosting segments are pull-apart stepovers, splay structures, extensional strike-slip duplexes, releasing bends and fault intersections. This non-uniform distribution of ore occurrences in individual fault zone reflects localization of hydrothermal fluids within those segments that were highly dilational and thus extremely permeable. The unique geometric patterns and structural styles of strike-slip faults may have facilitated mixing of deeply derived and near-surface fluids, as evidenced by stable isotopic data from many uranium deposits in South China. The identification of fault segments favorable for uranium mineralization in South China is important for understanding the genesis of hydrothermal ore deposits within continental strike-slip faults, and therefore has great implications for exploration strategies.  相似文献   

14.
腾冲火山岩稀土和微量元素地球化学研究   总被引:3,自引:0,他引:3  
本通过腾冲火山岩稀土和微量元素丰度的测试与分析,结合前人部分资料探讨了该区火山岩的稀土和微量元素地球化学特征:各喷发期火山岩均富集LREE和Rb、Sr、Ba、U、Th等不相容元素;均具极为相似的稀土分配型式和微量元素地球化学模式,这可能反映了各其火山岩初始岩浆的同源性。  相似文献   

15.
Xianglushan-type iron deposits are one of the new types of iron deposits found in the Weining Area of Western Guizhou. The iron-bearing rock system is a paleo-weathered crustal sedimentary(or accumulating) stratum between the top of the Middle-Late Permian Emeishan basalt formation and the Late Permian Xuanwei formation. Iron ore is hosted in the Lower-Middle part of the rock system. In terms of the genesis of mineral deposit, this type of deposit should be a basalt paleo-weathering crustal redeposit type, very different from marine sedimentary iron deposits or continental weathering crust iron deposits. Based on field work and the analytical results of XRD Powder Diffraction, Electron Probe, Scanner Electron Microscope, etc., the geological setting of the ore-forming processes and the deposit features are illustrated in this paper. The ore-forming environment of the deposit and the Emeishan basalt weathering mineralization are also discussed in order to enhance the knowledge of the universality and diversity of mineralization of the Emeishan Large Igneous Province(ELIP), which may be a considerable reference to further research for ELIP metallogenic theories, and geological research for iron deposits in the paleo-weathering crust areas of the Emeishan basalt,Southwestern, China.  相似文献   

16.
本文概略介绍了中国大陆4个火山(岩)为主题的世界地质公园和16个国家地质公园,以及中国香港和中国台湾的两个地质公园。文章还介绍了这些地质公园火山岩喷发时代、火山类型、大地构造环境和火山(岩)景观特征与分类。它们的喷发时代主要为更新世-全新世、中新世、始新世和白垩纪。四个时期的火山地质公园,在不同年代火山中均具代表性与典型性,为中国火山/火山岩研究提供了真实的材料。作者还针对火山地质公园建设现状提出加强科学研究与实施解说系统工程两条建议。  相似文献   

17.
A large number of in-situ volcanic reservoirs have been discovered from the Meso-Cenozoic rift basin group in eastern China.Based on drilling results in combination with geological and geophysical analysis,a case study from the Early Cretaceous Xujiaweizi fault-depression shows that the formation mechanism of in-situ volcanic reservoirs is characterized by"fault-controlled body,body-controlled facies,facies-controlled reservoir,and reservoir-controlled accumulation".In other words,deep faults control the volcanic eruption type,volcanic body,and gas reservoir distribution;the volcanic body determines the spatial distribution of volcanic facies and volcanic gas reservoir size;the volcanic facies control reservoir physical properties and effective thickness of gas formation;the volcanic reservoir properties control gas reservoir type and gas productivity.The result is useful to guiding the discovery of in-situ volcanic gas reservoirs in faulted basins in both theory and practice.  相似文献   

18.
Makoto Takeuchi 《Island Arc》2013,22(4):477-493
In this study, the chemical and optical features of detrital garnets from the Middle Permian to Upper Triassic sandstones in the South Kitakami Belt, Northeast Japan, were examined to reveal the tectonic movement in the provenance. The sandstones contain a large amount of detrital grandite garnet grains with a wide range of andradite content. Among them, some grandite garnet grains show optically anisotropic features and rarely oscillatory zoning and sector twinning. The proportion of the detrital anisotropic grandite garnet increases from the Permian to the Middle Triassic and decreases in the Late Triassic. Such grandite garnets with various andradite contents occur in skarn deposits. Isotropic grandite garnets in the early stage of skarn evolution are distributed widely around a pluton, which affects the thermal metamorphism of the surrounding strata. However, anisotropic grandite garnets are formed along veinlets and fractures in the middle to late hydrothermal stage as the pluton cools, and their distribution is limited to a narrower area near the pluton compared to the metamorphic aureoles formed in the early stage. Changes in the chemical and optical features of the detrital garnets indicate a progressive denudation of the plutonic body accompanying skarn deposits in the provenance. The proportion of detrital anisotropic grandite garnet grains among all of the detrital grandite garnet is considered to be a sensitive indicator of the denudation level in a deeper part of the volcanic arc in association with skarn deposits, together with traditional sandstone composition datasets. This newly proposed method should be useful for clarifying the paleogeography during the Permian to Triassic in the East Asian continental margin, associated with uplift and denudation of the Permian volcanic arc, which seems to have been induced by the collision of the North China and South China Blocks.  相似文献   

19.
Ion microprobe dating of zircon from meta‐igneous samples of the Hitachi metamorphic terrane of eastern Japan yields Cambrian magmatic ages. Tuffaceous schist from the Nishidohira Formation contains ca 510 Ma zircon, overlapping in age with hornblende gneiss from the Tamadare Formation (ca 507 Ma), and meta‐andesite (ca 507 Ma) and metaporphyry (ca 505 Ma) from the Akazawa Formation. The latter is unconformably overlain by the Carboniferous Daioin Formation, in which a granite boulder from metaconglomerate yields a magmatic age of ca 500 Ma. This date overlaps a previous estimate for granite that intrudes the Akazawa Formation. Intrusive, volcanic, and volcaniclastic lithologies are products of a Cambrian volcanic arc associated with a continental shelf, as demonstrated by the presence of arkose and conglomerate in the lowermost Nishidohira Formation. Granitic magmatism of Cambrian age is unknown elsewhere in Japan, except for a single locality in far western Japan with a similar geological context. Such magmatism is also unknown on the adjacent Asian continental margin, with the exception of the Khanka block in far northeastern China. A ‘great hiatus’ in the Paleozoic stratigraphy of the Sino–Korean block also exists in the Hitachi terrane between Cambrian volcanic arc rocks and Early Carboniferous conglomerate, and may indicate a common paleogeographic provenance.  相似文献   

20.
A geochronological study of zircon U-Pb on the volcanic rocks from the stratotype section of the Qingshan Group within the Jiaozhou Basin, eastern Shandong Province, is presented. The zircons were analyzed using the method of in situ ablation of a 193 nm excimer laser system coupled with an up to date ICP-MS system. Among the three formations of the Qingshan Group, zircons recovered from the lowest part of the Houkuang Fm. were dated at 106±2 Ma (95% confidence, the same below), whereas those from the lower and upper parts of the Shiqianzhuang Fm. were given ages of 105±4 Ma and 98±1 Ma, respectively. A spatially decreasing trend for the Mesozoic magmatic timing from west to east in the province is observed through comparing the data of this study with those by previous works on the Qingshan volcanic lavas occurring at western Shandong and within the Yishu fault zone. The Qingshan volcanic rocks are constituent of the 'Shoshonite Province' in East China. Exposed at most provinces of central East China along the Tan-Lu fault and the Yangtze fault zones, these volcanic suites are characterized by shoshonite and high-K calcalkalic rocks in lithology and thought to be correlated with the partial melting of continental mantle in genesis. It is also shown that the Qingshan potassic volcanic suite from eastern Shandong basins is distinctly younger than those from other ar-eas of the shoshonite province. By contrary, ages of the Mesozoic to Cenozoic alkaline basalts, sourced by asthenospheric mantle, from both northern Huaiyan basin and northern Dabie belt along the Tan-Lu fault zone and from the Ningwu, Lishui and Luzong basins along the Yangtze fault zone are observably older than those occurring within eastern Shandong. The revealed temporal and spatial patterns in magmatism for the two types of volcanic suites make an important geochronological con-straint on the Mesozoic to Cenozoic dynamic evolution model of the subcontinental lithosphere in East China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号