首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 608 毫秒
1.
A set of grey-purple layered volcanic rocks are found widely distributed from the mountain flank to the main peak of Daliuchong volcano, but it's difficult to identify whether they are volcaniclastic rock or lava rock just by field investigation and the crystal structure observation under microscope. The study of matrix microstructure of the volcanic rocks can help to identify the volcanic facies. We recognize the eruptive facies rocks through observation of the matrix microstructure and pore shape with comparison to those of the volcanic vent facies, extrusive facies and effusive facies rocks under microscope, thus the mentioned layered volcanic rocks could be named as dacitic crystal fragment tuff. Combining the joint work of field investigation, systematic sampling, chemical analyzing and microscopic observation, we summary the Daliuchong volcanic facies as follows:1. The effusive facies lava constitutes the base of Daliuchong volcano and was produced by early eruption.2. The explosive facies is composed of dacite crystal fragment welded tuff and volcanic breccia and mainly distributes on the W, S and NE flank of the volcanic cone.3. The volcanic conduit with its diameter more than one hundred meters is located about 100 meters south of the main peak of the Daliuchong volcano.4. The extrusive facies rock is only exposed near the peak of Daliuchong volcano.Therefore, the volcanism of Daliuchong volcano can be speculated as:Large-scale lava overflowing occurred in the early eruption period; then explosive eruptions happened; at last, the volcanisms ceased marked with magma extrusion as lava dome and plug.  相似文献   

2.
During the past 500 thousand years, Unzen volcano, an active composite volcano in the Southwest Japan Arc, has erupted lavas and pyroclastic materials of andesite to dacite composition and has developed a volcanotectonic graben. The volcano can be divided into the Older and the Younger Unzen volcanoes. The exposed rocks of the Older Unzen volcano are composed of thick lava flows and pyroclastic deposits dated around 200–300 ka. Drill cores recovered from the basal part of the Older Unzen volcano are dated at 400–500 ka. The volcanic rocks of the Older Unzen exceed 120 km3 in volume. The Younger Unzen volcano is composed of lava domes and pyroclastic deposits, mostly younger than 100 ka. This younger volcanic edifice comprises Nodake, Myokendake, Fugendake, and Mayuyama volcanoes. Nodake, Myokendake and Fugendake volcanoes are 100–70 ka, 30–20 ka, and <20 ka, respectively. Mayuyama volcano formed huge lava domes on the eastern flank of the Unzen composite volcano about 4000 years ago. Total eruptive volume of the Younger Unzen volcano is about 8 km3, and the eruptive production rate is one order of magnitude smaller than that of the Older Unzen volcano.  相似文献   

3.
西昆仑阿什火山机构及岩石学、矿物学特征   总被引:4,自引:1,他引:3       下载免费PDF全文
阿什库勒盆地位于NE向阿尔金断裂与NW向康西瓦断裂的"弧形"交会处,构造活动十分活跃,盆地内发育10余座火山,其中阿什火山为该火山群中最新活动的火山。文中从火山地质、熔岩和斑晶成分、显微结构特征及地质温压计4个方面对阿什火山进行了详细研究。结果表明,阿什火山由火山锥和熔岩流组成,锥体由早期的渣锥和晚期的溅落锥组成,熔岩流分布面积约33km2,可划分为4个流动单元。熔岩属于钾玄岩系列,岩性为粗安岩,显微镜下呈斑状结构。斑晶以长石(主要为中长石)和辉石(包括普通辉石、古铜辉石和紫苏辉石)为主;基质为玻璃质、隐晶质、微晶质,部分含有大量的长石和辉石。斑晶与岩浆的平衡温度为1 104~1 194℃,压力为570~980MPa,对应的岩浆房深度为18.92~32.29km。  相似文献   

4.
Longgang volcano cluster is 150km away from the Tianchi volcano, located in Jingyu and Huinan Counties, Jilin Province, China. It had a long active history and produced hundreds of volcanoes. The latest and largest eruption occurred between 1 500 and 1 600 years ago by Jinlongdingzi(JLDZ)volcano which had several eruptions in the history. This paper discusses the volcanic hazard types, and using the numerical simulations of lava flow obtained with the Volcflow model, proposes the hazard zonation of JLDZ volcano area. JLDZ volcano eruption type is sub-plinian, which produced a great mass of tephra fallout, covering an area of 260km2. The major types of volcanic hazards in JLDZ area are lava flow, tephra fallout and spatter deposits. Volcflow is developed by Kelfoun for the simulation of volcanic flows. The result of Volcflow shows that the flows are on the both sides of the previous lava flows which are low-lying areas now. According to the physical parameters of historical eruption and Volcflow, we propose the preliminary volcanic hazard zonation in JLDZ area. The air fall deposits are the most dangerous product in JLDZ. The highly dangerous region of spatter deposits is limited to a radius of about 2km around the volcano. The high risk area of tephra fallout is between 2km to 9km around the volcano, and between 9km to 14km is the moderate risk area. Out of 14km, it is the low risk area. Lava flow is controlled by topography. From Jinchuan Town to Houhe Village near the volcano is the low-lying area. If the volcano erupts, these areas will be in danger.  相似文献   

5.
在野外地质资料基础上,利用火山形态学方法,探讨了大兴安岭焰山、高山火山的喷发型式。结果表明,大兴安岭哈拉哈河-绰尔河火山群中的焰山和高山火山不同于斯通博利式喷发形成的火山,其早期爆破喷发的火山碎屑形成火山渣锥、空降火山碎屑席和小型火山碎屑流,晚期溢出大量熔岩。两火山具有较高大的锥体(标高200~300m以上),在结构上,松散火山砾、火山弹等构成下部的降落锥,熔结集块岩构成上部的溅落锥。由火山砾和火山灰组成的空降火山碎屑席分布在火山锥体周围。两火山溢出的熔岩经历了从结壳熔岩→翻花石→渣状熔岩的演变。根据喷发产物可推断焰山和高山火山具有以下喷发特征:爆破喷发形成持续的喷发柱→斯通博利式喷发→熔岩喷泉喷溢,其中以持续时间较长的喷发柱区别于典型的斯通博利式喷发。类似焰山、高山火山的喷发特征,在龙岗第四纪火山群、镜泊湖全新世火山群中也都有个例,这是中国大陆火山作用中一种新的喷发型式。  相似文献   

6.
Geological surveys, tephrostratigraphic study, and 40Ar/39Ar age determinations have allowed us to chronologically constrain the geological evolution of the lower NW flank of Etna volcano and to reconstruct the eruptive style of the Mt Barca flank eruption. This peripheral sector of the Mt Etna edifice, corresponding to the upper Simeto valley, was invaded by the Ellittico volcano lava flows between 41 and 29 ka ago when the Mt Barca eruption occurred. The vent of this flank eruption is located at about 15 km away from the summit craters, close to the town of Bronte. The Mt Barca eruption was characterized by a vigorous explosive activity that produced pyroclastic deposits dispersed eastward and minor effusive activity with the emission of a 1.1-km-long lava flow. Explosive activity was characterized by a phreatomagmatic phase followed by a magmatic one. The geological setting of this peripheral sector of the volcano favors the interaction between the rising magma and the shallow groundwater hosted in the volcanic pile resting on the impermeable sedimentary basement. This process produced phreatomagmatic activity in the first phase of the eruption, forming a pyroclastic fall deposit made of high-density, poorly vesicular scoria lapilli and lithic clasts. Conversely, during the second phase, a typical strombolian fall deposit formed. In terms of hazard assessment, the possible occurrence of this type of highly explosive flank eruption, at lower elevation in the densely inhabited areas, increases the volcanic risk in the Etnean region and widens the already known hazard scenario.  相似文献   

7.
8.
Mount Etna volcano was shaken during the summer 2001 by one of the most singular eruptive episodes of the last centuries. For about 3 weeks, several eruptive fractures developed, emitting lava flows and tephra that significantly modified the landscape of the southern flank of the volcano. This event stimulated the attention of the scientific community especially for the simultaneous emission of petrologically distinct magmas, recognized as coming from different segments of the plumbing system. A stratigraphically controlled sampling of tephra layers was performed at the most active vents of the eruption, in particular at the 2,100 m (CAL) and at the 2,550 m (LAG) scoria cones. Detailed scanning electron microscope and energy dispersive x-ray spectrometer (SEM-EDS) analyses performed on glasses found in tephra and comparison with lava whole rock compositions indicate an anomalous increase in Ti, Fe, P, and particularly of K and Cl in the upper layers of the LAG sequence. Mass balance and thermodynamic calculations have shown that this enrichment cannot be accounted for by “classical” differentiation processes, such as crystal fractionation and magma mixing. The analysis of petrological features of the magmas involved in the event, integrated with the volcanological evolution, has evidenced the role played by volatiles in controlling the magmatic evolution within the crustal portion of the plumbing system. Volatiles, constituted of H2O, CO2, and Cl-complexes, originated from a deeply seated magma body (DBM). Their upward migration occurred through a fracture network possibly developed by the seismic swarms during the period preceding the event. In the upper portion of the plumbing system, a shallower residing magma body (ABT) had chemical and physical conditions to receive migrating volatiles, which hence dissolved the mobilized elements producing the observed selective enrichment. This volatile-induced differentiation involved exclusively the lowest erupted portion of the ABT magma due to the low velocity of volatiles diffusion within a crystallizing magma body and/or to the short time between volatiles migration and the onset of the eruption. Furthermore, the increased amount of volatiles in this level of the chamber strongly affected the eruptive behavior. In fact, the emission of these products at the LAG vent, towards the end of the eruption, modified the eruptive style from classical strombolian to strongly explosive.  相似文献   

9.
Abstract Tyatya Volcano, situated in Kunashir Island at the southwestern end of Kuril Islands, is a large composite stratovolcano and one of the most active volcanoes in the Kuril arc. The volcanic edifice can be divided into the old and the young ones, which are composed of rocks of distinct magma types, low‐ and medium‐K series, respectively. The young volcano has a summit caldera with a central cone. Recent eruptions have occurred at the central cone and at the flank vents of the young volcano. We found several distal ash layers at the volcano and identified their ages and sources, that is, tephras of ad 1856, ad 1739, ad 1694 and ca 1 Ka derived from three volcanoes of Hokkaido, Japan, and caad 969 from Baitoushan Volcano of China/North Korea. These could provide good time markers to reveal the eruptive history of the central cone, which had continued intermittently with Strombolian eruptions and lava flow effusions since before 1 Ka. Relatively explosive eruptions have occurred three times at the cone during the past 1000 years. We revealed that, topographically, the youngest lava flows from the cone are covered not by the tephra of ad 1739 but by that of ad 1856. This evidence, together with a report of dense smoke rising from the summit in ad 1812, suggests that the latest major eruption with lava effusion from the central cone occurred in this year. In 1973, after a long period of dormancy, short‐lived phreatomagmatic eruptions began to occur from fissure vents at the northern flank of the young volcano. This was followed by large eruptions of Strombolian to sub‐Plinian types occurring from several craters at the southern flank. The 1973 activity is evaluated as Volcanic Explosivity Index = 4 (approximately 0.2 km3), the largest eruption during the 20th century in the southwestern Kuril arc. The rocks of the central cone are strongly porphyritic basalt and basaltic andesite, whereas the 1973 scoria is aphyric basalt, suggesting that magma feeding systems are definitely different between the summit and flank eruptions.  相似文献   

10.
图们江流域新生代火山岩Sr、Nd同位素初步研究   总被引:2,自引:0,他引:2       下载免费PDF全文
王团华  樊祺诚  孙谦  李霓 《地震地质》2006,28(3):367-380
中国地震局地质研究所; 中国地震局地质研究所 北京  相似文献   

11.
本文概略介绍了中国大陆4个火山(岩)为主题的世界地质公园和16个国家地质公园,以及中国香港和中国台湾的两个地质公园。文章还介绍了这些地质公园火山岩喷发时代、火山类型、大地构造环境和火山(岩)景观特征与分类。它们的喷发时代主要为更新世-全新世、中新世、始新世和白垩纪。四个时期的火山地质公园,在不同年代火山中均具代表性与典型性,为中国火山/火山岩研究提供了真实的材料。作者还针对火山地质公园建设现状提出加强科学研究与实施解说系统工程两条建议。  相似文献   

12.
More than 40 late Cenozoic monogenetic volcanoes formed a volcanic belt striking NNW from Keluo, through Wudalianchi to Erkeshan in NE China. These volcanoes belong to a unified volcano system, namely Wudalianchi volcanic belt(WVB for short). Based on the volcanic evolution history and the nature of monogenetic volcanic system, we estimate that the volcanic system of WVB is still active and has the potential to erupt again. Hence, this paper studied the temporal-spatial distribution and volcanic eruption types to evaluate the possible eruption hazard types and areas of influence in the future. Volcanic field characteristics and K-Ar radiometric data suggest two episodes of volcanism in the WVB, the Pliocene to early Pleistocene volcanism(4.59~1.00MaBP)and the middle Pleistocene to Holocene volcanism(0.79Ma to now). The early episode volcanoes are distributed only in the north of WVB(mainly in Keluo volcanic field), featured by effusive eruption, and mainly formed monogenetic shield, whose base diameter is large and slope is gentle. However, the late episode eruptions occurred over the entire WVB. The explosive eruption in this stage formed numerous relatively intact scoria cones of explosive origin. Meanwhile the effusive eruption formed widely distributed lava flows. Both effusive eruption and explosive eruption are common in WVB. The effusive eruption formed monogenetic shields and lava flows. The resulting pahoehoe lava, aa lava and block lava appeared in WVB. There are three end-member types of explosive eruption driven by magmatic volatile. Violent Strombolian eruption has the highest degree of fragmentation and mass flux, characterized by eruption column. Strombolian eruption has the high degree of fragmentation, but low mass flux, featured by pulse eruption. Hawaiian eruption has low degree of fragmentation, but high in mass flux, generating large scoria cones. In addition, this paper for the first time found phreatomagmatic eruption in WVB, which formed tuff cone. Transitional eruptions are also common in WVB, which have certain characteristics among the end-member eruption types. Besides, certain volcanoes displayed multiple explosive eruption types during the whole eruption span. According to the volcanic temporal-spatial distribution and eruption characteristics in WVB, the potential volcanic hazards in future are constrained. It appears that the violent Strombolian and Strombolian eruption will not have significant impact on aviation safety in the vertical direction. In the radial direction, the ejected volcanic bomb can reach as far as 1km from the vents and the fallout tephra may disperse downwind over a distance ranging from 1~10km. The major hazard of Hawaiian eruption and effusive eruption comes from lava flow, and its migration distance may reach 3.0~13.5km for pahoehoe lava and 2.9~14.9km for aa lava. The base surge in phreatomagmatic eruption can reach a velocity of 200~400m/s, and the migration distance is around 10km. This is a big threat that people should pay more attention to and take precautions in advance. Besides, it is necessary to strengthen the real-time observation of the volcanoes in the WVB, especially those formed in the late episode as well as near the active fault.  相似文献   

13.
Volcanic gas samples were collected from July to November 1985 from a lava pond in the main eruptive conduit of Pu'u O'o from a 2-week-long fissure eruption and from a minor flank eruption of Pu'u O'o. The molecular composition of these gases is consistent with thermodynamic equilibrium at a temperature slightly less than measured lava temperatures. Comparison of these samples with previous gas samples shows that the composition of volatiles in the magma has remained constant over the 3-year course of this episodic east rift eruption of Kilauea volcano. The uniformly carbon depleted nature of these gases is consistent with previous suggestions that all east rift eruptive magmas degas during prior storage in the shallow summit reservoir of Kilauea. Minor compositional variations within these gas collections are attributed to the kinetics of the magma degassing process.  相似文献   

14.
The July 17 – August 9, 2001 flank eruption of Mt. Etna was preceded and accompanied by remarkable changes in volcanic tremor. Based on the records of stations belonging to the permanent seismic network deployed on the volcano, we analyze amplitude and frequency content of the seismic signal. We find considerable changes in the volcanic tremor which mark the transition to different styles of eruptive activity, e.g., lava fountains, phreatomagmatic activity, Strombolian explosions. In particular, the frequency content of the signal decreases from 5 Hz to 3 Hz at our reference station ETF during episodes of lava fountains, and further decreases at about 2 Hz throughout phases of intense lava emission. The frequency content and the ratios of the signal amplitude allow us to distinguish three seismic sources, i.e., the peripheral dike which fed the eruption, the reservoir which fed the lava fountains, and the central conduit. Based on the analysis of the amplitude decay of the signal, we highlight the migration of the dike from a depth of ca. 5 km to about 1 km between July 10 and 12. After the onset of the effusive phase, the distribution of the amplitude decay at our stations can be interpreted as the overall result of sources located within the first half kilometer from the surface. Although on a qualitative basis, our findings shed some light on the complex feeding system of Mt. Etna, and integrate other volcanological and geophysical studies which tackle the problem of magma replenishment for the July–August, 2001 flank eruption. We conclude that volcanic tremor is fundamental in monitoring Mt. Etna, not only as a marker of the different sources which act within the volcano edifice, but also of the diverse styles of eruptive activity. An erratum to this article is available at .  相似文献   

15.
Nisyros island is a calc-alkaline volcano, built up during the last 100 ka. The first cycle of its subaerial history includes the cone-building activity with three phases, each characterized by a similar sequence: (1) effusive and explosive activity fed by basaltic andesitic and andesitic magmas; and (2) effusive andextrusive activity fed by dacitic and rhyolitic magmas. The second eruptive cycle includes the caldera-forming explosive activity with two phases, each consisting of the sequence: (1) rhyolitic phreatomagmatic eruptions triggering a central caldera collapse; and (2) extrusion of dacitic-rhyolitic domes and lava flows. The rocks of this cycle are characteized by the presence of mafic enclaves with different petrographic and chemical features which testify to mixing-mingling processes between variously evolved magmas. Jumps in the degree of evolution are present in the stratigraphic series, accompanied by changes in the porphyritic index. This index ranges from 60% to about 5% and correlates with several teochemical parameters, including a negative correlation with Sr isotope ratios (0.703384–0.705120). The latter increase from basaltic andesites to intermediate rocks, but then slightly decrease in the most evolved volcanic rocks. The petrographic, geochemical and isotopic characteristics can be largely explained by processes occurring in a convecting, crystallizing and assimilating magma chamber, where crystal sorting, retention, resorption and accumulation take place. A group of crystal-rich basaltic andesites with high Sr and compatible element contents and low incompatible elements and Sr isotope ratios probably resulted from the accumulation of plagioclase and pyroxene in an andesitic liquid. Re-entrainment of plagioclase crystals in the crystallizing magma may have been responsible for the lower 87Sr/86Sr in the most evolved rocks. The gaps in the degree of evolution with time are interpreted as due to liquid segregation from a crystal mush once critical crystallinity was reached. At that stage convection halted, and a less dense, less porphyritic, more evolved magma separated from a denser crystal-rich magma portion. The differences in incompatible element enrichment of pre-and post-caldera dacites and the chemical variation in the post-caldera dome sequence are the result of hybridization of post-caldera dome magmas with more mafic magmas, as represented by the enclave compositions. The occurrence of the quenched, more mafic magmas in the two post-caldera units suggests that renewed intrusion of mafic magma took place after each collapse event.  相似文献   

16.
The Igwisi Hills volcanoes (IHV), Tanzania, are unique and important in preserving extra-crater lavas and pyroclastic edifices. They provide critical insights into the eruptive behaviour of kimberlite magmas that are not available at other known kimberlite volcanoes. Cosmogenic 3He dating of olivine crystals from IHV lavas and palaeomagnetic analyses indicates that they are Upper Pleistocene to Holocene in age. This makes them the youngest known kimberlite bodies on Earth by >30?Ma and may indicate a new phase of kimberlite volcanism on the Tanzania craton. Geological mapping, Global Positioning System surveying and field investigations reveal that each volcano comprises partially eroded pyroclastic edifices, craters and lavas. The volcanoes stand <40?m above the surrounding ground and are comparable in size to small monogenetic basaltic volcanoes. Pyroclastic cones consist of diffusely layered pyroclastic fall deposits comprising scoriaceous, pelletal and dense juvenile pyroclasts. Pyroclasts are similar to those documented in many ancient kimberlite pipes, indicating overlap in magma fragmentation dynamics between the Igwisi eruptions and other kimberlite eruptions. Characteristics of the pyroclastic cone deposits, including an absence of ballistic clasts and dominantly poorly vesicular scoria lapillistones and lapilli tuffs, indicate relatively weak explosive activity. Lava flow features indicate unexpectedly high viscosities (estimated at >102 to 106?Pa?s) for kimberlite, attributed to degassing and in-vent cooling. Each volcano is inferred to be the result of a small-volume, short-lived (days to weeks) monogenetic eruption. The eruptive processes of each Igwisi volcano were broadly similar and developed through three phases: (1) fallout of lithic-bearing pyroclastic rocks during explosive excavation of craters and conduits; (2) fallout of juvenile lapilli from unsteady eruption columns and the construction of pyroclastic edifices around the vent; and (3) effusion of degassed viscous magma as lava flows. These processes are similar to those observed for other small-volume monogenetic eruptions (e.g. of basaltic magma).  相似文献   

17.
黑龙江省科洛火山群火山地质研究   总被引:2,自引:1,他引:1       下载免费PDF全文
科洛火山群的新生代火山共有23座,坐落于科洛河两岸,火山岩面积约为350km2,岩性主要为碱性玄武岩.由于地处NE向断陷盆地这一特殊的构造位置,科洛地区的火山活动及展布主要受到区域基底断裂的制约.火山喷发形式总体为中心式,属斯通博利式火山.火山活动可划分为上新世、更新世和全新世3期.上新世在断陷盆地边缘形成了一系列NE向线性展布的中心式溢出型火山,其中部分火山因风化剥蚀而失去了原有的火山地貌特征,仅保留盾形熔岩台地.早更新世火山活动相对平静.中-晚更新世火山活动仍受到NE向基底断裂的控制,但喷发中心、喷发方式及喷发强度均发生改变,火山由碱玄质火山渣锥和熔岩流组成.进入全新世以后南山喷发,其火山结构保存完好,裸露的熔岩台地保留了较好的微地貌特征.该期火山亦由碱玄质火山渣锥和熔岩流构成.在科洛火山群的火山活动过程中,其熔岩流覆盖了早期沉积地层,并对盆地中的河流进行了改造,最终导致该区断陷盆地初始地貌的改变.  相似文献   

18.
长白山火山活动的现状和未来展望   总被引:5,自引:0,他引:5  
长白山天池火山是中新世以来,特别是中更新世以来多次喷发并造成严重灾害的火山,是一座具有潜在喷发危险性的活动火山,文章主要阐述了全新世和近代火山活动及其喷发物,并对火山的现代活动与未来火山活动及其灾害作了评估。  相似文献   

19.
Scoria cones are common volcanic features and are thought to most commonly develop through the deposition of ballistics produced by gentle Strombolian eruptions and the outward sliding of talus. However, some historic scoria cones have been observed to form with phases of more energetic violent Strombolian eruptions (e.g., the 1943–1952 eruption of Parícutin, central Mexico; the 1975 eruption of Tolbachik, Kamchatka), maintaining volcanic plumes several kilometers in height, sometimes simultaneous with active effusive lava flows. Geologic evidence shows that violent Strombolian eruptions during cone formation may be more common than is generally perceived, and therefore it is important to obtain additional insights about such eruptions to better assess volcanic hazards. We studied Irao Volcano, the largest basaltic monogenetic volcano in the Abu Monogenetic Volcano Group, SW Japan. The geologic features of this volcano are consistent with a violent Strombolian eruption, including voluminous ash and fine lapilli beds (on order of 10?1 km3 DRE) with simultaneous scoria cone formation and lava effusion from the base of the cone. The characteristics of the volcanic products suggest that the rate of magma ascent decreased gradually throughout the eruption and that less explosive Strombolian eruptions increased in frequency during the later stages of activity. During the eruption sequence, the chemical composition of the magma became more differentiated. A new K–Ar age determination for phlogopite crystallized within basalt dates the formation of Irao Volcano at 0.4?±?0.05 Ma.  相似文献   

20.
The magma generation at Unzen volcano may be considered as the product of crustal material mixed with mantle magma accompanied by fractional crystallization (AFC). The magma in the Unzen volcano is estimated to consist of about 50–80% of residual magma (F) and about 30–70% assimilated crustal material (A) relative to the original magma. Concerning the 1991–1995 eruption, it is estimated that the magma formed as the result of mixing of about 50–60% crustal material and about 55–65% of residual magma. An alternative magma eruption model for the 1991–1995 eruption is proposed here. In the early stage, the isotopic characteristics of 1991 eruption are defined by AFC process in the deeper magma chamber. Later, the magma ascended through the conduit and quiescently stayed for a long time in a shallow reservoir before eruption. The minerals continuously crystallized as phenocrysts especially at the chilled top and outer margin in the shallow chamber. The crystallized phenocryst mush was reworked into the central part of the magma chamber by means of magma convection and rapid magma ascent. Therefore, the reaction between phenocrysts and melt occurs only in internal chemical disequilibrium in the magma chamber. In contrast, the isotopic compositions of the original magma shall be little influenced by the above processes throughout its eruptive history. The 1991–1995 eruptive rocks of the Unzen volcano show their characteristics in Sr and Nd isotopic values independent of their two previous eruptions. However, the isotopic values of early eruptive product could represent the original magma value. This result also supports the previous work of Chen et al. (1993) [Chen, C.H., DePaolo, D.J., Nakada, S., Shieh, Y.N., 1993. Relationship between eruption volume and neodymium isotopic composition at Unzen volcano. Nature 362, 831–834], that suggested the Nd of early or precursory eruptive products could be a qualitative indicator of the maximum size of a continuing or impending eruption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号