首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 494 毫秒
1.
In conversion of the integrated slant column amount of atmospheric ozone(O_3)measured bythe ground-based spectrometer technique during twilight to the vertical quantity,the air-massfactor(AMF)is an important parameter.In this work,calculations of AMF for ozone wereperformed for different atmospheres.It is shown that the O_3 AMF has seasonal variations with theminimum at the beginning of spring and the maximum in summer due to the seasonal change in thevertical distributions of O_3.A parameterization relation is obtained between O_3 AMF and opticalthickness of stratospheric volcanic aerosols based on the Monte-Carlo radiative transfersimulations.  相似文献   

2.
The seasonal and diurnal variations of ozone mixing ratios have been observed at Niwot Ridge. Colorado. The ozone mixing ratios have been correlated with the NO x (NO+NO2) mixing ratios measured concurrently at the site. The seasonal and diurnal variations in O3 can be reasonably well understood by considering photochemistry and transport. In the winter there is no apparent systematic diurnal variation in the O3 mixing ratio because there is little diurnal change of transport and a slow photochemistry. In the summer, the O3 levels at the site are suppressed at night due to the presence of a nocturnal inversion layer that isolated ozone near the surface, where it is destroyed. Ozone is observed to increase in the summer during the day. The increases in ozone correlate with increasing NO x levels, as well as with the levels of other compounds of anthropogenic origin. We interpret this correlation as in-situ or in-transit photochemical production of ozone from these precursors that are transported to our site. The levels of ozone recorded approach 100 ppbv at NO x mixing ratios of approximately 3 ppbv. Calculations made using a simple clean tropospheric chemical model are consistent with the NO x -related trend observed for the daytime ozone mixing ratio. However, the chemistry, which does not include nonmethane hydrocarbon photochemistry, underestimates the observed O3 production.  相似文献   

3.
近年来武汉市臭氧污染日益严峻,成为影响空气质量达标的瓶颈,弄清臭氧及其前体物非线性关系是臭氧防控的关键和基础.本研究基于武汉中心城区2018年4—9月臭氧及其前体物在线观测数据,分析出武汉市臭氧浓度受前体物和气象条件等因素的共同影响,呈较为明显的季节变化和日变化特征.观测期间武汉市大气挥发性有机物(VOCs)平均体积分数为32.5×10-9,烷烃是武汉市VOCs的主要组分,其次是含氧VOCs (OVOCs)和卤代烃.利用基于观测的模型定量分析臭氧与前体物之间的关系,发现削减VOCs会引起臭氧生成潜势的显著下降,而削减氮氧化物则会使臭氧生成潜势升高,说明武汉市臭氧生成处于VOCs控制区.在人为源VOCs中,间/对二甲苯和邻二甲苯的相对增量反应活性(RIR)最高,是影响臭氧生成的关键组分.  相似文献   

4.
Tropospheric distributions of ozone (O3) and water vapor (H2O) have been presented based on the Measurements of OZone and water vapor by Airbus In-Service AirCraft (MOZAIC) data over the metro and capital city of Delhi, India during 1996–2001. The vertical mixing ratios of both O3 and H2O show strong seasonal variations. The mixing ratios of O3 were often below 40 ppbv near the surface and higher values were observed in the free troposphere during the seasons of winter and spring. In the free troposphere, the high mixing ratio of O3 during the seasons of winter and spring are mainly due to the long-range transport of O3 and its precursors associated with the westerly-northwesterly circulation. In the lower and middle troposphere, the low mixing ratios of ∼20–30 ppbv observed during the months of July–September are mainly due to prevailing summer monsoon circulation over Indian subcontinent. The summer monsoon circulation, southwest (SW) wind flow, transports the O3-poor marine air from the Arabian Sea and Indian Ocean. The monthly averages of rainfall and mixing ratio of H2O show opposite seasonal cycles to that of O3 mixing ratio in the lower and middle troposphere. The change in the transport pattern also causes substantial seasonal variation in the mixing ratio of H2O of 3–27 g/kg in the lower troposphere over Delhi. Except for some small-scale anomalies, the similar annual patterns in the mixing ratios of O3 and H2O are repeated during the different years of 1996–2001. The case studies based on the profiles of O3, relative humidity (RH) and temperature show distinct features of vertical distribution over Delhi. The impacts of long range transport of air mass from Africa, the Middle East, Indian Ocean and intrusions of stratospheric O3 have also been demonstrated using the back trajectory model and remote sensing data for biomass burning and forest fire activities.  相似文献   

5.
Surface ozone data from 25 Europeanlow-altitude sites and mountain sites located between79°N and 28°N were studied. The analysiscovered the time period March 1989–February 1993.Average summer and winter O3 concentrations inthe boundary layer over the continent gave rise togradients that were strongest in the north-west tosouth-east direction and west-east direction, respectively. WintertimeO3 ranged from 19 to 27 ppbover the continent, compared to about 32 ppb at thewestern border, while for summer the continentalO3 values ranged between 39 and 56 ppb and theoceanic mixing ratios were around 37 ppb. In the lowerfree troposphere average wintertime O3 mixingratios were around 38 ppb, with only an 8 ppbdifference between 28°N and 79°N. For summerthe average O3 levels decreased from about 55 ppbover Central Europe to 32 ppb at 79°N. Inaddition, O3 and Ox(= O3 + NO2)in polluted and clean air were compared. Theamplitudes of the seasonal ozone variations increasedin the north-west to south-east direction, while thetime of the annual maximum was shifted from spring (atthe northerly sites) to late summer (at sites inAustria and Hungary), which reflected the contributionof photochemical ozone production in the lower partsof the troposphere.  相似文献   

6.
Satellite measurements of tropospheric column O3 and NO2 in eastern and southeastern Asia are analyzed to study the spatial and seasonal characteristics of pollution in these regions. Tropospheric column O3 is derived from differential measurements of total column ozone from Total Ozone Mapping Spectrometer (TOMS), and stratospheric column ozone from the Microwave Limb Sounder (MLS) instrument on the Upper Atmosphere Research Satellite (UARS). The tropospheric column NO2 is measured by Global Ozone Monitoring Experiment (GOME). A global chemical and transport model (Model of Ozone and Related Chemical Tracers, version 2; MOZART-2) is applied to analyze and interpret the satellite measurements. The study, which is based on spring, summer, and fall months of 1997 shows generally good agreement between the model and satellite data with respect to seasonal and spatial characteristics of O3 and NO2 fields. The analysis of the model results show that the industrial emission of NOx (NO + NO2) contributes about 50%–80% to tropospheric column NO2 in eastern Asia and about 20%–50% in southeastern Asia. The contribution of industrial emission of NOx to tropospheric column O3 ranges from 10% to 30% in eastern Asia. Biomass burning and lightning NOx emissions have a small effect on tropospheric O3 in central and eastern Asia, but they have a significant impact in southeastern Asia. The varying effects of NOx on tropospheric column ozone are attributed to differences in relative abundance of volatile organic compounds (VOCs) with respect to total nitrogen in the two regions.  相似文献   

7.
Summary  In the central region of Taiwan, ozone episodes occur most often during autumn. Two field experiments were conducted during the autumns of 1998 and 1999 to analyze the vertical profile of the boundary layer and determine its effects on ozone concentration over the region. The vertical virtual potential temperature and wind profiles were derived from tethersonde data. The NOx, NMHC and O3 concentration vertical profiles were monitored up to a height of 500 meters using black-covered Teflon tedler sampling bags. During the experimental periods, nighttime terrestrial long wave radiation could cause the inversion height to reach 500 meters by the following morning. It was shown that these types of synoptic structures suppress the vertical diffusion of NOx, NMHC and O3. During the daytime, measurements indicate that pollutants were well mixed in the upper portion of the mixing layer. At night, the ground level ozone concentration was on the decrease but increased with altitude to a height of 500 m. The NOx decreased with altitude whereas the NMHC showed no significant variations. Received April 13, 2000 Revised July 24, 2000  相似文献   

8.
A one-year set of surface ozone measurements in a four-station network located in the Venezuelan savannah is reported. The diurnal ozone variation is typical of continental stations with a maximum in the afternoon, when vertical turbulent mixing is strongest. The annual O3 average concentration, based on the monthly averages of daily maxima, was 17±2 ppb, which is in good agreement with values reported for similar latitudes. The boundary-layer ozone levels did not fall below 8 ppb, in contrast with previous sporadic measurements made in tropical latitudes. No evidence was found that mesoscale O3 downdrafts in the ITCZ in the South American continent are an important source of surface ozone. Finally, it is suggested that the relatively high ozone levels observed at the end of the dry season are probably of photochemical origin.  相似文献   

9.
Measurements of atmospheric composition have been made over a remote rainforest landscape. A box model has previously been demonstrated to model the observed daytime chemistry well. However the box model is unable to explain the nocturnal measurements of relatively high [NO] and [O3], but relatively low observed [NO2]. It is shown that a one-dimensional (1-D) column model with simple O3-NOx chemistry and a simple representation of vertical transport is able to explain the observed nocturnal concentrations and predict the likely vertical profiles of these species in the nocturnal boundary layer (NBL). Concentrations of tracers carried over from the end of the night can affect the atmospheric chemistry of the following day. To ascertain the anomaly introduced by using the box model to represent the NBL, vertically-averaged NBL concentrations at the end of the night are compared between the 1-D model and the box model. It is found that, under low to medium [NOx] conditions (NOx?<?1 ppbv), a simple parametrisation can be used to modify the box model deposition velocity of ozone, in order to achieve good agreement between the box and 1-D models for these end-of-night concentrations of NOx and O3. This parametrisation would could also be used in global climate-chemistry models with limited vertical resolution near the surface. Box-model results for the following day differ substantially if this effective nocturnal deposition velocity for ozone is implemented; for instance, there is a 9% increase in the following days peak ozone concentration. However under medium to high [NOx] conditions (NOx > 1 ppbv), the effect on the chemistry due to the vertical distribution of the species means no box model can adequately represent chemistry in the NBL without modifying reaction rate coefficients.  相似文献   

10.
Continuous measurements of surface ozone (O3), NOx (NO + NO2) and meteorological parameters have been made in Kannur (11.9?°N, 75.4?°E, 5?m asl), India from November 2009 to October 2010. It was observed that O3 and NOx showed distinct diurnal and seasonal variabilities at this site. The annual average diurnal profile of O3 showed a peak of (30.3?±?10.4) ppbv in the late afternoon and a minimum of (3.2?±?0.7) ppbv in the early morning. The maximum value of O3 mixing ratio was observed in winter (44?±?3.1) ppbv and minimum during monsoon (18.46?±?3.5) ppbv. The rate of production of O3 was found to be higher in December (10.1?ppbv/h) and lower in July (1.8?ppbv/h) during the time interval 0800?C1000?h. A correlation coefficient of 0.52 for the relationship between O3 and [NO2]/[NO] reveals the role of NO2 photolysis that generates O3 at this site. The correlation between O3 and meteorological parameters indicate the influence of seasonal changes on O3 production. Investigations were further extended to explore the week day weekend variations in O3 mixing ratio at an urban site reveals the enhancement of O3. The variations of O3 mixing ratio with seasonal air mass flows were elucidated with the aid of backward air trajectories. This study also indicates how vapor phase organic species present in the ambient air at this location may influence the complex chemistry involving (VOCs) that enhances the production of O3 at this location.  相似文献   

11.
Daily, weekly, and seasonal patterns of O3, NOx x and VOCs and their relationship to meteorological conditions were studied in a semi-urban site near Barcelona by means of five-day long campaigns that included weekend and labor days in December, March, June, and October. The plant protection thresholds for ozone and NO2 were exceeded, respectively, on all the studied days in summer and on all the studied days. Ozone formation was predominantly local and relied on photochemical processes with VOCs playing a controlling role. Formaldehyde, acetaldehyde, methanol, toluene, isoprene, and acetone (in this order) presented the highest O3 formation potential during the studied periods. These results highlight the important role in O3 formation played by VOC species such as acetaldehyde, methanol, and acetone, that all have a significant biogenic component. Thus, these VOCs must be taken into account in the discussion of any ozone abatement strategy.  相似文献   

12.
利用南京地面站点2016—2017年黑碳气溶胶(Black Carbon, BC)和臭氧(O_3)逐小时观测资料,对比分析了不同季节BC与近地面O_3的关系。结果表明,高BC(高于平均值)影响下的O_3质量浓度值明显比低BC(低于平均值)影响下的O_3质量浓度值低,这种抑制作用在秋冬季明显高于春夏季,且BC与O_3的负相关性在秋冬季显著高于春夏季,而PM_(2.5)与O_3的负相关性不显著。利用WRF-Chem模式,对2017年12月个例开展BC反馈效应对O_3影响的数值模拟,结果再次证实BC对O_3存在负反馈影响。其影响机制是:BC可通过抑制边界层发展,使近地面NO_x积聚,从而减少臭氧的化学生成(VOCs控制区);BC可通过抑制边界层垂直湍流交换,减少边界层上部高O_3向下的湍流输送,从而减少近地面O_3;BC可通过减小近地面风速,减少O_3的平流输入,从而减少地面O_3。不同个例的主要控制因子不同。  相似文献   

13.
In the present study, an attempt has been made to examine the governing photochemical processes of surface ozone (O3) formation in rural site. For this purpose, measurements of surface ozone and selected meteorological parameters have been made at Anantapur (14.62°N, 77.65°E, 331 m asl), a semi-arid zone in India from January 2002 to December 2003. The annual average diurnal variation of O3 shows maximum concentration 46 ppbv at noon and minimum 25 ppbv in the morning with 1σ standard deviation. The average seasonal variation of ozone mixing ratios are observed to be maximum (about 60 ppbv) during summer and minimum (about 22 ppbv) in the monsoon period. The monthly daytime and nighttime average surface ozone concentration shows a maximum (55 ± 7 ppbv; 37 ± 7.3 ppbv) in March and minimum (28 ± 3.4 ppbv; 22 ± 2.3 ppbv) in August during the study period. The monthly average high (low) O3 48.9 ± 7.7 ppbv (26.2 ± 3.5 ppbv) observed at noon in March (August) is due to the possible increase in precursor gas concentration by anthropogenic activity and the influence of meteorological parameters. The rate of increase of surface ozone is high (1.52 ppbv/h) in March and lower (0.40 ppbv/h) in July. The average rate of increase of O3 from midnight to midday is 1 ppbv/h. Surface temperature is highest (43–44°C) during March and April months leading to higher photochemical production. On the other hand, relative humidity, which is higher during the rainy season, shows negative correlation with temperature and ozone mixing ratio. It can be seen that among the two parameters are measured, correlation of surface ozone with wind speed is better (R 2=0.84) in compare with relative humidity (R 2=0.66).  相似文献   

14.
During the summer (8 June through 3 September) of 2008, 9 ozone profiles are examined from Dakar, Senegal (14.75°N, 17.49°W) to investigate ozone (O3) variability in the lower/middle troposphere during the pre-monsoon and monsoon periods. Results during June 2008 (pre-monsoon period) show a reduction in O3 concentrations, especially in the 850–700 hPa layer with Saharan Air Layer (SAL) events. However, O3 concentrations are increased in the 950–900 hPa layer where the peak of the inversion is found and presumably the highest dust concentrations. We also use the WRF-CHEM model to gain greater insights for observations of reduced O3 concentrations during the monsoon periods. In the transition period between 26 June and 2 July in the lower troposphere (925–600 hPa), a significant increase in O3 concentrations (10–20 ppb) occur which we suggest is caused by enhanced biogenic NOX emissions from Sahelian soils following rain events on 28 June and 1 July. The results suggest that during the pre-monsoon period ozone concentrations in the lower troposphere are controlled by the SAL, reducing ozone concentrations through heterogeneous chemical processes. At the base of the SAL we also find elevated levels of ozone, which we attribute to biogenic sources of NOX from Saharan dust that are released in the presence of moist conditions. Once the monsoon period commences, lower ozone concentrations are observed and modeled which we attribute to the dry deposition of ozone and episodes of ozone poor air that is horizontally transported into the Sahel from low latitudes by African Easterly Waves (AEWs).  相似文献   

15.
Continuous in-situ measurements of surface ozone (O3), carbon monoxide (CO) and oxides of nitrogen (NOx) were conducted at Udaipur city in India during April 2010 to March 2011. We have analyzed the data to investigate both diurnal and seasonal variations in the mixing ratios of trace gases. The diurnal distribution of O3 showed highest values in the afternoon hours and lower values from evening till early morning. The mixing ratios of CO and NOx showed a sharp peak in the morning hours but lowest in the afternoon hours. The daily mean data of O3, CO and NOx varied in the ranges of 5–51 ppbv, 145–795 ppbv and 3–25 ppbv, respectively. The mixing ratios of O3 were highest of 28 ppbv and lowest 19 ppbv during the pre-monsoon and monsoon seasons, respectively. While the mixing ratios of both CO and NOx showed highest and lowest values during the winter and monsoon seasons, respectively. The diurnal pattern of O3 is mainly controlled by the variations in photochemistry and planetary boundary layer (PBL) depth. On the other hand, the seasonality of O3, CO and NOx were governed by the long-range transport associated mainly with the summer and winter monsoon circulations over the Indian subcontinent. The back trajectory data indicate that the seasonal variations in trace gases were caused mainly by the shift in long-range transport pattern. In monsoon season, flow of marine air and negligible presence of biomass burning in India resulted in lowest O3, CO and NOx values. The mixing ratios of CO and NOx show tight correlations during winter and pre-monsoon seasons, while poor correlation in the monsoon season. The emission ratio of ?CO/?NOx showed large seasonal variability but values were lower than those measured over the Indo Gangetic Plains (IGP). The mixing ratios of CO and NOx decreased with the increase in wind speed, while O3 tended to increase with the wind speed. Effects of other meteorological parameters in the distributions of trace gases were also noticed.  相似文献   

16.
This study investigated the potential factors contributing to a series of ozone (O3) episodes in the Taichung metropolis, which occurred during the first half of May 2007. Surface data of the meteorological parameters and air pollutant concentrations, supported by Taiwan Environmental Protection Administration, and vertical data monitored via tethersonde sampling were analysed. The analyses showed that local anthropogenic activities and physical factors such as the sea–air interaction were not the main factors contributing to the O3 events. Excluding these potential causes, the results suggest that, during the aforementioned period, the stronger Mainland High and Pacific Low may have been responsible for the long-range transport of large quantities of O3 from Mainland China to Taiwan. Furthermore, O3 photochemical activity also played an important role in the O3 episodes. The faster consumption of NO lead to a more rapid increase in the O3 concentration.  相似文献   

17.
Airborne measurements of stratospheric ozone and N2O from the SCIAMACHY (Scanning Imaging Absorption Spectrometer) Validation and Utilization Experiment (SCIA-VALUE) are presented. The campaign was conducted in September 2002 and February–March 2003. The Airborne Submillimeter Radiometer (ASUR) observed stratospheric constituents like O3 and N2O, among others, spanning a latitude from 5°S to 80°N during the survey. The tropical ozone source regions show high ozone volume mixing ratios (VMRs) of around 11 ppmv at 33 km altitude, and the altitude of the maximum VMR increases from the tropics to the Arctic. The N2O VMRs show the largest value of 325 ppbv in the lower stratosphere, indicating their tropospheric origin, and they decrease with increasing altitude and latitude due to photolysis. The sub-tropical and polar mixing barriers are well represented in the N2O measurements. The most striking seasonal difference found in the measurements is the large polar descent in February–March. The observed features are interpreted with the help of SLIMCAT and Bremen Chemical Transport Model (CTMB) simulations. The SLIMCAT simulations are in good agreement with the measured O3 and N2O values, where the differences are within 1 ppmv for O3 and 15 ppbv for N2O. However, the CTMB simulations underestimate the tropical middle stratospheric O3 (1–1.5 ppmv) and the tropical lower stratospheric N2O (15–30 ppbv) measurements. A detailed analysis with various measurements and model simulations suggests that the biases in the CTMB simulations are related to its parameterised chemistry schemes.  相似文献   

18.
An updated version of the Regional Acid Deposition Model(RADM)driven by meteorologicalfields derived from Chinese Regional Climate Model(CRegCM)is used to simulate seasonal variationof tropospheric ozone over the eastern China.The results show that:(1)Peak O_3 concentration moves from south China to north China responding to the changing ofsolar perpendicular incidence point from south to north.When solar perpendicular incidence pointmoves from north to south,so does the peak O_3 concentration.(2)In the eastern China.the highest O_3 month-average concentration appears in July.thelowest in January and the medium in April and October.The pattern mainly depends on the solarradiation,the concentration of O_3 precursors NO_x and NMHC and the ratio of NMHC/NO_x.(3)Daily variations of O_3 over the eastern China are clear.Namely,O_3 concentrations rise withthe sun rising and the maximums appear at noon.then O_3 concentrations decrease.The highest dailyvariation range of O_3 appears in summer(40×10~(-9) in volume fraction)and the lowest in winter(20×10~(-9) in volume fraction).(4)Daily variations of O_3 over the western China are not clear.The daily variation range of O_3 isless than 10×10~(-9) in volume fraction.  相似文献   

19.
The mixing ratios of surface O3 were measured at St. John's College, Agra, an urban and traffic influenced area for the period of 2000–2002. The monthly averaged O3 mixing ratios ranged between 8 to 40 ppb with an annual average of 21 ppb. Strong diurnal and seasonal variations in O3 mixing ratios were observed throughout the year except for monsoon season. The mixing ratios of O3 follow the surface temperature cycle and solar radiation (r = 0.72 and r = 0.65 with temperature and solar radiation, respectively). Concentrations were higher with winds associated with NE and NW direction indicating the impact of pollution sources on surface O3 concentration. Exceedance of ozone critical level was calculated using the AOT 40 index and found to be 840 ppb.h and 2430 ppb.h for summer and winter seasons, respectively. The present O3 exposures are lower than the critical level of O3 and suggest that the present level of O3 does not have any impact on reduction in crop yields.  相似文献   

20.
The mixing ratios for ozone and NOx (NO+NO2) have been measured at a rural site in the United States. From the seasonal and diurnal trends in the ozone mixing ratio over a wide range of NOx levels, we have drawn certain conclusions concerning the ozone level expected at this site in the absence of local photochemical production of ozone associated with NOx from anthropogenic sources. In the summer (June 1 to September 1), the daily photochemical production of ozone is found to increase in a linear fashion with increasing NOx mixing ratio. For NOx mixing ratios less than 1 part per billion by volume (ppbv), the daily increase is found to be (17±3) [NOx]. In contrast, the winter data (December 1 to March 1) indicate no significant increase in the afternoon ozone level, suggesting that the photochemical production of ozone during the day in winter approximately balances the chemical titration of ozone by NO and other pollutants in the air. The extrapolated intercept corresponding to [NOx]=0 taken from the summer afternoon data is 13% less than that observed from the summer morning data, suggesting a daytime removal mechanism for O3 in summer that is attributed to the effects of both chemistry and surface deposition. No significant difference is observed in the intercepts inferred from the morning and afternoon data taken during the winter.The results contained herein are used to deduce the background ozone level at the measurement site as a function of season. This background is equated with the natural ozone background during winter. However, the summer data suggest that the background ozone level at our site is elevated relative to expected natural ozone levels during the summer even at low NOx levels. Finally, the monthly daytime ozone mixing ratios are reported for 0[NOx]0.2 ppbv, 0.3 ppbv[NOx]0.7 ppbv and 1 ppbv[NOx]. These monthly ozone averages reflect the seasonal ozone dependence on the NOx level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号